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Chapter 1

The Talks

1 Okutsu-Montes Representations of Prime Ideals in Global
Fields (overview)

(talk by Enric Nart)

Setting: K is a local field (i.e. a field which is complete with respect to some discrete
valuation) with finite residue field. We denote by O the ring of integers, m its maximal
ideal and π some uniformizer.

Montes’ algorithm:

Input: f ∈ O[x] a monic, separable (i.e. has no multiple factors over K) polynomial.

Output: A family t1, · · · , tg of f-complete optimal types (to be defined later), parametriz-
ing the irreducible factors F1, · · · , Fg of f(x) in O[x].

We fix an irreducible factor F of f for the rest of the section. Let θ ∈ Ksep be a root
of F , L = K(θ). We write t for the type corresponding to F ,

t = [φ1, · · · , φr;φr+1] (+ extra data)

where φi ∈ O[x] are monic, irreducible, separable polynomials with

deg(φ1)|deg(φ2)| · · · |deg(φr+1) = deg(F )

and
deg(φ1) < deg(φ2) < · · · < deg(φr)

(note that the degree of φr+1 is allowed to be equal to that of φr).
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One should think of φr+1 as a “sufficiently good” approximation of F .

Remarks on Montes’ algorithm:

1. The factorization is “detected” but never carried out. Only certain auxiliary polyno-
mials are factorized and all the factorizations occur only over finite fields.

2. The type t encodes a lot of information about the extension (L/K).

The type t is structured on r + 1 “levels” (we call r the order of t). At each level
1 ≤ i ≤ r + 1 one has invariants

ei, fi, hi, λi, µi etc.

Question 1.1. What information can one recover from these invariants?

• Valuations:
v(φi(θ)) =

|λi|+ µi
e1 · · · ei−1

.

• Ramification index:
e(L/K) = e1 · · · er.

• Residual degree:
f(L/K) = deg(φ1) · f1 · · · fr.

In the tamely ramified case, we get a tower of extensions

K ⊂ K1 ⊂ · · · ⊂ Kr ⊂ L

where Ki = K(αi) for roots αi of φi. In this case, ei (fi) represent the ramification index
(residual degree) of the intermediate extension Ki ⊂ Ki+1 (we let Kr+1 = L).

Definition 1.2. Given an irreducible factor F of f , we define the exponent of F by

exp(F ) = min{i : πiOL ⊂ O[θ]}

One can recover exp(F ) from the invariants of the type t:

exp(F ) =
r∑
i=1

(eifi · · · erfr − 1) · hi
e1 · · · ei

5



1.1 How to compute an integral basis of OL over O?

Let n denote the degree of F . We construct an integral basis of OL over O, of the form

1,
g1(θ)
πν1

, · · · , gn−1(θ)
πνn−1

as follows. For each 0 ≤ m < n there exists a unique expression of m as

m = j0 + j1 · deg(φ1) + · · ·+ jr · deg(φr), with 0 ≤ jk <
deg(φk+1)
deg(φk)

.

Define gm and νm via the formulas

gm(x) = xj0φj11 · · ·φ
jr
r ,

νm = bj1 · v(φ1(θ)) + · · ·+ jr · v(φr(θ))c.

Remark. The polynomial φr+1 is not used for the computation of the integral basis,
but will be useful in other algorithms.

Questions:

1. Does this work for plane curves?

2. Are the invariants encoded by t also invariants of the order O[θ], or just of the defining
polynomial F?

3. Can we compute the Galois group of K(θ)/K from the invariants of t? Or at least
the degree of the normal closure?

4. In the wildly ramified case, is it possible to choose the φi’s so that the intermediate
fields Ki form a tower (as in the tamely ramified case)?

2 Tameness + Anisotropy ⇒ Ã/A = lr(A†/A)

(talk by Hendrik Lenstra)

References: Little Groups (from last year’s workshop) + Kosters’ thesis

Summary: Given an order A over a Dedekind domain R, we would like to determine
its integral closure Ã. In general Ã/A has strong finiteness properties (e.g. it is a finite
group in the number field case). If we impose the conditions of tameness and anisotropy
on the order A, then we obtain the following direct description of its integral closure:

Ã/A = lr(A†/A)

where lr stands for “lower root” (to be explained below).
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2.1 Lower Roots

Given a positive integer n, one defines the lower root of n by

lr(n) := max{d ∈ Z : d2|n}.

Explicitly, if
n =

∏
p

pap

then
lr(n) =

∏
p

pbap/2c.

One can extend this notion to finite abelian groups as follows. We define the lower
root functor on finite abelian groups to be the unique functor with the following properties:

• If M is a cyclic group, then lr(M) is the unique subgroup of M of order lr(#M).

• lr preserves direct sums

lr(M1 ⊕M2) = lr(M1)⊕ lr(M2).

The uniqueness of such a functor is easy, and for exitence one can check that the
functor defined by

lr(M) =
∑
k∈Z

(kM ∩M [k])

satisfies the two conditions above. (Here kM and M [k] denote the image and kernel respec-
tively, of the multiplication by k map on M)

Even more generally, given a Dedekind domain R and a finite length R-module M , we
define the lower root of M to be the submodule

lr(M) =
∑
r∈R

(rM ∩M [r])

of M (where rM and M [r] are defined as before).

2.2 Orders over Dedekind rings

Given a Dedekind ring R, we let K = Q(R) denote its fraction field, and consider a finite
(commutative) K-algebra E which is a product of separable field extensions of K. We call
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such an algebra étale. Alternatively, one can define E to be a finite K-algebra, with the
property that the trace map

TrE/K : E → K

defines a nondegenerate bilinear pairing

〈 , 〉 : E × E → K, 〈x, y〉 = TrE/K(xy).

(by definition, a pairing is said to be nondegenerate if its radical

E⊥ = {x ∈ E : 〈x,E〉 = 0}

consists only of the zero element: E⊥ = {0})

Given R and E, we say that an R-algebra A ⊂ E is an order if it is finitely generated
as a module over R, and generates E as an algebra (module) over K:

K ·A = E.

Note that since E has no R-torsion, the same is true about A, so A must be a projective
R-module. In particular, if R is a dvr, then A is free. For an order A as above, we let Ã
denote its integral closure in E (which coincides with the integral closure of R in E).

We define an R − lattice in E to be a finitely generated R-module L ⊂ E with the
property that

K · L = E.

Given a lattice L, its dual is defined by

L† = {x ∈ E : 〈x, L〉 ⊂ R}.

This is a sub-R-module of E which is abstractly isomorphic to

HomR(L,R),

and one has the equality
L†† = L.

It is clear that an order A is a lattice, as well as its integral closure Ã.

Since the trace of R-integral elements is contained in R, we obtain the inclusions

A ⊆ Ã ⊆ Ã† ⊆ A†.

With R,E and A fixed for the rest of the section, we consider the module

B = A†/A.
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This is an R− and A− module of finite length, thus admits decompositions

B =
⊕
p⊂R

Bp =
⊕

p

⊕
p⊂m⊂A

Bm

where p and m denote maximal ideals of R and A respectively. Here Bp denotes the
localization of B at p which, since B has finite length, we can think of as the sections of B
suported at p

Bp = {x ∈ B : ∃n ∈ Z≥0 s.t. pn · x = 0}.

A similar description holds for Bm. The module Ã/A is also of finite length, so we obtain
similar decompositions as for B.

The structure of finite length modules over Dedekind rings is (just as for Z) very
simple: they’re all sums of R/pi. We can thus write

Bm 'R
⊕
i≥1

(R/pi)n(i,m),

where n(i,m) are nonnegative integers. More is true: since

pi−1Bm/p
iBm ' (R/p)n(i,m)

has a filtration whose quotients that are A/m-modules, we must have that [A/m : R/p]
divides n(i,m):

n(i,m) ∈ [A/m : R/p] · Z≥0.

2.3 A Concrete Theorem

Theorem 2.1 (Concrete Theorem). One has

(Ã/A)m = lr(B)m

for each m satisfying the following two conditions

1. char(A/m) = 0 or char(A/m) >
∑

i≥1 n(i,m).

2. There exist i1, i2 ∈ Z>1 such that

• i1 6= i2 mod 2.

• n(i,m) = 0 for all i /∈ {1, i1, i2}.
• n(i,m) ∈ {0, [A/m : R/p]} for i ∈ {i1, i2}.
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Remarks.

1. The first condition in the theorem above corresponds to tameness.

2. Since A†p is free of rank dimK(E) over Rp, Bm is minimally generated by dimK(E)
elements, so ∑

i

n(i,m) ≤ dimK(E).

Therefore, if char(A/m) > dimK(E), condition (1) is automatically satisfied.

3. In general we don’t expect any inclusions between

lr(A†/A) and Ã/A.

4. One would be interesting to look at examples over R = k[x].

5. For vector spaces over an algebraically closed field, anisotropy (〈x, x〉 6= 0 for x 6= 0)
is not an interesting notion since it can only occur on 1-dimensional spaces.

2.4 Tameness

Let k be a field and e a finite k-algebra (not necessarily étale). Consider the pairing

〈 , 〉 : e× e→ k, 〈x, y〉 = Tre/k(xy).

We always have the inclusion √
0e ⊂ e⊥

(since nilpotent elements have trace zero). We say that e is tame (over k) if this inclusion
is an equality: √

0e = e⊥.

Equivalently, since tameness in the above definition is local, we have that e is tame if
and only if em is tame for all maximal ideals m. This latter condition is in turn equivalent
to {

e/m separable over k
char(k) - lengthem

(em)
.

If an algebra is not tame, then we say it is wild.
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We can see that this notion of tameness corresponds to the more familiar one in the
case of Dedekind rings. Indeed, if R ⊂ T are Dedekind rings, and p ⊂ R a prime of R, then

pT =
∏
q

qe(q/p)

and we say that T/pT is tame over R/p if and only if for all q|p we have{
T/q separable over R/p
char(R/p) - e(q/p)

.

Tameness for an order. More generally, given an order A over R and a maximal ideal
m ⊂ A lying over p ⊂ R, we say that

• m is tame over p if (A/pA)m is tame over R/p.

• A is tame over R at p if A/pA is tame over R/p.

Further topics: a Less Concrete Theorem, some proofs, examples.

3 Van Hoeij’s Algorithm for Curves

(talk by Mike Stillman)

Setting: k is a field (we’ll be mainly interested in the case k = Fq) and f ∈ k[x, y] is a
polynomial satisfying the following properties

1. f is monic of degree n in the y variable (assume also irreducible for simplicity).

2. The discriminant

∆ = resy

(
f,
∂f

∂y

)
∈ k[x]

is nonzero.

Let O denote the integral closure of k[x] inside F = k(x)[y]/(f). We would like to
obtain a basis of O over k[x]. For an irreducible polynomial P of k[x] we will write OP for
the integral closure of k[x](P ) inside F (which is also the localization of O at the ideal (P )).

Strategy: divide and conquer. For each irreducible P for which P 2|∆ we construct a
local basis of OP over k[x](P ), and then we glue together all these bases to get a basis for
O over k[x].
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Example 3.1. There is a polynomial f of the form

f = y21 + · · · ∈ F2[x, y],

having degree 25 in x and discriminant

∆(x) = x22 · (x+ 1)72 · (cubic)2 · (cubic)4 · (deg 7)2 · (deg 17)2 · (deg 58)2 · (deg 112)2.

The Van Hoeij algorithm seems to work significantly better than other known algorithms
on this example.

Main ingredients:

• Use the Frobenius map to compute OP (x).

• If P has small multiplicity in ∆ we can sometimes use a different strategy to avoid
computations.

Reduction: We only need to consider the case when P (x) = x. If P has degree at
least two, we consider α a root of P and work over k(α). We compute Ox−α, the integral
closure of k(α)[x] in F ⊗k k(α) and then use the trace map

tr : k(α)[x]→ k[x]

to obtain a basis for OP .

From now on we’re in the following situation: P (x) = x, f ∈ k[x, y] and m is maximal
with the property that x2m|∆(f). The goal is to compute a local basis of Ox ⊂ F .

Definition 3.2. A partial basis (or stem) B of Ox consists of the following data:

B = [(d1, b1), (d2, b2), · · · , (dr, br)]

for some r ≥ 0, where

1. 1 ≤ d1 < d2 < · · · are positive integers.

2. bi = bi(x, y) ∈ k[x, y] are monic polynomials in y of degree ei.

3. 1 ≤ e1 < e2 < · · · < er ≤ n− 1.

4. Bi =
bi
xdi
∈ O for all i = 1, · · · , r.
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We denote by L(B) the k[x]x-span of

{1, y, · · · , ye1−1, B1, yB1, · · · , ye2−e1−1B1, · · · , Br, yBr, · · · yn−er−1Br}.

For example, if B = [ ] is empty, then L(B) = k[x, y]/(f).

Let F = frack[x, y]/(f), k = Fq and consider the Frobenius map

σ : F → F, g 7→ gp.

Suppose we have constructed a stem B preserved by σ (σ(L(B)) ⊂ L(B)). σ restricts then
to a map

σ :
1
x
L(B)→ 1

xp
L(B)

which in turn induces a map

σ : L1(B) =
1
x
L(B)/L(B)→ L∗(B) =

1
xp
L(B)/L(B).

Note that L1(B) and L∗(B) are finite dimensional vector spaces of dimensions n and
np respectively. σ is a twisted k-linear map, i.e. it satisfies

σ(u+ v) = σ(u) + σ(v) for u, v ∈ L1(B),

σ(au) = apσ(u), for a ∈ k, u ∈ L1(B).

