Title: Lefschetz properties and a problem on fat points
Abstract: Given general points p_{1}, \ldots, p_{d} in the projective plane and positive integers m_{1}, \ldots, m_{d}, "how many" curves of fixed degree j pass through the points with multiplicity at least m_{i} at p_{i} ? There is a natural guess, and the Segre-Harbourne-Gimigliano-Hirschowitz (SHGH) conjecture says what should be the only counterexamples to the natural guess. This can be interpreted as a conjecture giving the number of conditions on the complete linear system of plane curves of degree j imposed by the "fat point scheme" $m_{1} p_{1}+\cdots+m_{d} p_{d}$. We extend this problem by replacing the complete linear system with the linear subsystem defined by a fixed set of points Z in the plane, and study the first interesting case. Our study involves line arrangements in the plane, and so-called "Lefschetz properties. This is joint work with David Cook II, Brian Harbourne and Uwe Nagel.

