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Abstract. In this note we investigate the cone of Betti tables of graded modules over a non-standard graded
polynomial ring.

1. Introduction

Boij and Söderberg conjectured a beautiful structure theorem on the cone of Betti tables of graded
modules over the polynomial ring R = k[x1, . . . , xn] where deg xi = 1. The primary objects of interest in
this theory are the extremal rays of this cone, which are provided by the Betti diagrams of pure modules; a
module is pure if each of its syzygies is generated in a unique degree. The motivation for this conjecture was
the multiplicity conjecture [3] of Herzog-Huneke-Srinivasan, which was known to hold in the pure case by
the Herzog-Kühl equations [5]. Therefore, a natural question arose: Is every Betti diagram (up to scaling)
a positive rational linear combination of pure Betti tables? The existence of pure diagrams were proved
in characteristic zero by Eisenbud-Fløystad-Weyman [1], and the full conjecture was proven in arbitrary
characteristic by Eisenbud-Schreyer [2] by providing a connection between Betti tables of modules over R
and cohomology tables of vector bundles over Pn−1.

Our group originally wanted to focus on describing the cone of Betti diagrams of graded modules over
R = k[x1, ..., xn] where deg xi = ei. We discovered early on that this was quite a lofty goal, and so we
restricted soon to the case of R = k[x, y] with deg x = 1 and deg y = 2. There are some general reductions
that one can make in this case:

2. Herzog-Kühl equations

Suppose R = k[x1, . . . , xn] where deg xi = di. Let M be an Artinian graded R-module with a minimal
free resolution of the form

0 → Fp → · · · → F0 → M → 0

where Fi =
⊕

j R(−j)βi,j . Then the βi,j are the Betti numbers of M . In this case, the Hilbert series of M
is given by

HM (t) =

∑
i,j (−1)iβi,jt

j∏n
i=1(1− tdi)

.

As the Hilbert series of an Artinian module is a polynomial, we see that

n∏
i=1

(1− tdi)

∣∣∣∣∣∣
∑
i,j

(−1)iβi,jt
j

and hence there exist
∑n

i=1 di equations on the Betti numbers of M which must be satisfied.
Specializing to the case R = k[x, y] with deg x = 1,deg y = 2, we have the following three equations:∑

i,j

(−1)iβi,j = 0,
∑
i,j

(−1)ijβi,j = 0, and
∑
i,j

(−1)i+jβi,j = 0.
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3. Pure diagrams

Let (d0 < d1 < d2) be a degree sequence. Without loss of generality, we may assume that d0 = 0. If d1

and d2 are even, then one can realize the diagram


∗ − −
...

...
...

− ∗ −
...

...
...

− − ∗

 by constructing the module corresponding to

the pure Betti diagram for the degree sequence (0, d1
2 , d2

2 ) as in Eisenbud-Schreyer [2], but using the ring
k[x2, y2] (with both x and y of degree 1), and tensoring the module up along the inclusion k[x2, y2] ⊆ k[x, y2].

Suppose that (0, d1, d2) is the degree sequence of a pure Artinian module. The Herzog-Kühl equations
become

β0,0 − β1,d1 + β2,d2 = 0
−d1β1,d1 + d2β2,d2 = 0

β0,0 − (−1)d1β1,d1 + (−1)d2β2,d2 = 0

Subtracting the first and the last equation shows that(
1− (−1)d1

)
β1,d1 =

(
1− (−1)d2

)
β2,d2 ,

which implies that if one of d1 or d2 is odd, then so is the other, since βi,di
are positive. In this case,

β1,d1 = β2,d2 , in which case the first equation above implies β0,0 is zero. Therefore, both d1 and d2 are even,
and we described how to achieve such Betti tables with modules above.

4. Quasi-pure diagrams

Definition 4.1. Given a degree sequence d = (d0 < d′1 < d′′1 < d2), we define a quasi-pure diagram of type
d to be one for which

βi,j = 0 whenever (i, j) /∈ {(0, d0), (1, d′1), (1, d′′1), (2, d2)}.

Given a quasi-pure diagram corresponding to a module of finite length, its Betti numbers must satisfy
the Herzog-Kühl equations

β0,d0 + β2,d2 = β1,d′
1
+ β1,d′′

1
,

(−1)d0β0,d0 + (−1)1+d′
1β1,d′

1
+(−1)1+d′′

1 β1,d′′
1

+ (−1)2+d2β2,d2 = 0,

(−1)d0d0β0,d0 + (−1)d′
1d′1β1,d′

1
+(−1)d′′

1 d′′1β1,d′′
1

+ (−1)d2d2β2,d2 = 0.

We can shift the degrees of any quasi-pure diagram with degree sequence d to make d0 = 0, thus we may
assume for simplicity that this is the case for all our diagrams. We distinguish two cases, according to the
parity of d2.

Case 1: d2 even
The Herzog-Kühl equations together with the nonnegativity of the Betti numbers imply that the only

nonzero entries in the middle column of a quasi-pure diagram β may show up only on odd rows, that is

β1,i = 0 for i even.

It follows easily that either β is pure, or it decomposes as the sum of two pure diagrams.
Case 2: d2 odd
In this case, the Herzog-Kühl equations determine the entries of the Betti diagram β uniquely up to a

constant factor. To see this, let

a = β0,0, b = β1,d′
1
, z = β1,d′′

1
, t = β2,d2 .