Therefore, one can compute the kernel of this map readily.

We have the following

Lemma 3.3. If a ∈ 1
xL(B) and σ(a) = 0 then a ∈ O.

Proof. ap ∈ L(B) ⊂ O so a is integral over k[x].

Now the algorithm loops through the following procedure: given a stem B and σ :
L1(B)→ L∗(B) we compute the kernel of σ. If this is nonzero we extend B so that L1(B)
contains the elements of this kernel.

What happens if ker(σ) = 0?

The answer is given by the following

Proposition 3.4. Suppose ker(σ) = 0. Then Ox ⊂ 1
xL(B).
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Proof. The k[x](x) module Ox/L(B) has finite length, so xNOx ⊂ L(B) for N >> 0.
Assume that Ox is not contained in 1

xL(B) and choose some a ∈ Ox \ 1
xL(B). Consider the

function g : Ox → Ox given by

g(t) =

{
xt if t /∈ 1

xL(B)
tp if t ∈ 1

xL(B)
.

We claim that if t /∈ L(B) then g(t) /∈ L(B). In particular g(N)(a) /∈ L(B) for
all N , but g(N)(a) is easily seen to be contained in xNOx, which in turn is a subset of
L(B) for N >> 0, a contradiction.

To prove the claim, consider t /∈ L(B). If t /∈ 1
xL(B) then g(t) = xt /∈ L(B). On the

other hand, if t ∈ 1
xL(B) then g(t) = tp can’t be in L(B) because σ is injective.

With this result, we can now finish our calculation of the local basis. We let V0 = L1(B)
and define Vi recursively as follows. We consider the induced map

σ : Vi → L∗(B)/Vi

and define
Vi+1 = ker(σ).

We get a decreasing chain of subspaces

L1(B) = V0 ⊃ V1 ⊃ · · · ⊃ Vs = Vs+1 = · · ·

which eventually stabilizes. It is then easy to check that Ox is the inverse image of Vs via
the projection map

1
x
L(B)→ L1(B).

4 A Generalization of Anisotropy

(talk by Michiel Kosters)

4.1 Anisotropy of vector spaces

Let V be a finite dimensional vector space over a field k and let W be a 1-dimensional
k-vector space. Let 〈 , 〉 : V × V →W be a symmetric k-bilinear form.
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Definition 4.1. The form 〈 , 〉 is called non-degenerate if the map

ϕ : V → Homk(V,W )
v 7→ 〈v, ·〉

is an isomorphism. Remark that this is equivalent to ϕ being injective or surjective.

The form 〈 , 〉 is called anisotropic if 〈v, v〉 = 0 implies that v = 0. If the form is not
anisotropic, it is called isotropic.

Remark 4.2. An anisotropic form is automatically non-degenerate.

4.2 Uniserial rings

We want to extend this definition of anisotropy to symmetric bilinear forms over modules
over a certain class of rings.

Definition 4.3. A ring R is called uniserial if R is a zero-dimensional local principal ideal
ring.

Such a uniserial ring R has the following struture. Let m = (π) be the maximal ideal.
As R is zero-dimensional and local, there is a smallest n ∈ Z≥1 such that mn = 0. Then R
has a composition series R ⊃ m ⊃ . . . ⊃ mn = 0 of length n and these ideals are the only
ideals of R.

Remark 4.4. How do these rings arise in practice? Take a Dedekind domain and mod out
by a nonzero ideal. One then has a zero-dimensional principal ideal ring and as this ring is
Artinian, it is the product of uniserial rings. If R is a Dedekind domain and p is a prime
ideal of R, then R/pi for i ∈ Z≥1 is an example of such a ring. Remark that a field is also
a uniserial ring.

These rings tend to have a lot of structures and modules over such rings also have a
lot of structure.

Theorem 4.5. Let (R,m) be a uniserial ring of length n. Let M be an R-module. Then

M ∼=
n⊕
i=1

(
R/mi

)(ni)
where the ni are uniquely determined cardinal numbers.

Corollary 4.6. Let R be a uniserial ring and let M be a finitely generated R-module. Then
M ∼= HomR(M,R).

This last corollary gives the possibility for non-degenerate forms over such modules.

15



4.3 Anisotropy

Let (R,m) be a uniserial ring of length n, let M be a finitely generated R-module, N be a
free rank 1 R-module and finally let 〈 , 〉 : M ×M → N be a symmetric bilinear form. Our
task will be to define the notion of anisotropy. First of all, this should be a generalization
of the well-known concept in the vector space case.

Definition 4.7 (Try 1 (complete fail, works only in the vector space case)). 〈 , 〉 is called
anisotropic if 〈x, x〉 = 0 implies that x = 0.

This definition fails terribly. Consider the form on Z/p2Z over Z/p2Z given by [1].
Then 〈p, p〉 = 0, but this form looks anisotropic somehow. The problem comes from the
fact that there is a submodule lr(M) ⊂M (which is 0 iff the space is a vector space), such
that 〈lr(M), lr(M)〉 = 0. We can now modify our definition. First we define this lower root
and the upper root.

Definition 4.8. We define the lower root respectively the upper root of M as

lr(M) =
n∑
i=0

(
miM ∩M [mi]

)
ur(M) =

n⋂
i=0

(
miM + M[mi]

)
.

This looks like a terrible definition, but once one knows the decomposition of M into
cyclic groups, one can easily calculate it (example).

Definition 4.9 (Try 2 (fail in characteristic 2, even if we ask for non-degeneracy)). 〈 , 〉 is
called anisotropic if 〈x, x〉 = 0 implies that x ∈ lr(M).

This definition seems very reasonable, but it is not clear how one can check if it holds
(this is just too much work). Secondly, I don’t know if it implies that the form is non-
degenerate, which we want as an analogue. For the final definition we first need to define
two maps. We have 〈lr(M),ur(M)〉 = 0 and m · ur(M) ⊆ lr(M) ⊆ ur(M).

Definition 4.10. First define

〈 , 〉odd : ur(M)/lr(M)× ur(M)/lr(M) → N

([x], [y]) 7→ 〈x, y〉

Let

〈 , 〉′ : M/M [m]×M/m[m] → N/N [m].
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Finally define

〈 , 〉even = 〈 , 〉′odd.

(Give some random example)

This definition looks rather abstract. First remark that these odd and even forms are
actually forms on vector spaces (with images in N [m] respectively N [m2]/N [m]). We should
also remark that one can calculate this form explicitly without much trouble.

Definition 4.11 (Good one!). The form 〈 , 〉 is called anisotropic if 〈 , 〉odd and 〈 , 〉even
are anisotropic (as forms over vector spaces).

If the even and odd forms are non-degenerate, then so is the original one. We have
the following theorem.

Theorem 4.12. Consider the following statements.

1. 〈 , 〉 is anisotropic;

2. the form 〈 , 〉 is non-degenerate and for any submodule L ⊆M with L ⊆ L⊥ we have
L ⊆ lr(M) and lr(L⊥/L) = lr(M)/L.

3. the form 〈 , 〉 is non-degenerate and if x ∈M satisfies 〈x, x〉 = 0, then x ∈ lr(M).

Then i ⇐⇒ ii =⇒ iii and all are equivalent if char(R/m) 6= 2.

This second statement is given so one can see the connection with quasi-anisotropy
as given in the previous lecture by Hendrik Lenstra. Actually, there is another equivalent
notion of anisotropy which is related to the integral closure, but it doesn’t look very natural.

Remark that non-degenerate forms on 1-dimensional vector spaces are automatically
anisotropic and we obtain the following theorem directly.

Theorem 4.13. Suppose that 〈 , 〉 : M × M → N is non-degenerate. The following
statements hold.

1. If M is cyclic, then 〈 , 〉 is anisotropic.

2. Suppose that M is generated by 2 elements and suppose that lengthR(M) is odd. Then
〈 , 〉 is anisotropic.
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4.4 Quasi-anisotropy

For calculating the integral closure the statement that the odd and even forms are anisotropic
is too strong. The notion of quasi-anisotropy is a bit weaker and has no analogue in the
vector space case.

Theorem 4.14. The following statements are equivalent for a non-degenerate form 〈 , 〉:

1. The induced form 〈 , 〉′ : M/M [m]×M/M [m]→ R/R[m] is anisotropic;

2. For any L ⊆ lr(M) we have lr(L⊥/L) = lr(M)/L.

If one of these statements hold, the form is called quasi-anisotropic.

One sees that anisotropy implies quasi-anisotropy and one sees the connection with
the anisotropic case.

4.5 Bonus

Another equivalent definition of being anisotropic is that the unique submodule L ⊂ M
satisfying mL⊥ ⊆ L ⊆ L⊥ is lr(M). This is the definition which we first used and has a
nice application in the calculation of the ring of integers. For this it is also important to
know

⋂
L⊂M :mL⊥⊆L⊆L⊥ L. We can calculate this in the case that char(R/m) 6= 2, but what

happens in the other case?

5 The Factorization Algorithm

(talk by Enric Nart)

Recall our setting: K is a local field with valuation v and ring of integers O, m is the
maximal ideal of O and π an uniformizer. We assume that the residue field F0 = O/m is
perfect and that v is normalized so that v(π) = 1.

Consider the discrete valuation v1 on K(x) defined by

v1

∑
0≤s

asx
s

 = min
0≤s
{v(as)},

and the reduction map

R0 : K[x]→ F0[y], g(x) 7→ g(y)
πv1(g)

for g 6= 0, 0 7→ 0.
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This is easily seen to be a semigroup homomorphism.

Our AIM: To “factorize” any given monic separable polynomial f(x) ∈ O[x].

Fix one such f for the rest of the talk. The first step is to factorize R0(f)(y) over F0.
We write

R0(f)(y) = ϕ1(y)a1 · · ·ϕk(y)ak

for some irreducible polynomials ϕi ∈ F0[y]. Via Hensel’s lemma, we can lift this to a
factorization

f = F1 · · ·Fk in O[x],

with R0(Fj) = ϕ
aj
j .

We shall construct a “tree of types” for each of the irreducible factors ϕi appearing in
the above decomposition. From now on, we fix one of the irreducible factors ϕi, and denote
it by ψ0. The leaves of the tree corresponding to ψ0 will be in one-to-one correspondece
with the irreducible factors of F := Fi.

We consider φ1 ∈ O[x] some monic separable lift of ψ0 (i.e. φ1 has R0(φ1) = ψ0).

We define a type of order 0 to be a list consisting of a separable polynomial whose
reduction modulo m is irreducible and separable (separability is automatic under the as-
sumption that F0 is perfect). [φ1] is an example of a type of order 0.

The factorization of F will be done in parallel with the branching of the tree with root
t = [φ1]. Any refinement of the factorization of F will correspond to introducing new types
as vertices of this tree.

5.1 Invariants and operators associated to a type

The fundamental invariants that get attached to a type t are a slope

λi = −hi/ei

for positive coprime integers hi, ei, and a monic irreducible polynomial

ψi(y) ∈ Fi[y].

The fields Fi are obtained recursively starting with F0 via

Fi+1 = Fi[y]/(ψi(y)).

We denote by zi the class of y in Fi+1, so that we have

Fi+1 = Fi(zi) = · · · = F0(z0, · · · , zi).
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From the fundamental invariants one constructs new invariants fi,mi by

fi = deg(ψi) and mi = deg(φi).

Along with the above invariants, we associate to the type t operators vi, Ni, Rλ as
follows. For i ≥ 1 vi will be a discrete valuation on K(x) (we’ve already seen v1). For i ≥ 0
we introduce Newton polygon operators Ni : K[x] → 2R2

which associate to a polynomial
its Newton polygon of order i. For λ ∈ Q− we define reduction maps Rλ : K[x] → Fi[y].
We let Ri := Rλi .

At this point we have λ0 = 0, e0 = 1, f0 = deg(ψ0).

Definition 5.1. Given a type t of order 0 and a polynomial g ∈ O[x], we define the order
of t in g to be

ordt(g) := ordψ0(R0(g)).

5.2 The Newton polygon operator in order 1

Given a polynomial g ∈ O[x], we consider its φ1-expansion

g(x) =
∑
0≤s

as(x) · φs1, with deg(as) < m1.

We define the Newton polygon N1(g) of g of order 1 to be the lower convex hull of the set
of points

(s, v1(asφs1)).

It is clear that v1(φ1) = 1 because φ1 is monic, so v1(asφs1) = v1(as) and we denote this by
us.

We are only interested in the principal part of the Newton polygon of f . This is by
definition the subset N−1 (f) ⊂ N1(f) consisting of the union of the negative slopes in N1(f).
For a polygon N , we define the length of N to be the length of the projection of N to the
horizontal axis, and we denote it by l(N).

Remarks:

• l(N−1 (g)) = ordt(g).

• The most expensive part of the algorithm consists of the divisions with remainder
performed to obtain the φi-expansions of f .

20



5.3 Residual polynomial operators

To the polygon N := N−1 (f) one can associate certain residual coefficients

cs =

{
0 if (s, us) lies above N,
R0(as)(z0) if (s, us) lies on N.

It is clear that cs is always nonzero in the second case.

Consider any λ ∈ Q− and define

Sλ = {(x, y) ∈ N : y + x|λ| is minimal}.

Then one sees that

Sλ =

{
vertex if λ is not a slope of N,
side if λ is a slope of N.

We write
λ = −hλ

eλ

with hλ, eλ coprime and define the degree of Sλ by

deg(Sλ) =
l(Sλ)
eλ

= #(integral points on Sλ)− 1.

Define the residual polynomial of f with respect to λ to be

Rλ(f) := cs0 + cs0+eλy + · · ·+ cs1y
d ∈ F1[y],

where s0, s1 are the abscissae of the endpoints of Sλ, and d is the degree of Sλ.

The following three results are due to Ore, and appear in his PhD thesis from 1923.

Theorem 5.2 (Theorem of the Product).{
N−1 (gh) = N−1 (g) +N−1 (h)
Rλ(gh) = Rλ(g) ·Rλ(h)

Theorem 5.3 (Theorem of the Polygon). Let Ft ∈ O[x] be the (unknown) factor of f(x)
attached to ψ0 by Hensel’s lemma. Then there exist unique polynomials Fλ ∈ O[x] with the
properties

1. Ft(x) =
∏

λ∈slopes(N−1 (f))

Fλ(x).
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2. Fλ is monic, N1(Fλ) is one-sided with slope λ and Rλ(Fλ) ∼ Rλ(f) (here ∼ denotes
equality up to a nonzero scalar).

If these conditions hold, then one also has that

3. v(φ1(θ)) = |λ| for any root θ of Fλ(x).

Theorem 5.4 (Theorem of the Residual Polynomial). If we write

Rλ(f) ∼
∏
ψ

ψ(y)aψ

with ψ ∈ F1[y] monic irreducible polynomials and aψ integers, then there exists a factoriza-
tion

Fλ(x) =
∏
ψ

Fλ,ψ(x) in O[x],

where each Fλ,ψ is monic with Rλ(Fλ,ψ) = ψaψ .

It follows from the Theorem of the Product that N1(Fλ,ψ) in the last theorem is one-
sided with slope λ.

Note If ordt(f) = 1 then Ft is irreducible by the Theorem of the Product and we stop
the algorithm. Otherwise, we start branching the tree of types as described in the next
section.

5.4 Branching of types

Corresponding to the factor Fλ,ψ of Fλ we introduce a new node in the tree of types, and
label it by the type of order one t′ = [φ1, φλ,ψ]. We join t(= [φ1]) and t′ by an edge.

We define (analogously to the type zero case) the order in f of a type t′ of order one
by

ordt′(f) = ordψ(Rλ(f)).

In our case, this is equal to aψ. As before, if ordt′(f) is equal to 1, then Fλ,ψ is irreducible
and we stop.

At this point we have a polynomial Fλ,ψ satisfying the following properties:

• R0(Fλ,ψ) ∼ ψr0 ∈ F0[y] for some r > 0.

• N1(Fλ,ψ) is one-sided with slope λ.
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• Rλ(Fλ,ψ) ∼ ψr0 ∈ F1[y] for some r > 0.

The next step in the algorithm is to construct a polynomial φλ,ψ minimal with the
above properties. The first property follows automatically from the other two, so what
we’re really looking for is a polynomial satisfying


N1(φλ,ψ) is one sided wrt λ,
Rλ(φλ,ψ) ∼ ψ,
deg(φλ,ψ) = eλfψm1.

How to construct φλ,ψ?

We write
ψ(y) = c0 + c1y + · · ·+ yd ∈ F1[y]

where each coefficient ci can be written as

ci = α0 + α1z0 + · · ·+ αf0−1z
f0−1
0 , for αi ∈ F0.

We lift these coefficients ci to polynomials ci ∈ O[x],

ci(x) = a0 + a1x+ · · ·+ af0−1x
f0−1,

where ai ∈ O reduce modulo m to αi. Then the polynomial φλ,ψ defined by

φλ,ψ(x) =
d∑
i=0

πhλ·(d−i)ci(x)φ1(x)ieλ ,

is the desired one.

At this point we call φλ,ψ =: φ2 and write [φ1, φ2] for the type t′. We let λ1 = λ and
ψ1 = ψ be the fundamental invariants of t′.

6 Radical Rings

(talk by Hendrik Lenstra)

Setting: R is a dvr with maximal ideal p and field of fractions K, E is an étale algebra
over K and A ⊂ E an R-order.

A ⊂ E
∪ ∪
R ⊂ K
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We have the usual pairing on E given by

〈x, y〉 = TrE/K(xy),

and
A† = {x ∈ E : 〈x,A〉 ⊂ R}.

Since
〈
A,A†

〉
⊂ R we get an induced pairing on B = A†/A

〈 , 〉 : B ×B → K/R,

whose image is (annRB)−1/R. This is a perfect duality inducing an isomorphism

B
∼−→ HomR(B,K/R).

The correspondence between our objects and those from Michiel’s talk (Section 4) is
as follows:

M ←→ B

RMichiel ←→ R/(annRB)

N ←→ (annRB)−1/R

Recall that A is tame if and only if the induced pairing

A/pA×A/pA 〈 , 〉−→ R/p

satisfies
(A/pA)⊥ = r/pA,

where r denotes the Jacobson radical of A

r =
⋂

m⊂A maximal

m.

We will see later that if A is tame over R, then we have the equivalences

A = Ã⇐⇒ pB = 0⇐⇒ (r : r) = A,

and also
(r : r)/A = (pB)[r] ⊂ (pB)[p] ⊂ lr(B).

Note: The equivalence A = Ã ⇐⇒ (r : r) = A follows from Theorem 8.1, without any
tameness assumption.
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6.1 Radical algebras over a field K

Let t ∈ Z≥0, n1, n2, · · · , nt ∈ Z>1 and a1, · · · , at ∈ K. Consider the K-algebra

E = K[x1, · · · , xt]/(xn1
1 − a1, · · · , xntt − at).

We have dimK(E) = n = n1 · · ·nt and a basis of E/K

B = {
k∏
i=1

xi
ji : 0 ≤ ji < ni}.

It’s easy to see that

TrE/K

(
k∏
i=1

xi
ji

)
=

{
n · 1 if all ji = 0,
0 otherwise.

As a consequence, we get

E is tame over K ⇐⇒ char(K) - n,

E is finite étale over K ⇐⇒

{
char(K) - n
αi ∈ K∗ for all i

.

From now on, we shall assume that E is finite étale over K.

We define the group of radicals to be the subgroup G = 〈x1, · · · , xt〉 ·K∗ of E∗. We
have an exact sequence

1 −→ K∗ −→ G −→ ⊕ti=1Z/niZ −→ 0,

where the last map sends an element ax1
i1 · · ·xtit to (i1, · · · , it).

6.2 Preferred alternative description of E

We start from a field K and an exact sequence

1 −→ K∗
ι−→ G ϕ−→ H −→ 1

of abelian groups with #H = n <∞ and char(K) - n. Define E to be the K-algebra

E = K[G]/(α · 1− 1 · ı(α) : α ∈ K∗) = K[G]⊗K[K∗] K,

where the map K[K∗] → K[G] is induced by ι, and the map K[K∗] → K by the inclusion
of K∗ ⊂ K. Clearly, G ⊂ E∗.
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For h ∈ H, we let Eh = (ϕ−1h) ∪ {0}. This is a 1-dimensional K-subspace of E, and
we have the decomposition

E =
⊕
h

Eh.

Note that the restriction of TrE/K is multiplication by n on E1 and 0 on Eh for h 6= 1.

Let now v : K∗ � Z be a discrete valuation, with valuation ring R having maximal
ideal p, and assume that v(n · 1) = 0. v induces a map G → Q (which we also denote by v)
given by

g 7→ 1
n
· v(gn).

(we used the fact that gn ∈ K∗ since nH = 0). We get a commutative diagram

1 // K∗ //

v
����

G //

v

��

H //

v
��

1

0 // Z // Q // Q/Z // 0

where the arrow v is induced by v.

In what follows, we will be interested in orders A ⊂ E with the property that A is
generated by A ∩ G as an R-module (in which case we get a direct sum decomposition
A =

⊕
h∈H R · 〈A ∩ Eh〉).

The only R-lattices in E that we shall consider will have the form⊕
h∈H

R · eh, with each eh ∈ Eh, eh 6= 0.

Let
H

v
��

s

��
S = {s : H → Q : s is a lift of v, }.

Q // Q/Z

There is a bijection between the set S and the collection of lattices described above, given
by

s 7→ Ls =
⊕
h∈H

Ih,s(h),

where
Ih,q = {x ∈ Eh : v(x) ≥ q} ∪ {0}.

26



If s ∈ G then Ls is an order if and only if{
s(1) = 0
for all h, h′ ∈ H, s(h) + s(h′) ≥ s(hh′)

.

Given such s, we write As for the corresponding order. The orders constructed in this way
are Hendrik’s radical rings.

Properties of As:

• As is finite étale over R (i.e. ∆As/R = (1)) if and only if s = 0. If this is the case,
then v = 0 and As = Ãs.

• As is tame over R.

• As = Ãs ⇐⇒ s(H) ⊂ [0, 1).

It turns out that the lattices rAs and L†s are easy to describe, and are both lattices of
the type considered. More precisely,

rAs = Ls′

where

s′(h) =

{
s(h) if s(h) > 0
1 if s(h) = 0

and
L†s = Ls, where s(h) = −s(h−1).

Consider now an order As and write

As =
⊕
h∈H

Ih,s(h), A†s =
⊕
h∈H

Ih,−s(h−1).

We can then compute B as

Bs = A†s/As =
⊕
h∈H

Ih,−s(h−1)/Ih,s(h) 'R
⊕
h∈H

(R/p)s(h)+s(h
−1) .

As an inner product space, Bs is the orthogonal sum of one copy of

Ih,−s(h)/Ih,s(h)
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for each h ∈ H[2] and one copy of

Ih,−s(h−1)/Ih,s(h) ⊕ Ih−1,−s(h)/Ih−1,s(h−1)

for each {h, h−1} ∈ (H \H[2])/{±} (where ± is the equivalence relation identifying h with
h−1).

Let h ∈ H[2]. We get

lr(Ih,−s(h)/Ih,s(h)) =

{
Ih,0/Ih,s(h) if s(h) ∈ Z
Ih, 1

2
/Ih,s(h) if s(h) ∈ 1

2 + Z
.

From this, we conclude that the following implication holds:

H = H[2] =⇒ Ãs/As = lr(Bs).

It’s easy to check that if Bs is anisotropic then As = Ãs or H = H[2].

Example 6.1. Take n = 2m an even integer, H a cyclic group of order n and set

G = K∗ · 〈g〉,

with v(g2m) = 2. Let π be an uniformizer of R and consider

A = R

[
g,
gm+1

π

]
.

Then

Ã = R

[
g,
gm

π

]
and

B = (R/p2)⊕ (R/p)2(m−1).

It follows that B/B[p] ' R/p, hence B is quasi-anisotropic, but not anisotropic.

7 Some Proofs

(talk by Michiel Kosters)

Fix (R,m) a uniserial ring, M a finitely generated R-module, and N 'R R. We will
try to prove the following
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Theorem 7.1. Let 〈 , 〉 : M × M → N be a nondegenerate form. The following are
equivalent:

1. 〈 , 〉odd and 〈 , 〉even are anisotropic (recall that, by definition, this is equivalent to
〈 , 〉 being anisotropic).

2. There exists a unique L ⊂M with the property that mL⊥ ⊂ L ⊂ L⊥.

3. For all L ⊂M with L ⊂ L⊥ we have that L ⊂ lr(M) and lr(L⊥/L) = lr(M)/L.

We first introduce a reduction process called shaving, which will turn out to be useful
in our proofs. Let r be such that AnnR(M) = mr, and assume that r ≥ 2. Define the
shaving of M to be the module

Sh(M) = M [mr−1]/mr−1M.

The bilinear form 〈 , 〉 on M induces a pairing

〈 , 〉′ : Sh(M)× Sh(M)→ N,

and this has the property that 〈 , 〉odd and 〈 , 〉even are the same for M and Sh(M) as long
as r ≥ 3.

We will prove the implications (1) ⇒ (2) and (2) ⇐⇒ (3) in Theorem 7.1, and leave
the implication (2)⇒ (1) as an exercise. We start with a

Lemma 7.2. Let L ⊂M be a submodule with the property that L ⊂ L⊥. Then there exists
L′ ⊃ L such that

mL′⊥ ⊂ L′ ⊂ L′⊥.

Proof. Consider a maximal submodule L′ of M with the property that L ⊂ L′ ⊂ L′⊥. We
claim that it has the desired properties. Assume that this isn’t the case and consider the
pairing

〈 , 〉′′ : L′⊥/L′ × L′⊥/L′ → N

induced by 〈 , 〉. Our assumption says that m doesn’t kill L′⊥/L′, so its lower root is
nontrivial. The lift of lr(L′⊥/L′) to M yields a module bigger than L′ which kills itself,
contradicting the maximality of L′.

Proof of Theorem 7.1. (2) ⇒ (1). Assume 〈 , 〉odd is isotropic, i.e. that there exists x ∈
M \ lr(M) with the property that 〈x, x〉 = 0. Let L = Rx, which is clearly contained in
L⊥. The preceding lemma allows us to find an L′ ⊃ L such that mL′⊥ ⊂ L′ ⊂ L′⊥. The
uniqueness of (2) implies that L′ = lr(M), which is not possible.

Suppose now that 〈 , 〉even is isotropic. Then we use induction as follows
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• For r = 0, 1 〈 , 〉even can’t be isotropic.

• For r = 2 one checks the statement by an explicit calculation.

• For r ≥ 3 the statement follows by induction using shaving.

(2)⇒ (1). Exercise.