The first two Herzog-Kühl equations yield

a + t = b + z

a− t = ±b± z
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according to the parity of d′1, d
′′
1. If both signs are the same (equivalently if d′1, d

′′
1 have the same parity)

it follows that either a = 0 or t = 0, so β can’t be the Betti diagram of a finite length module. We may
therefore assume that d′1 and d′′1 have distinct parity. We distinguish two subcases:

2.1: d′1 even, d′′1 odd. The two equations above yield

a = b, z = t

and the 3rd Herzog-Kühl equation becomes

d′1y + d′′1z = d2t

which combined with the previous relations implies

a = b = λ · (d2 − d′′1),

z = t = λ · d′1,

for some constant λ.
2.2: d′1 odd, d′′1 even. An analogous calculation shows that in this case we must have

a = z = λ · (d2 − d′1),

b = t = λ · d′′1,

for some λ.

5. Powers of the maximal ideal and variations

One of the classes of Betti diagrams which we conjecture to be extremal are the Betti diagrams of the
powers of the maximal ideal, m. These diagrams have the following form:

β(R/mn) =


1 − −
− − −
...

...
...

− − −
− 1 −
− 1 1
...

...
...

− 1 1


where there are n− 2 rows of zeros after the first row and the last n rows are of the form

(
− 1 1

)
. By

taking powers of the maximal ideal and replacing xn with a higher power of x or replacing yn with a higher
power of y, we obtain two other classes of modules whose Betti diagrams may be pure in many cases. More
precisely define two classes of modules for n, r ≥ 1 as follows

An,r = R/(xn+r, xn−1y, xn−2x2, . . . , xyn−1, yn)

Bn,r = R/(xn, xn−1y, xn−2x2, . . . , xyn−1, yn+r) .

The effect of increasing the exponent of xn on the Betti diagram of R/mn is to shift the Betti numbers
β1,n and β2,n+2 down r rows in the diagram. On the other hand, increasing the exponent of yn adds rows
of zeros before the last non-zero row of the diagram. The Betti diagram of Bn,r has 2r rows of zeros before
the last non-zero row. So for example,

β(A3,1) =


1 − −
− − −
− − −
− 2 −
− 1 2
− 1 1

 , β(B3,1) =



1 − −
− − −
− 1 −
− 1 1
− 1 1
− − −
− − −
− 1 1


.
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Some of these Betti diagrams are decomposable into types of diagrams which we conjecture to be pure. For
example,

β(A2,2) =


1 − −
− − −
− 1 −
− 2 1
− − 1

 =
1
2


1 − −
− − −
− 2 −
− 1 2

 +
1
2


1 − −
− − −
− − −
− 3 −
− − 2


Others, however, appear to be indecomposable.

6. A Basic Case

Our approach was to include all the extremal rays of the above form for a particular degree range, compute
the facet equations of the cone defined by these rays, and see if all Betti tables in this degree range satisfy
these inequalities. The first case we looked at carefully is the cone of Betti tables of minimal resolutions
of Artinian modules having degree bounds (0, 1, 3) to (0, 4, 5). Note that since there is only one variable of

degree 1, the smallest degree of a second syzygy is 3. This cone has the ‘shape’
(∗ ∗ −
− ∗ ∗
− ∗ ∗
− ∗ ∗

)
.

The following are the candidates for extremal rays coming from the above remarks in this case:
1 1 −
− 1 1
− − −
− − −

 ,


2 1 −
− 2 −
− − −
− − 1

 ,


1 − −
− 1 −
− 1 −
− − 1

 ,


1 1 −
− − −
− − −
− 1 1

 ,


1 − −
− − −
− 2 −
− 1 2

 ,


1 − −
− 2 −
− − 1
− − −

 ,


1 − −
− 1 −
− 1 1
− 1 1

 .

These Betti diagrams are realized by the cokernels of the following matrices respectively:(
x y

)
,

(
y x2 0
0 −y x

)
,
(
x3 y

)
,
(
x y2

)
,
(
x3 xy y2

)
,
(
x2 y

)
,
(
x2 xy y2

)
.

Using the FourierMotzkin package in Macaulay2 [4], one obtains the equations defining the supporting
hyperplanes of the cone defined by these rays:

β2,4 − β1,3 + 2β2,5 − 2β1,4 ≥ 0
β2,5 − β1,3 ≥ 0
β2,5 − β1,4 ≥ 0,

which can be viewed as the following functionals being nonnegative on those Betti tables generated by our
rays: 

− − −
− − −
− −1 1
− −2 2



− − −
− − −
− − −1
− − 1



− − −
− − −
− −1 −
− − 1


The Herzog-Kühl equations in this case are equivalent to the following system:

β0,0 + β2,4 = β1,2 + β1,4

β2,3 + β2,5 = β1,1 + β1,3

2β0,0 + β2,3 = 2β1,1 + β1,2 + β1,3

To give the proof that the inequalities above hold for all Betti tables, let M be a graded R-module whose
Betti table is of the above shape. The Herzog-Kühl equations show that the first inequality is equivalent to
the inequality β1,4 + β2,3 ≤ β0,0. If β2,3 is nonzero, then the complex is a direct sum of β2,3 copies of the
Koszul complex on x and y, and another complex, and so we may assume that β2,3 is zero by subtracting
as many copies of the first ray from the Betti table as we can. Also, we know that the map from R(−4)β1,4

to Rβ0,0 is injective. Indeed, any element of the kernel would have degree greater than or equal to 6, since
there are no linear syzygies among forms of degree 4 in R. Therefore, one has the desired inequality.

Also, note that β2,5 ≥ β1,3 is equivalent to β2,3 ≤ β1,1 from the second Herzog-Kühl equation above.
Again, since the only way to get contributions to β2,3 is from the Koszul complex, one has β2,3 ≤ β1,1.
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To see the final inequality, note that one has β2,5 ≥ β1,4 since the dual of a Betti table is again a Betti
table, and one may not have more linear syzygies than generators in degree 0, since there is only one variable
of degree 1 in R.
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