(2)⇒ (3). Suppose L ⊂ L⊥ and consider the induced pairing

〈 , 〉′′ : L⊥/L× L⊥/L→ N,

which still satisfies (2). There is a bijection between the sets

A = {L′ ⊃ L : mL′⊥ ⊂ L′ ⊂ L′⊥}

and
B = {S ⊂ L⊥/L : mS⊥ ⊂ S ⊂ S⊥}.

The uniqueness in (2) says that #A ≤ 1, while the lower root of L⊥/L provides an element
of B, so #B ≥ 1. This shows that A = B and

lr(M)/L = lr(L⊥/L).

(3)⇒ (2). Suppose that L is such that

mL⊥ ⊂ L ⊂ L⊥.

It follows that m kills L⊥/L and therefore lr(L⊥/L) = 0. Condition (3) then implies that
lr(M)/L = 0, i.e. L = lr(M) is the unique module with mL⊥ ⊂ L ⊂ L⊥.

8 Day 3, Round 2

(talk by Anurag Singh)

8.1 The method of Grauert-Remmert/de Jong

Let R be a reasonable (excellent) reduced ring and denote by frac(R) its total ring of
fractions. Let R̃ be the integral closure of R inside frac(R).

Suppose that J ⊂ R is an ideal containing a non-zero-divisor. We have inclusions

R ↪−→ HomR(J, J) ↪−→ frac(R),
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where the first map sends r ∈ R to the multiplication by r map, and the second map sends
ϕ to ϕ(x)/x for some non-zero-divisor x.

By the Cayley-Hamilton theorem, we have an inclusion HomR(J, J) ⊂ R̃, hence we
obtain a series of containments

R ⊂ HomR(J, J) ⊂ R̃ ∩HomR(J,R) ⊂ HomR(J,
√
J),

of which only the last one requires an explanation. To prove it, consider h ∈ R̃∩HomR(J,R)
and write down some integral equation with R-coefficients satisfied by h:

hn + r1h
n−1 + · · ·+ rn = 0, with ri ∈ R.

For any j ∈ J we can multiply this equation by jn to obtain

(hj)n + jr1(hj)n−1 + · · ·+ jnrn = 0.

Starting at the second term, all terms are elements of J , so (hj)n must also be contained
in J , i.e. hj ∈

√
J .

Using these facts, we can prove the following

Theorem 8.1. Let J be an ideal containing a non-zero-divisor such that

1. J =
√
J .

2. V (J) ⊃ non-normal locus of R.

Then R = R̃ if and only if HomR(J, J) = R.

Proof. “⇒” is clear since R ⊂ HomR(J, J) ⊂ R̃.

“⇐” Condition (2) says that we can find N with the property that JN R̃ ⊂ R. Fix
such an N . The inclusion J · JN−1R̃ ⊂ R can be rewritten as

JN−1R̃ ⊂ HomR(J,R),

from which we get

JN−1R̃ ⊂ R̃ ∩HomR(J,R) ⊂ HomR(J,
√
J) = HomR(J, J) = R.

This shows that JN−1R̃ ⊂ R and repeating the argument N − 1 more times we get
that R̃ ⊂ R.
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This theorem gives us an algorithm for computing R̃: find J satisfying (1) and (2) and
consider HomR(J, J). If this is larger than R then replace R by HomR(J, J) and repeat.

Another way of “making progress” towards the normalization is given by the following
result of Lipman:

Theorem 8.2 (Lipman). Let R be a finitely generated algebra over a field k of characteristic
zero. Then

R = R̃ if and only if Hom(J−1, J−1) = R,

where J−1 = HomR(JR/k, R) is the dual of the Jacobian ideal JR/k.

8.2 A Frobenius based algorithm (Leonard-Pellikaan, Singh-Swanson)

Assume now that R is a reduced ring containing a field of characteristic p > 0. Let D be
an element of the conductor which is a non-zero-divisor. We set

V0 =
1
D
R ⊂ frac(R), V0 ⊃ R̃.

Now we proceed analogously to the last part of the Van Hoeij’s algorithm. We define
inductively for e ≥ 0

Ve+1 = {f ∈ Ve : fp ∈ Ve}.

This gives a decreasing sequence of submodules V0 ⊃ V1 ⊃ V2 · · · .

Theorem 8.3. This descending chain stabilizes and R̃ is the stabilization.

Proof. We have
Ve = {f ∈ V0 : fp

i ∈ V0 for all i ≤ e}.

Clearly if f ∈ R̃ then fp
i ∈ R̃, so f ∈ Ve for all e. We thus have the inclusion R̃ ⊂ Ve for

all e.

Consider the Rees valuations v1, · · · , vk of the principal ideal (D) (which are by defi-
nition the valuations corresponding to the minimal primes of the ideal DR̃ ⊂ R̃). Pick an
e so that pe > vi(D) for 1 ≤ i ≤ k. Suppose that r

D ∈ Ve for some r ∈ R. It follows that( r
D

)pe
∈ V0 =

1
D
R

which we can rewrite as
rp
e ∈ Dpe−1R.
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Taking valuations, we obtain

pevi(r) ≥ (pe − 1)vi(D)⇐⇒ vi(r) ≥ vi(D)− vi(D)
pe

.

Since vi(D) < pe is an integer, we must have vi(r) ≥ vi(D). This holds for all i, so
r
D ∈ R̃, and we get the inclusion Ve ⊂ R̃. We already have the reverse inclusion, so in fact
Ve = R̃.

9 Tameness + Anisotropy ⇒ Ã/A = lr(A†/A) (contd.)

(talk by Hendrik Lenstra)

Recall our setting: R is a Dedekind domain with field of fractions K, E is a finite étale
K-algebra, A an R-order and Ã the integral closure of A in E. The pairing on E defined
from the trace map TrE/K induces a perfect pairing

〈 , 〉 : B ×B −→ K/R, where B = A†/A, A† = {e ∈ E : TrE/K(eA) ⊂ R}.

We shall sketch the proofs of the following “less concrete” theorems.

Theorem 9.1 (€). If Ã is tame over R and B is anisotropic, then Ã/A = lr(B).

Theorem 9.2 (£). If every order between A and Ã is tame over R and B is quasi-
anisotropic, then Ã/A = lr(B).

Assume for simplicity that R is a dvr with maximal ideal p, and let

r =
⋂

0 6=m∈Spec(A)

m

be the Jacobson radical of A. A is tame over R if and only if

r/pA =
√

0A/pA.

We have

(1) A 6= Ã if and only if (r : r) ) A.

($) If A is tame over R then (r : r)/A = (pB)[r].
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(3) If A is tame over R, then A = Ã if and only pB = 0.

(1) follows from Theorem 8.1. Notice that pB = 0 if and only if (pB)[r] = 0, so (3)
follows from (1) and ($).

Proof of ($). “⊂”: Consider the diagram

A/pA×A/pA
〈 , 〉 //

��

R/p

��
A/r×A/r

〈 , 〉 //
� _

��

R/p

(r:r)
r ×

(r:r)
r

〈 , 〉

88rrrrrrrrrr

where the pairings 〈 , 〉 are all induced by TrE/K (〈x, y〉 = TrE/K(xy)).

Since A is tame over R, the pairing on A/r is nondegenerate. It follows that

(r : r)
r

=
A+ {x ∈ (r : r) : 〈x,A〉 ⊂ p}

r
=
A

r

⊕ (r : r) ∩ pA† +A

A
,

so
(r : r)
A

=
(r : r) ∩ pA† +A

A
⊂ pA† +A

A
= pB.

Clearly r kills (r : r), so
(r : r)
A
⊂ pB ∩B[r] = (pB)[r].

Sketch of proof of “⊃”: Assume for simplicity that A is local with maximal ideal r = m.

Case 1 : A 6= Ã. We have the inclusions

pB[m] ⊂ B[m] ⊂ (A : m)
A

=
(m : m)
A

,

of which only the last equality requires an explanation. We have that

m ⊂ (A : m) ·m ( A,

where the last inclusion is strict because m is not invertible (if it were, A would be a dvr,
hence A = Ã). The first inclusion must then be an equality, so m = (A : m) · m, yielding
(A : m) ⊂ (m : m).

Case 2 : A = Ã. Since A doesn’t kill itself, A 6⊂ pA†, thus pA† ⊂ A (A is a dvr, so the
fractional ideals in frac(A) are totally ordered) and therefore pB = 0.
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Recall from Michiel’s talk (Theorems 4.12 and 4.14) that

• B anisotropic ⇐⇒ lr(B) is the only submodule L ⊂ B satisfying pL⊥ ⊂ L ⊂ L⊥.

• B is quasi-anisotropic ⇐⇒ for all L ⊂ lr(B) we have

lr(L⊥/L) = lr(B)/L.

Proof of (€). Consider L = Ã/A. Clearly L⊥ = Ã†/A, and Ã† ⊃ Ã because
〈
Ã, Ã

〉
⊂ R.

The picture of the inclusions is as follows:

A† B

Ã† L⊥

Ã L

A {0}

It follows that L ⊂ L⊥, so in order to prove that L = lr(B) it suffices (by the anisotropy
assumption on B) to show that pL⊥ ⊂ L. But this follows from remark (3) preceding the
proof of $: apply the remark to Ã which is tame over R to get that pB

Ã
= pÃ†/Ã = 0, i.e.

pÃ† ⊂ Ã⇐⇒ pL⊥ ⊂ L.

Proof of (£). We prove the theorem by induction on lengthR(Ã/A).

If A = Ã, since A is tame over R, (3) shows that pB = 0 which yields lr(B) = 0.

Suppose now A 6= Ã, and take L = (r : r)/A. By (1), A ( (r : r), or equivalently
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L 6= 0. We have towers of inclusions

A† B

(r : r)† L⊥

Ã
��������∗

(r : r)
6=

L

A {0}

and we’d like to show that ��������∗ is lr(B). By induction, we have

��������∗ /L = lr(L⊥/L) = Ã/(r : r),

thus
L = (r : r)/A $= (pB)[r] ⊂ (pB)[p] ⊂ lr(B).

Using now that B is quasi-anisotropic, we get that

lr(L⊥/L) = lr(B)/L,

hence ��������∗ = lr(B), as desired.

10 Construction of Valuations

(talk by David Eisenbud)

References: [McL36, McL36b]

Throughout this talk K will be a field, and for a given (non-archimedian) valuation v
of K we shall denote by Ov and Fv its ring of integers and residue-class field respectively.

Goal: Construct the valuations on K[x] from those on K. In particular, we’ll be
interested in the case when all non-archimedean valuations on K are discrete.

Given a valuation W on K[x] with W (x) ≥ 0, we let v = W |K , so that OW ⊃ Ov[x].

Definition 10.1. A key polynomial φ ∈ Ov[x] and value µ ∈ R of W is a pair (φ, µ) such
that
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1. φ is monic, of positive degree.

2. inW (φ) is a prime or unit of grWOv[x], where the associated graded ring is taken with
respect to the filtration on Ov[x] induced by W .

In Mac Lane’s terminology (2) translates into

(2’) φ is equivalence-irreducible with respect to W . More precisely, one introduces an
equivalence relation on poylnomials by saying that f, g ∈ Ov[x] are equivalent (f ∼ g)
with respect to W if v(f) = v(g) < v(f−g). One says that a polynomial φ equivalence-
divides f and write φ |

W

f if f ∼ φψ for some ψ.

3. φ is minimal, i.e. if in(φ)|in(g) for some g ∈ Ov[x]\{0}, then degx(g) ≥ degx(φ) (here
degx denotes the degree of a polynomial with respect to x; from now on, we shall
write deg for degx).

4. µ > W (φ).

Remark 10.2. One should think of W (φ)−µ as the negative slope occuring in the Montes-
Nart setting.

Example 10.3. Consider W = v1, where v1 is given by

v1(g(x)) = min
i
{v(gi)}, for g =

∑
gix

i.

We have
grv1Ov[x] = (grvOv)[x] = Fv[π][x],

a polynomial ring in two variables. (x, 1) is a key pair of W .

We construct an extension V = (W, (φ, µ)) as follows. For g(x) ∈ Ov[x], write

g =
n∑
i=0

aiφ
i, deg(ai) < deg(φ),

and define
V (g) = min

i
{W (ai) + iµ}.

Proposition 10.4. 1. V is a valuation.

2. V (g) ≥W (g) with equality if and only if g is not equivalence-divisible by φ (φ -
W

g).
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Definition 10.5. An inductive valuation is a (possibly infinte) sequence of valuations
which we think of as a sequence V = (v, (φ1, µ1), (φ2, µ2), · · · ), where each truncation
Vi = (v, (φ1, µ1), · · · , (φi, µi)) represents a valuation which is obtained from Vi−1 and the
Vi−1-key pair (φi, µi) via the procedure described above.

Consider a valuation V∞ on K[x], with values in Q∪∞ (we allow V∞ to take the value
∞ at non-zero polynomials). We assume that V∞(x) ≥ 0 and let v = V∞|K .

We define v1 as above (v1(g) = mini(v(gi))) and consider φ1 a monic polynomial of
lowest degree with the property that

µ1 := V∞(φ1) 6= v1(φ1).

Proposition 10.6. (φ1, µ1) is a key pair for v1.

We construct V1 = (v1, (φ1, µ1)) and define recursevely key pairs (φi, µi) and valuations
Vi via the same procedure: φi is minimal with the property

µi := V∞(φi) 6= Vi−1(φi)

and Vi = (Vi−1, (φi, µi)).

Theorem 10.7. The sequence of valuations (Vi)i≥1 converges to V∞.

Our central example is the following:

Example 10.8. K ⊂ L = K(θ) is a finite field extension and G(x) ∈ K[x] is the minimal
polynomial of θ. Then valuations on L correspond to valuations on K[x] with v(G(x)) =∞.

Consider then a valuation V∞ on L corresponding to a valuation on K[x] (which we
also denote by V∞) with V∞(G(x)) = ∞, and run the previously described procedure for
approximating it. At each stage we construct a new key pair (φi, µi), deg(φi−1) ≤ deg(φi).
Eventually the degrees of φi stabilize to deg(G), and if we consider the φi–expansion of G:

G =
∑
j

ajφ
j
i , with deg(aj) < deg(φi),

then the minimum of the values V∞(a0), V∞(a1φi), · · · is attained only at two consecutive
terms. In this case G is a key polynomial and we can take (φi+1, µi+1) = (G,∞), which
determines V∞.
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11 S2-ification

(talk by Anurag Singh)

11.1 A characterization of normality

Definition 11.1. Let R be a Noetherian domain. R is said to be normal if the following
equivalent conditions hold:

1. R is integrally closed in frac(R).

2. R is an intersection of discrete valuation rings.

3.

{
R1 : Rp is a dvr for each height one prime p.

S2 : Every associated prime of a non-zero principal ideal has height one.

Example 11.2. Let K be a field, R = K[s4, s3t, st3, t4] ⊂ K[s, t]. If p is a height 1 prime,
one of s4, t4 must lie outside p, say t4 /∈ p. We get that Rp = K[t4, st ]p is a localization of a
polynomial ring, hence regular. Therefore R has (R1) but is not normal:

s2t2 =
(s3t)2

s4
∈ frac(R) \R, and it is a root of T 2 − s4t4.

A presentation of R is given by

R ' K[w, x, y, z]/(wz − xy, x3 − yw2, y3 − xz2, wy2 − x2z),

with (w, x, y, z) mapping to (s4, s3t, st3, t4). The primary decomposition of the ideal (x) ⊂ R
is

(x) = (w, x2) ∩ (z, w)

where √
(w, x2) = (w, x, y) has height 1, while

√
z, w = (z, w, x, y) has height 2,

so S2 fails.

Note that wy2 = x2z, so
x2

w
=
y2

z
(= s2t2).

Since
x

w
· y
z

= 1, any valuation ring containing R also contains one of x/w, y/z, hence

also s2t2. So we see that, at least in this case, the integral closure of R is contained in the
intersection of the dvrs containing R.
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Definition 11.3. A collection x1, · · · , xm of elements of R form a regular sequence on a
module M if the following conditions hold:

• (x1, · · · , xm)M 6= M .

• x1 is a non-zero-divisor on M and for k = 2, · · · ,m− 1, xk+1 is a non-zero-divisor on
M/(x1, · · · , xk)M .

Let M be a finitely generated module over a local Noetherian ring (R,m). We define
the depth of M by

depth(M) = sup{d : ∃x1, · · · , xd ∈ m forming a regular sequence on M}.

We have that
depth(M) ≤ dim(M) = dim(R/ann M).

Definition 11.4. For a Noetherian ring R, we say that M has the property Si if for all
p ∈ Spec(R)

depthMp
≥ min{i,dim(Mp)}.

Suppose now that R is a local ring of dimension 2, with w, z ∈ R two elements
generating an ideal of height 2. Then we have

w, z is a regular sequence on R⇐⇒

{
w is a non-zero-divisor on R,

z is a non-zero-divisor on R/(w).

The condition that z is not a zero-divisor on R/(w) is equivalent to the following: if αz ∈ wR
for some α ∈ R then α ∈ wR. In example 11.2 we had x2z ∈ wR, but x2 /∈ wR, so z, w did
not form a regular sequence.

We have the following

Proposition 11.5. A Noetherian domain R has the S2 property if and only if for every
non-zero a ∈ R, and for every p ∈ ass(R/a), the height of p is equal to 1.

11.2 S2-ification

Suppose that R is a ring which is a finitely generated module over a Gorenstein ring A ⊂ R.
We set

ω = HomA(R,A)
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the canonical module of R. This does not depend on the choice of A! (More generally, if S
is Gorenstein and R an S-algebra which is a finite module over the image of S in R, then
we define the canonical module by

ω = ExtnS(R,S)

where n = dim(S)− dim(R).)

Fact: ω = HomA(R,A) = R∗ is S2 (as is the dual M∗ = HomS(M,S) of any module
M over an S2-ring S). Moreover,

HomR(ω, ω) ' R∗∗ is also S2.

The natural map
R→ HomA(ω, ω)

is called the S2-ification of R. This is universal, in the sense that any finite birational map
of R to an S2-ring factors through the S2-ification.

Note: S2-ification doesn’t change the property of being R1!

12 Invertibility of Fractional Ideals

(talk by David Eisenbud and Hendrik Lenstra)

12.1 The one-dimensional case (HL)

Let R be a one-dimensional Noetherian domain with field of fractions K, and let J ⊂ K
a fractional R-ideal, i.e. a non-zero finitely generated R-submodule of K. We say that J
is invertible if there exists some fractional ideal I with the property that IJ = R. If J is
invertible, then (J : J) = R (since for any x with xJ ⊂ J , xIJ = xR ⊂ IJ = R). We have
the following characterization of invertible ideals:

Theorem 12.1. J is an invertible ideal if and only if (R : J) : (R : J) = R.

Proof. “⇒” If J is invertible then (R : J) is also invertible, and the remark preceding the
theorem shows that (R : J) : (R : J) = R.

“⇐” The question is local, so we may assume that R is local with maximal ideal m.
We claim that (R : m) ) R. To see this, take 0 6= a ∈ m. The ideal m is nilpotent modulo
a, say with order of nilpotence k. Let x ∈ mk−1 \Ra. This is clearly contained in (Ra : m),
so we have (Ra : m) ) Ra, and dividing by a proves our claim.
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Suppose now that J is not invertible. Then J · (R : J) ( R, so J · (R : J) ⊂ m. This
shows that

(R : J) : (R : J) = R : (J · (R : J)) ⊃ (R : m) ) R,

as desired.

12.2 The higher-dimensional case (DE)

Let R be a noetherian local domain, and I ⊂ R a non-zero ideal. We have the following
equivalences:

I−1 ) R⇐⇒ Ext1R(R/I,R) 6= 0⇐⇒ depth(I) = 1,

where the latter is a well-known characterization of depth and the former follows by applying
Hom(−, R) to the exact sequence

0 −→ I −→ R −→ R/I −→ 0.

One gets

0 = Hom(R/I,R) −→ R −→ I−1 = Hom(I,R) −→ Ext1(R/I,R) −→ 0 = Ext1(R,R),

so indeed R ( I−1 if and only if Ext1(R/I,R) 6= 0.

We have the following

Proposition 12.2. Let R be an S2-domain, and J ⊂ frac(R) a fractional ideal. Then the
following are equivalent

1. Jp is invertible for all p ⊂ R prime ideal such that Rp has depth 1 (or equivalently,
codimension 1).

2. (J−1 : J−1) = R.

Proof. (1) ⇒ (2) : (1) together with Theorem 12.1 show that R ⊂ (J−1 : J−1) coincide
in codimension 1. But since R is S2, J−1 = HomR(J,R) is also S2, thus (J−1 : J−1) =
HomR(J−1, J−1) is S2 as well. Now sections of S2-modules extend uniquely in codimension
2, so we must have (J−1 : J−1) = R. (more formally, suppose there exists a minimal prime
p in the support of (J−1 : J−1)/R and write down an exact sequence

0 −→ Rp −→ (J−1 : J−1)p −→ Q −→ 0,

with Q an Rp module of finite length. The long exact sequence in local cohomology shows
that (Q =)H0

p (Q) = 0, contradicting the choice of p.)

(2)⇒ (1) : This follows from Theorem 12.1, since everything commutes with localiza-
tion.
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Chapter 2

Okutsu-Montes Representations of
Prime Ideals of One-Dimensional
Integral Closures

Introduction

In 1923, Øystein Ore found a method to construct the prime ideals of a number field,
dividing a given prime number p, in terms of a defining equation f(x) ∈ Z[x], provided
that this equation satisfies certain p-regularity condition [Ore23]. The idea was to detect
first a p-adic factorization of f(x) according to the sides of certain Newton polygon N(f),
and then, to detect a further factorization of each of these factors according to the different
irreducible polynomials that divide certain residual polynomials Rλ(f) with coefficients in
a finite field, for λ running on the slopes of the different sides of N(f).

He raised then the question of the existence of an iterative procedure to compute the
prime ideals in the p-irregular case, based on the consideration of similar Newton polygons
Ni(f) and residual polynomials Rλ,i(f) of higher order i ≥ 1.

Saunders MacLane attacked this problem in 1936 from the point of view of valuations.
Given any discrete valuation v on a field k, he parametrized all discrete valuations of the
rational function field k(x) that extend v. Then, given an irreducible polynomial f(x) ∈
k[x], he characterized all valuations of the field k[x]/(f(x)) that extend v, as limits of
infinite families of valuations of k[x] whose value on f(x) grows to infinity. Finally, he
gave a criterion to decide when a valuation of k[x] was sufficiently close to a valuation of
k[x]/(f(x)), to uniquely represent it [McL36, McL36b].
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In 1999, Jesús Montes developed an algorithm that carries out Ore’s program [Mon99].
The algorithm follows MacLane’s pattern, but the introduction of the right concept of
residual polynomial of higher order makes the whole theory constructive and well adapted
to computational applications. The algorithm is highly recursive: each computation in order
i requires auxiliary computations in all previous orders 1, . . . , i − 1. This led Montes, for
purely computational reasons, to optimize the algorithm so that it does not work at certain
order i until this is absolutely unavoidable; it turns out that the optimized algorithm has
an output with unexpected canonical properties, linked to invariants of extensions of local
fields that had been studied by Kousaku Okutsu in 1982 [Oku82].

Therefore, the algorithm of Montes computes what we call Okutsu-Montes representa-
tions of prime ideals of one-dimensional integral closures. These computational representa-
tions single out the prime ideals and they carry on essential data of the corresponding ex-
tensions of local fields. Moreover, these objects have proved to be an efficient and malleable
tool for a computational resolution of several arithmetic tasks concerning prime ideals.

In this survey notes I explain the structure of Montes algorithm and describe some of
its applications, with special emphasis on the computation of integral closures. Most of this
material is joint work with Jordi Guàrdia and Jesús Montes. This survey grew out from the
notes of a seminar delivered at the MSRI in Berkeley, California, as part of the workshop
Computation of integral closures, that took place during the week of 26th to 30th of july
2010. We thank the organizer, David Eisenbud, for giving us the opportunity to present
these results, and the participants for the charming atmosphere and the fruitful exchange
of ideas that contributed to a substantial improvement of the final write up.

1 Overview

1.1 Local fields

Let K be a local field with perfect residue class field. Let O be its ring of integers, m the
maximal ideal, π ∈ m a generator of m, and v : K∗ −→ Q, the canonical extension of the
discrete valuation of K to an algebraic closure, normalized by v(K∗) = Z. Let Ksep ⊆ K
be the separable closure of K in K.

Montes algorithm. [HN08, GMN08]

Input: A monic separable polynomial f(x) ∈ O[x].

Output: A family t1, . . . , tg of f -complete and optimal types, parameterizing the
monic irreducible factors F1(x), . . . , Fg(x) of f(x) in O[x].
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For local fields with finite residue class field, there have been recent estimations for
the complexity of this algorithm by Veres [Ver09], Ford-Veres [FV10], and Pauli [Pau10].
The finer estimation is O(n2+εδ2+ε) bit operations, where δ = v(disc(f)).

Let F (x) be one of these irreducible factors, θ ∈ Ksep a root of F , L = K(θ) the
corresponding finite separable extension of K, and OL its ring of integers.

Let t be the type corresponding to F . For simplicity, we represent

t = [φ1, . . . , φr+1]

as a sequence of monic irreducible separable polynomials in O[x] satisfying certain technical
conditions. Among them let us just mention that

deg φ1 | · · · | deg φr | deg φr+1 = degF, deg φ1 < · · · < deg φr.

It turns out that the polynomial φr+1(x) is an Okutsu approximation to F (x), so that
it is sufficiently close to F (x) for certain purposes (see section 3). Thus, Montes algorithm is
a kind of polynomial factorization algorithm. Actually, a rather peculiar one, in two senses:

1. It is based on a series of generalizations of Hensel lemma, so that successive factoriza-
tions of f(x) are detected, but never carried out. Only certain auxiliary polynomials
over finite extensions of the residue class field are factorized.

2. Besides computing an approximation to each irreducible factor F , the output of the
algorithm provides as well a lot of arithmetic information about the finite extension
L/K determined by F .

The type t is structured in r + 1 levels, and r is called the order of t. At each level i,
t stores several combinatorial and arithmetic invariants

ei, fi, hi, λi, ρi, etc.

linked to Newton polygons of higher order of f(x). Let us briefly mention some properties
of L/K determined by these invariants.

v(φi(θ)) =
|λi|+ ρi
e1 · · · ei−1

.

e(L/K) = e1 · · · er, f(L/K) = f0f1 · · · fr. (2.1)

exp(F ) =
r∑
i=1

(eifi · · · erfr − 1)
hi

e1 · · · ei
,
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where exp(F ) is the exponent of F ; that is, the least positive integer such that πexp(F )OL ⊆
O[θ].

The type t determines as well an easy computation of the integral closure of O inside
L. In fact, let n = degF = [L : K]; then, for each integer 0 ≤ m < n, we express m in a
unique way as:

m = j0 + j1 deg φ1 + · · ·+ jr deg φr, 0 ≤ ji < (deg φi+1/ deg φi),

where φ0(x) := x, and we consider the following polynomial of degree m:

gm(x) := φ0(x)j0φ1(x)j1 · · ·φr(x)jr . (2.2)

As shown above, the data of t allow us to compute

νm := bj1v(φ1(θ)) + · · ·+ jrv(φr(θ))c.

Then, the following family is an O-basis of OL:

1,
g1(θ)
πν1

, . . . ,
gn−1(θ)
πνn−1

.

Thus, we may say that Montes algorithm provides the computation of all the integral
closures of O in the different extensions determined by the irreducible factors of the input
polynomial f(x), almost as a by-product. We need only to include in the algorithm an
efficient computation of the polynomials gm(x) 1.

1.2 Applications to global fields

Let us illustrate the applications to number fields. For function fields of curves the results
are completely analogous, but no implementation has been made yet.

Let K = Q[x]/(f(x)) be now the number field defined by a monic irreducible polyno-
mial f(x) with integer coefficients and degree n. Let θ ∈ Q be a root of f(x) and ZK the
ring of integers.

For any prime number p, the prime ideals of K dividing p are in one-to-one corre-
spondence with the monic irreducible factors of f(x) over Zp[x]. In fact, such a prime ideal
determines a topological embedding ιp : K ↪→ Kp ↪→ Qp, and the corresponding irreducible
factor Fp is the minimal polynomial of ιp(θ) over Qp.

1The polynomials φi are shared by different types. Thus, some of the partial products of (2.2) need to
be computed as long as the φi are constructed, in order to avoid the repetition of these multiplications.
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Hence, by applying Montes algorithm to f(x) over Zp, one obtains what we call an
Okutsu-Montes representation (OM representation) of all prime ideals of K dividing p:

p = [p;φ1, . . . , φr;φp], where φp := φr+1.

The polynomials φi have all integer coefficients. It turns out that all invariants contained
in the corresponding type t are the essential data that is necessary for a computational
treatment of the prime ideal. For instance, the following tasks in the group of fractional
ideals can be based on the data (and operators) of the OM representations:

1. Compute the p-adic valuation, vp : K∗ −→ Z.

2. Compute the prime ideal factorization of a fractional ideal.

3. Compute a two-element representation of a fractional ideal.

4. Add, multiply and invert fractional ideals.

5. Compute the reduction map, ZK −→ ZK/p, and a section of this map (a lifting map).

6. Solve Chinese remainder problems.

7. Compute a p-integral basis of K.

We have implemented a ’+Ideals’ package in Magma that contains routines for all
these tasks [GMN10],[GMN10b].

Recall that a p-integral basis is a Q-basis of K, made of integral elements α1, . . . , αn ∈
ZK , that satisfy any of the following equivalent conditions:

(a) α1 ⊗ 1, . . . , αn ⊗ 1 are a Zp-basis of ZK ⊗Z Zp.

(b) α1 ⊗ 1, . . . , αn ⊗ 1 are an Fp-basis of ZK ⊗Z Fp.

(c) p does not divide the index (ZK : 〈α1, . . . , αn〉Z).

Since ZK ⊗Z Fp has dimension n as an Fp-vector space, in practice it suffices to check
that α1, . . . , αn determine Fp-linearly independent elements in this Fp-algebra.

It is well-known how to compute a p-integral basis of K from the local Zp-bases of all
local rings ZKp , for p|p. One needs only to compute multipliers bp ∈ ZK satisfying:

vp(bp) = 0, vq(bp) ≥ (exp(Fp) + 1)e(q/p), ∀, q|p, q 6= p.
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These multipliers can be easily computed from the data of the OM representations. If
{Bp}p|p are the local bases, then

⋃
p|p bpBp is a p-integral basis of K.

Finally, an integral basis of K (a Z-basis of ZK) can be computed as follows:

1. Factorize the discriminant disc(f).

2. For each prime p| disc(f), compute a p-integral basis of K in Hermite Normal Form.

3. Glue these data into a global basis by a simple application of the CRT.

1.3 Some remarks

1. The standard packages that manipulate number fields need to compute an integral
basis as a preliminary step. This makes them totally useless for many number fields of
large degree, or number fields defined by an equation with large coefficients, because of the
impossibility to factorize the discriminant.

The routines based on the OM representations of the prime ideals do not require the
factorization of disc(f) and they work very efficiently for “big” number fields [GMN10b]2.

Of course, the bottleneck is again integer factorization: we can deal only with fractional
ideals whose norm may be factorized.

2. The routines based on the OM representations have a completely different nature than
the classical ones. It often occurs, when dealing with some problem, that once a direct
connexion with the data contained in the OM representations is found, the outcoming
routine is much faster than the routine that would be inspired in the classical ones.

3. We do not know how to test if an ideal is principal. To this end it would be necessary to
combine the OM representations with some kind of LLL reduction routine (preferably not
based on the lattice ZK).

Question. Is there a theoretical reason that makes it hopeless to design such a test without
factorizing the discriminant?

2We do not claim too much originality on this fact. Many researchers who need to work with number
fields of large degree develop their own routines to deal with concrete problems, avoiding the computation
of the maximal order. But we do claim on efficiency: our routines run extremely fast in practice.
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4. Suppose the discriminant of the defining equation f(x) may be factorized. Then, how
do our routines behave with respect to the classical ones? Let us discuss this comparison
at two levels.

1. The OM routines compute an integral basis much faster than the ordinary routines of
Magma or Pari. We saw that the computation of the local bases is almost a by-product
of Montes algorithm.

2. Once the maximal order of K has been computed, the OM routines still run (slightly)
faster than the ordinary ones of Magma or Pari, for number fields whose degree is
not too small (say n ≥ 16). One reason for this is that the OM techniques avoid the
use of linear algebra. The standard methods compute Z-basis of the prime ideals,
expressed in coordinates with respect to the integral basis. We get in this way n× n
matrices, and the linear algebra procedures to manipulate them (like the computation
of Hermite Normal Forms) dominate the complexity for n large.

5. Suppose the discriminant of the defining equation f(x) may be factorized. We mentioned
already that we also need the HNF routine to patch the different p-integral bases of K, for
the primes p dividing disc(f), into a global integral basis. This routine is the bottleneck for
the whole process, if n is large.

2 The Algorithm of Ore, MacLane and Montes

Let K be a local field, O its ring of integers, m the maximal ideal, π ∈ m a generator of m,
and F0 = O/m the residue class field, which is supposed to be perfect. Let v : K∗ −→ Q be
the canonical extension to K of the discrete valuation of K, normalized by v(K∗) = Z. Let
Ksep ⊆ K be the separable closure of K in K.

We extend v to a discrete valuation v1 of the field K(x), by letting it act on K[x] as
follows:

v1

(∑
0≤s

asx
s
)

:= min{v(as) | 0 ≤ s}.

Also, we consider the 0-th residual operator :

R0 : O[x] −→ F0[y], g(x) 7→ R0(g) := g(y)/πv1(g).

Note that for monic polynomials, R0 is the ordinary reduction map.

Our aim is to describe the monic irreducible factors of a given monic separable polyno-
mial f(x) ∈ O[x]. The starting point of the algorithm is Hensel lemma. From a factorization
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of R0(f)(y) into a product of monic irreducible polynomials in F0[y]:

R0(f)(y) = ϕ1(y)n1 · · ·ϕk(y)nk ,

we detect (but not compute) a factorization of f(x) in O[x]: f = F1 · · ·Fk, into a product
of monic (not necessarily irreducible) polynomials satisfying R0(Fi)(y) = ϕi(y)ni .

We start then to construct a tree T of types. Actually, T is the disjoint union of k
connected trees, one for each irreducible factor of R0(f). The initial node of each connected
tree is a type of order zero, which we are going to describe now.

Let us fix one of the irreducible factors of R0(f), that we denote from now on by
ψ0(y) ∈ F0[y]. The subindex 0 emphasizes that we are working at order zero. We choose
(non-canonically) a monic lift φ1(x) ∈ O[x] of ψ0 and we denote

t := [φ1].

This object is the type of order zero that labels the initial node of the tree.

Let Ft(x) ∈ O[x] be the (unknown) monic factor of f(x) attached by Hensel lemma
to ψ0; recall that R0(Ft) = ψ`00 , for certain integer `0 > 0.

Our initial node, labelled by t, is supposed to sprout several branches labelled by types
of order one, obtained by adding a different polynomial φ2 for each branch, in a process to
be explained later in more detail. Clearly, if `0 = 1 then Ft is already irreducible and the
initial node is already a leave of the tree T (an end node that has no further branching).

A type of order zero supports certain invariants of the irreducible factors of Ft:

ψ0(y) ∈ F0[y],
f0 := degψ0,

m1 := deg φ1 = f0,

F1 := F0[y]/(ψ0(y)),
z0 := class of y in F1.

Note that ψ0(z0) = 0 and F1 = F0[z0]. This seemingly innocuous object t has hidden
powers. It determines a Newton polygon operator of the first order:

N1 := Nφ1,v1 : O[x] −→ 2R2
,

and, for every negative rational number λ ∈ Q−, a residual polynomial operator of the first
order:

Rλ,1 := Rφ1,v1,λ : O[x] −→ F1[y].

Let us describe all these operators in some detail.
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2.1 The Newton polygon operator

Any polynomial g(x) ∈ O[x] has a canonical φ1-expansion:

g(x) =
∑
0≤s

as(x)φ1(x)s, deg as < m1.

Then, N1(g) is the lower convex hull of the set of all points (s, v1(as)) in R2. We are
only interested in the principal part of this polygon, N−1 (g) ⊆ N1(g), made of all sides with
negative slope. The length `(N) of a polygon N is, by definition, the length of its projection
to the horizontal axis.

We denote:
ordt(g) := ordψ0 R0(g) = `(N−1 (g)).

By construction, the type t of order zero extracted from the factorization of f(x)
modulo m, had ordt(f) = `0 > 0. Since our polynomial f(x) is monic, the last point of
N1(f) has ordinate zero. The typical shape of N1(f) is as shown below.
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N−1 (f)

The polygon N := N−1 (f) has a residual coefficient cs at each integer abscissa,
ordφ1 f ≤ s ≤ ordt(f), defined as follows:

cs :=
{

0, if (s, v1(as)) lies above N,
R0(as)(z0) ∈ F1, if (s, v1(as)) lies on N.

In the latter case, cs 6= 0 because deg as < m1 = f0.
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2.2 The residual polynomial operators

We keep the notation N = N−1 (f). Denote by Slopes(N) the set of slopes of N . Given any
λ ∈ Q−, we consider:

Sλ(N) :={(x, y) ∈ N | y + x|λ| is minimal}=
{

a vertex, if λ 6∈ Slopes(N),
a side, if λ ∈ Slopes(N).

The following picture illustrates both possibilities. In this picture Lλ is the line of
slope λ having first contact with N from below.
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In any case, Sλ(N) is a segment of R2 with end points having integer coordinates.
Any such segment has a degree. If λ = −hλ/eλ with hλ, eλ positive coprime integers, the
degree of Sλ(N) is defined as:

d := d(Sλ(N)) := `(Sλ(N))/eλ.

Note that Sλ splits into d minimal subsegments whose end points have integer coordinates.
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We define the residual polynomial of the first order of f(x), with respect to λ, as:

Rλ,1(f)(y) := Rφ1,v1,λ(f)(y) := cs0 + cs0+eλy + · · ·+ cs1y
d ∈ F1[y].

Note that cs0cs1 6= 0; thus, the degree of Rλ,1(f) is always equal to d.

For any polynomial g(x) ∈ O[x] the definition of Rλ,1(g) is completely analogous but
taking N = N−1 (g).
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2.3 Fundamental results of Ore

Theorem of the product. For any pair of polynomials g(x), h(x) ∈ O[x] and any λ ∈ Q−,

N−1 (gh) = N−1 (g) +N−1 (h), Rλ,1(gh) = Rλ,1(g)Rλ,1(h).

The sum of two polygons is the polygon obtained by taking as (left) starting point
the sum of the two (left) starting points, and then joining to this starting point the sides
of both polygons by increasingly ordered slopes.

Notation. Given a field F and two polynomials ϕ(y), ψ(y) ∈ F [y], we write ϕ(y) ∼ ψ(y)
to indicate that there exists a constant c ∈ F∗ such that ϕ(y) = cψ(y).

Theorem of the polygon. Let f(x), ψ0, Ft(x), N be as above. Then,

1. The polynomial Ft(x) factorizes in O[x] as:

Ft(x) =
∏

λ∈Slopes(N)
Fλ(x),

for some monic polynomials Fλ(x) ∈ O[x], whose Newton polygon N1(Fλ) is one-sided
with slope λ, and Rλ,1(Fλ) ∼ Rλ,1(f).

2. For any root θ ∈ Ksep of Fλ, we have v(φ1(θ)) = |λ|.

Theorem of the residual polynomial. With the same notation, let λ ∈ Slopes(N)
and let Rλ,1(f)(y) =

∏
ψ ψ(y)`ψ be the factorization of Rλ,1(f) into a product of monic

irreducible polynomials in F1[y]. Then,

Fλ(x) =
∏

ψ
Fλ,ψ(x),

for some monic Fλ,ψ(x) ∈ O[x] such that Rλ,1(Fλ,ψ)(y) ∼ ψ(y)`ψ in F1[y].

This theorem is a kind of Hensel lemma in order one.
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2.4 Branching of types

The theorems of Ore detect a (never computed) factorization of Ft. The different (unknown)
factors Fλ,ψ are parameterized by certain types of order one. We can think that the node t
sprouts several branches with end nodes labelled by types tλ,ψ = [φ1, φλ,ψ], where φλ,ψ(x) ∈
O[x] is a monic separable polynomial of degree mλ,ψ := eλfψm1, satisfying: Rλ,1(φλ,ψ) ∼ ψ.
By the Theorem of the product, φλ,ψ is irreducible.
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t = [φ1]

tλ,ψ = [φ1, φλ,ψ]
λ, ψ

If `ψ = 1, the Theorem of the product shows that Fλ,ψ is irreducible, and the node
tλ,ψ becomes a leave of the tree of types. If `ψ > 1 we need to analyze the node tλ,ψ to
detect further factorizations of Fλ,ψ, or show that it is irreducible.

By the Theorem of the product, all irreducible factors F of Fλ,ψ satisfy:

R0(F )(y) = ψ0(y)`0(F ) in F0[y],
N1(F ) is one-sided with slope λ,
Rλ,1(F )(y) = ψ(y)`1(F ) in F1[y],

for some positive integers `0(F ), `1(F ).

These properties motivate the use of the term type. A type is an object that collects
some arithmetic features of irreducible polynomials. The polynomials that have these prop-
erties are of a certain “type”. The last polynomial of a type is some sort of minimal object
having these features; it is also called a representative of the type. Let us show how these
representatives are constructed.

Construction of the polynomials φλ,ψ

Let us denote for a while:
e := eλ, h := hλ, f := fψ.

Suppose that ψ(y) = c0 + c1y+ · · ·+ cf−1y
f−1 + yf ∈ F1[y]. The polynomial φλ,ψ(x) we are

looking for must be of the form:

πhfa0(x) + πh(f−1)ae(x)φ1(x)e + · · ·+ πh(f−k)aek(x)φ1(x)ek + · · ·+ φ1(x)ef ,
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with R0(aek)(z0) = ck, for all 0 ≤ k < f .

The condition on aek(x) is easy to fulfill: if ck = 0 we take aek(x) = 0, whereas for

ck = u0 + u1z0 + · · ·+ uf0−1z
f0−1
0 ∈ F1,

with ui ∈ F0, we simply take arbitrary liftings of the ui to O (which we denote by the same
symbol ui ∈ O), and take

aek(x) = u0 + u1x+ · · ·+ uf0−1x
f0−1 ∈ O[x].

The Newton polygon of φλ,ψ is:
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2.5 Types of order r

Definition. Let r ≥ 1 be an integer, and t = [φ1, . . . , φr+1] a family of monic irreducible
separable polynomials in O[x]. We say that t is a type of order r if it satisfies the following
properties:

1. [φ1, . . . , φr] is a type of order r − 1.

2. Nr(φr+1) is one-sided with negative slope (say) λ.

3. Rλ,r(φr+1)(y) ∈ Fr[y] is an irreducible polynomial.

4. deg φr | deg φr+1.
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If t satisfies these conditions, we add two fundamental invariants at level r:

λr := slope of Nr(φr+1),
ψr(y) ∈ Fr[y] monic such that Rλr,r(φr+1) ∼ ψr,

Convention. We shall denote from now on: Rr := Rλr,r.

Let us recall the subsequent invariants deduced from λr, ψr:

λr = −hr/er, hr, er positive coprime integers
fr := degψr,
Fr+1 := Fr[y]/(ψr(y)),
zr := class of y in Fr+1,

so that ψr(zr) = 0 and Fr+1 = Fr[zr] = F0[z0, . . . , zr].

In order to have a coherent definition, it is necessary to show that if t satisfies these
properties, then t determines a Newton polygon operator of order r + 1,

Nr+1 : O[x] −→ 2R2
,

and residual polynomial operators of order r + 1, for each λ ∈ Q−:

Rλ,r+1 : O[x] −→ Fr+1[y],

satisfying analogous results to the three fundamental theorems of Ore.

The first (and essential) step is to construct a discrete valuation vr+1 of K(x). Let us
describe how it acts on polynomials. Given g(x) ∈ K[x] \ {0}, we compute N := N−r (g)
and we take any point (x, y) ∈ N such that y + x|λr| is minimal. Then, we define:

vr+1(g) := er(y + x|λr|).

The following picture illustrates the situation. The line Lλr is the line of slope λr
having first contact with N from below.
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Note that vr+1 depends only on vr, φr and λr. In MacLane’s terminology, φr is a key
polynomial over vr and vr+1/er is the augmented valuation attached to the pair (φr, vr(φr)+
|λ|) [McL36, Sec.4]

Once we have the discrete valuation vr+1, we can define a Newton polygon operator of
order r + 1 as before. If g(x) =

∑
0≤s as(x)φr+1(x)s is the φr+1-expansion of a polynomial

g(x), then Nr+1(g) := Nφr+1,vr+1(g) is defined as the lower convex hull of the set of points
(s, us), where us := vr+1(asφsr+1).

Note that the ordinate of the points incorporates vr+1(φsr+1), which is a positive inte-
ger. This is necessary to keep the property:

`(N−r+1(g)) = ordψr(Rr(g)).

In order one (for r = 0), we had v1(φ1) = 0, because φ1 is monic; thus, the definition of N1

is coherent with the general definition of the Newton polygons Nr for all r ≥ 1.

The residual operators of order r+1 are defined in a completely analogous way, except
for the fact that the residual coefficients of N := N−r+1(g) need to be twisted by certain
powers of zr. More precisely, for each integer abscissa s in the projection of N over the
horizontal axis, we define

cs :=
{

0, if (s, us) lies above N,
ztsr Rr(as)(zr) ∈ Fr+1, if (s, us) lies on N,

The exponent ts is defined to be:

ts :=
(
sr(as)− h−1

r us
)
/er,

where h−1
r is any integer satisfying: h−1

r hr ≡ 1 (mod er), and sr(as) is the abscissa of the
left end point of the segment Sλr(Nr(as)).
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With some effort, one is able to prove results completely analogous to the three funda-
mental results of Ore; that is, Theorems of the product, of the polygon and of the residual
polynomial in order r [HN08, Secs.2+3].
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Definition. Let t be a type of order r. For any g(x) ∈ O[x] we define

ordt(g) := ordψr Rr(g) = `(N−r+1(g)),

and we say that t is g-complete if ordt(g) = 1.

By the Theorem of the product, ordt(gh) = ordt(g) + ordt(h).

2.6 Back to the factorization algorithm

Along the factorization algorithm, we construct types such that ordt(f) is positive. This
means that there is some irreducible factor F (x) of f(x) in O[x], for which ordt(F ) > 0,
and this implies that F has the features captured by the type t:

Ri(F ) ∼ ψ`i(F )
i , Ni(F ) is one-sided with slope λi, ∀ 1 ≤ i ≤ r.

We denote by Ft(x) ∈ O[x] the (unknown) product of all monic irreducible factors F
of f such that ordt(F ) > 0; this notation is coherent with the previous way to consider Ft

as an (unknown) factor of f(x) detected by Hensel lemma or the results of Ore.

If t is f -complete, then Ft is already irreducible, and the node labelled by t is a leave
of the tree of types. If t is not f -complete, that is, ordt(f) > 1, it is clear that the extension
of Ore’s results to order r determines a completely analogous branching of the node of the
tree T labelled by t.

The construction of the polynomial φλ,ψ that enlarges the type at the next order is
obtained by applying in a recursive way the procedure described in section 2.4. However,
at order r > 1 one has to care about the powers of zr that twist the residual coefficients of
the polygons [HN08, Sec.2.3].

We conclude with a couple of remarks on the Theorem of the polygon and the com-
putation of the residue class fields of the extensions determined by the irreducible factors.

2.7 Special features of the Theorem of the polygon in order r

Proposition. Suppose ordt(f) > 0 and let θ ∈ Ksep be a root of Ft. Then, for any
polynomial g(x) ∈ O[x],

vr+1(g) ≤ e1 · · · er v(g(θ)), (2.3)
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and equality holds if and only if ordt(g) = 0.

Hence, vr+1/e1 · · · er has to be considered an approximation of the valuation v on the
finite extension K(θ)/K. The formula for the value of v(φr+1(θ)) given by the Theorem of
the polygon gives an interpretation of the slopes of N−r+1(f) as a measure of the inequality
of (2.3), for the polynomial φr+1. More precisely, for any root θ ∈ Ksep of the factor Fλ of
Ft determined by some λ ∈ Slopes(N−r+1(f)), the Theorem of the polygon states that:

v(φr+1(θ)) =
|λ|+ vr+1(φr+1)

e1 · · · er
,

or equivalently:
e1 · · · er v(φr+1(θ))− vr+1(φr+1) = |λ|.

2.8 Computation of the residue class fields of the extensions determined
by the irreducible factors

If the type t of order r is f -complete, then the field Fr+1 is a computational representation
of the residue class field of the (unknown) irreducible factor F singled out by t. If θ ∈ Ksep

is a root of F , L = K(θ) and FL is the residue class field, there is an explicit isomorphism:

γ : Fr+1 = F0[z0, . . . , zr] −→ FL, zi 7→ γi(θ),

where γi(x) ∈ K(x) are certain rational functions that can be expressed as a product of the
φ polynomials of t with integer (positive or negative) exponents [HN08, Sec.2.4+(36)].

The computation of these rationals functions would be inefficient, so that along the flow
of the algorihtm only these integer exponents are computed and stored, which is sufficient
for all the applications where the residue class field FL is involved.

2.9 Higher order indices

Why does this process terminate? Why all types become complete after a finite number of
steps? Answer: because each node “swallows” a positive (and big!) integer portion of the
absolute index of f(x).

Let F (x) ∈ O[x] be a monic irreducible separable polynomial, L = K(θ), where
θ ∈ Ksep is a root of F , and OL the ring of integers. The index ind(F ) is defined as:

ind(F ) := lengthO(OL/O[θ]).
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Recall the well-known relationship: v(disc(F )) = 2 ind(F ) + v(disc(L/K)).

Let f(x) ∈ O[x] be a monic separable polynomial, and f = F1 · · ·Fg its factorization
into a product of monic irreducible polynomials in O[x]. Let Of := O[x]/(f(x)). The index
of f is by definition:

ind(f) := lengthO ((Of )∼/Of ) =
g∑
j=1

ind(Fj) +
∑

1≤j<k≤g
v(Res(Fj , Fk)),

where the superscript ( )∼ indicates “integral closure”.

Now, for each t ∈ t, we define:

indt(f) := f0f1 · · · fr ind(N−r+1(f)),

where r is the order of t and, for any polygon N , ind(N) is the number of points of integer
coordinates that lie below or on N and the horizontal line passing through the (left) starting
point of N , beyond the vertical axis and above the horizontal line having first contact with
N from below.
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Theorem. Let T be the tree of types considered at any stage of Montes algorithm. Then,∑
t∈t

indt(f) ≤ ind(f).

If all leaves of T are f -complete, then equality holds.

Corollary.

1. The factorization algorithm ends after a finite number of steps.
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2. It computes ind(f) as a by-product.

It is not absolutely true that indt(f) is always positive. However, if for some node
t we have ind(N−r (f)) = 0, then this polygon is one-sided and the projection of this side
either to the horizontal or to the vertical axis has length one; hence, t is either complete,
or it becomes complete after a unibranch step.

2.10 Optimization of Montes algorithm

Definition. The type t = [φ1, . . . , φr+1] of order r is called optimal if either r = 0 or
deg φ1 < · · · < deg φr. It is called strongly optimal if it is optimal and moreover deg φr <
deg φr+1.

Montes algorithm is optimized in such a way that all nodes of the tree of types, except
for the leaves, are strongly optimal. Hence, by the very definition, all nodes of the tree,
including the leaves, are optimal.

Let us sketch the ideas of the optimization process. Suppose a node of the tree,
t = [φ1, . . . , φr] of order r − 1, is strongly optimal and non-complete. Then, in principle,
several branches sprout from t, parameterized by pairs (λ, ψ), where λ is one of the slopes
of N−r (f) and ψ is one of the irreducible factors of Rλ,r(f). For each one of these branches
let us write,

λ = −hλ/eλ, fψ := degψ, mλ,ψ := eλfψmr,

where eλ, hλ are positive coprime integers. Denote by φλ,ψ the (r + 1)-th φ-polynomial of
degree mλ,ψ constructed by the general method, as explained in section 2.6. The type

tλ,ψ := [φ1, . . . , φr, φλ,ψ]

would be a new node of order r if no optimization were applied. Now there are three
different possibilities for each branch:

(a) The type tλ,ψ is complete. In this case, tλ,ψ is a leave of the tree.

(b) The type tλ,ψ is not complete, and eλfψ > 1. In this case, tλ,ψ is strongly optimal
and it is taken as a new node of order r of the tree.

(c) The type tλ,ψ is not complete, and eλfψ = 1. In this case, tλ,ψ is not strongly optimal.
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In case (c), the polynomial φλ,ψ is a better representative of the original type t than
φr; thus, we consider the type t′ = [φ1, . . . , φr−1, φλ,ψ] as a new node of order r − 1. This
type t′ is added to the tree and manipulated as any other type, but only slopes strictly less
than λ (instead of strictly less than 0) are considered in the Newton polygon Nt′,r(f). We
call this replacement of a branch of order r by a new branch of order r − 1, a refinement
step.
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λ′, ψ′

λ′′, ψ′′
eλ′′fψ′′ = 1

•

•

•

•��
�
��
�

��
�
��
�

t

tλ,ψ (compl.)

tλ′,ψ′ (eλ′fψ′ > 1)

λ, ψ

λ′, ψ′

t′ = [φ1, . . . , φr−1, φλ′′,ψ′′ ]

Since all computations (vr, Nr, Rr, . . . ) are of a recursive nature, to proceed in order
r − 1 instead of order r causes a considerable improvement of the complexity.

Note that the leaves of the tree, as nodes of complete branches, are not necessarily
strongly optimal (in case (a) eλfψ can be indistinctly equal to or greater than one). There
will appear non-strongly optimal leaves if and only if there are irreducible factors of f(x) that
are one an Okutsu approximation to the other. In any case, the optimized algorithm always
outputs f -complete and optimal types. Curiosly enough, this optimization motivated by
pure practical reasons, provides the output of Montes algorithm with unexpected canonical
properties.

The concept of Okutsu appoximation and the canonical properties of the output data
of Montes algorithm will be discussed in section 3.

2.11 An example

Let us show how the algorithm works with an example. Take f(x) = x12 +4x6 +16x3 +64 ∈
Z2[x].

Since f(x) ≡ x12 (mod 2), the tree of types will be connected and we can take t0 = [x]
as a root node. The Newton polygon of first order of f(x) has two sides, with slopes −2/3
and −1/3, and indt0(f) = ind(N1(f)) = 23.
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The residual polynomials of the first order are:

R−2/3,1(f)(y) = y2 + y + 1, R−1/3,1(f)(y) = (y + 1)2.

Thus, the type t0 ramifies into two types of order one, with edges labelled by λ1, ψ1(y),
given by :

t = [x, x6 + 4x3 + 16], λ1 = −2/3, ψ1(y) = y2 + y + 1,
t′ = [x, x3 + 2], λ1 = −1/3, ψ1(y) = y + 1.

The type t is complete, and it singles out an (unknown) irreducible factor F (x) ∈ Z2[x];
let L/Q2 be the finite extension determined by F . We can apply (2.1) to get e(L/Q2) = 3,
f(L/Q2) = 2. Also, we get an Okutsu approximation x6 + 4x3 + 16, to F .

The type t′ is not complete: ordt′(f) = ordψ1 R1(f) = 2, so that some more work in
order two is required. Denote φ2(x) = x3 + 2. We know that N−2 (f) will have length 2;
hence, in order to compute this polygon we need only to compute the three last terms of
the φ2-adic development of f(x):

f(x) = φ2(x)4 + · · ·+ 28φ2(x)2 − 32φ2(x) + 64.

We have v2(φ2) = v2(2) = 3, so that v2(64) = 18, v2(−32φ2(x)) = 18, and v2(28φ2(x)2) =
12. The Newton polygon of secon order is:
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•
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N−2 (f)

20

18

12
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It has slope λ := −3 and residual polynomial of second order Rλ,2(f)(y) = y2 + 1 =
(y + 1)2, a power of ψ(y) := y + 1. Also, indt′(f) = 3. We want now to construct a
polynomial φλ,ψ of minimal degree satisfying:

N2(φλ,ψ) one-sided with slope − 3, Rλ,2(φλ,ψ) ∼ ψ.

Since eλ = fψ = 1, this polynomial φλ,ψ will have again degree 3; we can take φλ,ψ(x) =
x3 +6. For the sake of optimization, instead of considering the (non-complete, non-strongly
optimal) type [x, x3 + 2, x3 + 6] of order 2, whose further enlargements will require to work
in order 3, we replace the type t′ by the type t′′ = [x, x3 + 6] of order 1. In this way, our
next work will be done still in order 2. If we now take φ2(x) := x3 + 6, the last three terms
of the φ2-adic development of f(x) are:

f(x) = φ2(x)4 + · · ·+ 220φ2(x)2 − 896φ2(x) + 1408.

We have now v2(1408) = 21, v2(896φ2) = 24, v2(220φ2
2) = 12, so that N−2 (f) is one-sided

with slope −9/2:
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and indt′′(f) = ind(N−2 (f)) = 4. The residual polynomial of second order is already
irreducible: R−9/2,2(f)(y) = y + 1. Thus, t′′ is extended to a unique type of order two:
t′′′ = [x, x3 +6, x6 +12x3 +68], which is already complete. It singles out another irreducible
factor G(x) ∈ Z2[x]; let M/Q2 be the corresponding extension. By (2.1) we get e(M/Q2) =
6, f(M/Q2) = 1, and we have computed an Okutsu approximation x6 +12x3 +68, to G(x).

The final tree T of types is:

•
•

• •
��
�

��
�

HHH
HHH

t0 = [x]

t = [x, x6 + 4x3 + 16]

t′′ = [x, x3 + 6]

t′′′ = [x, x3 + 6, x6 + 12x3 + 68]
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The index ind(f) is equal to: ind(f) = indt0(f) + indt′′(f) = 23 + 4 = 27.

3 Okutsu Frames and Optimal Types

As in the last section, we fix a local field K, with ring of integers O, maximal ideal m, and
uniformizer π ∈ m. Let v : K∗ −→ Q, be the canonical extension of the discrete valuation
of K to an algebraic closure, with the usual normalization v(K∗) = Z. Let Ksep ⊆ K be
the separable closure of K in K. For any η ∈ K we denote deg η := [K(η) : K].

All results of this section are extracted from [GMN09], which is a revision of the
original paper by Okutsu [Oku82].

3.1 Okutsu frames

Let us fix a monic irreducible separable polynomial F (x) ∈ O[x], of degree n. Let θ ∈ Ksep

be a root of F (x), L = K(θ), and OL the ring of integers.

Denote µ0 := 0, m0 := 1, and consider sequences, respectively of positive integers and
non-negative rational numbers:

0 < m1 < m2 < · · · < mR < mR+1 := n,

0 < µ1 < µ2 < · · · < µR < µR+1 :=∞,

recursively defined as follows:

mi := min
{

deg η
∣∣∣ η ∈ K satisfies v(θ − η) > µi−1

}
,

µi := max
{
v(θ − η) among all η ∈ K of degree mi

}
.

We can choose separable integral elements αi ∈ Ksep satisfying

degα = mi, v(θ − α) = µi, ∀ 1 ≤ i ≤ R.

Let Fi(x) ∈ O[x] be the minimal polynomial of αi over K, and denote Ki = K(αi), for all
1 ≤ i ≤ R. The fields Ki are not necessarily subfields of L, but we shall see soon that their
maximal tamely ramified subextensions over K are always contained in L.

Definition. The sequence [F1, . . . , FR] is called an Okutsu frame of F , and R is called the
Okutsu depth of F .
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Although the polynomials Fi are not uniquely determined, we must consider an Okutsu
frame as an essentially canonical object attached to F .

Definition. An η ∈ Ksep such that deg η = n and v(θ − η) > µR is called an Okutsu
approximation to θ.

A monic irreducible separable polynomial G(x) ∈ O[x] is called an Okutsu approxima-
tion to F if degG = n and v(G(θ)) > (n/mR)v(FR(θ)).

Remarks.

1. The values v(Fi(θ)), 1 ≤ i ≤ R are independent of the choice of the Okutsu frame
[GMN09, Cor.2.14].

2. η ∈ Ksep is an Okutsu approximation to θ if and only if the minimal polynomial of η
over K is an Okutsu approximation to F (x) [GMN09, Lem.2.12].

3. The notion of Okutu approximation determines an equivalence relation on OKsep , and
on the set of monic irreducible separable polynomials in O[x] [GMN09, Lem.4.3].

Exercises. The following facts are an immediate consequence of the definitions:

1. depth(F ) = 0 if and only if F is irreducible modulo m.

2. Suppose that v(F (0)) = 0 and let [F1, . . . , FR] be an Okutsu frame of F . Let G(x) :=
πnmF (x/πm), for some positive integer m. Then, [x, F1(x), . . . , FR(x)] is an Okutsu
frame of G, and µi,G = µi−1 +m, for all 1 ≤ i ≤ R+ 1.

3. Let E(x) be an Eisenstein polynomial. Then [x] is an Okutsu frame of E, and µ1 =
1/n.

4. Two Eisenstein polynomials E(x), E′(x), are one an Okutsu approximation to the
other if and only if v(E(0)− E′(0)) > 1.

Suppose that depth(F ) = 0 and take G = πnF (x/π). Let E(x) be an Eisenstein
polynomial of degree n. The polynomial E determines a totally ramified extension and the
polynomial G determines an unramified extension. However, the exercises show that G and
E have both [x] as Okutsu frame. Hence, it has to be clear that an Okutsu frame is an
object attached to an irreducible polynomial and it is by no means an invariant of the finite
extension determined by this polynomial.
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3.2 Okutsu invariants of finite extensions of K

In spite of what has been said, an Okutsu frame accompanied by an Okutsu approximation
do contain a lot of information about the extension L/K and its subextensions.

All results of this section are extracted from [GMN09, Sec.2.1]. We fix throughout the
section an Okutsu frame [F1, . . . , FR] of F .

Lemma. Suppose that α, η ∈ Ksep satisfy:

v(θ − α) > µi−1, v(θ − η) > µi−1,

for some 1 ≤ i ≤ R + 1. Then, for any polynomial g(x) ∈ K[x] of degree less than mi, we
have

v(g(η)− g(α)) > v(g(α)).

Moreover, if degα = mi, then e(K(α)/K) divides e(K(η)/K).

Proposition. Suppose that α ∈ Ksep satisfies

degα = mi, v(θ − α) = µi,

for some 1 ≤ i ≤ R+ 1. Let N = K(α), M/K a finite Galois extension containg L and N ,
and G = Gal(M/K). Consider the subgroups:

Hi := {σ ∈ G | v(θ − σ(θ)) > µi−1} ⊇ H ′i := {σ ∈ G | v(θ − σ(θ)) ≥ µi},

and let MHi ⊆ MH′i ⊆ M be the respective fixed fields. Finally, let N tr be the maximal
tamely ramified subextension of N/K. Then, N tr ⊆MHi ⊆MH′i ⊆ L ∩N .

K N tr MHi MH′i

L

N

M��
�

HHH

HH
H

���

Corollaries. Let Ki = K(αi), for 1 ≤ i ≤ R.

1. The numbers e(Ki/K), f(Ki/K), do not depend on the chosen Okutsu frame.
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2. e(K1/K) | · · · | e(Kr/K) | e(L/K), and

f(K1/K) | · · · | f(Kr/K) | f(L/K). In particular, m1 | · · · |mr |n.

3. The extension K1/K is unramified and we have a chain of tamely ramified subfields
of L:

K K1 Ktr
2 · · · Ktr

R Ltr L

K2 KR

4. If G(x) ∈ O[x] is an Okutsu approximation to F , it admits a root α ∈ Ksep such that
the field KR+1 := K(α) satisfies:

Ktr
R+1 = Ltr, e(KR+1/K) = e(L/K), f(KR+1/K) = f(L/K).

5. If L/K is tamely ramified, then

{v(θ − σ(θ)) | σ ∈ G} =
{
{µ1, . . . , µR,∞}, if m1 = 1,
{0, µ1, . . . , µR,∞}, if m1 > 1.

In particular, µR is Krasner’s radius of F (x). Moreover, for each 0 ≤ i ≤ R, there are
exactly (n/mi)− (n/mi+1) different roots θ′ of F such that v(θ − θ′) = µi.

One might speculate that the fields Ki in Corollary (3) may not be subfields of L,
but they eventually detect the presence of subfields of L with given ramification index and
residual degree. Jürgen Klüners provided us with an example showing that is not the case
either.

Example (Klüners). Let F (x) = x4 +4x2−4x+4 ∈ Z2[x]. This polynomial is separable,
irreducible, and it determines a primitive extension L of Q2. Actually, the roots of F are
the squares of the roots of the strongly Eisenstein polynomial x4 + 2x + 2, whose Galois
group is well-known. Now, it is easy to check that [x, x2− 2] is an Okutsu frame of F , with
Okutsu invariants µ1 = 1/2, µ2 = 5/8. Thus, the quadratic field K2 = Q2(

√
2) does not

correspond to any quadratic subfield of L. Even more, the normal closure of L/Q2 has a
unique quadratic subextension, which is unramified, so that K2 (which is totally ramified)
cannot be connected to any quadratic subfield of this normal closure either.
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3.3 Okutsu frames and integral closures

The next theorem shows a relevant property of the polynomials Fi that constitute an Okutsu
frame of F .

Theorem. Take F0(x) = x. For any integer 0 ≤ m < n, express m in a unique way as:

m = j0 + j1m1 + · · ·+ jRmR, 0 ≤ ji < (mi+1/mi),

and consider the following polynomial of degree m:

gm(x) := F0(x)j0F1(x)j1 · · ·FR(x)jR .

Then, for any polynomial g(x) ∈ O[x] of degree m we have,

v(gm(θ)) ≥ v(g(θ))− v1(g(x)).

Corollary [Oku82, I,Thm.1]. If νm := bv(gm(θ))c, then

1,
g1(θ)
πν1

, · · · , gn−1(θ)
πνn−1

is an O-basis of OL.

3.4 Okutsu frames and optimal types

Theorem. Let f(x) ∈ O[x] be a monic separable polynomial. Let t = [φ1, . . . , φr, φr+1] be
an f -complete optimal type of order r, and let F (x) ∈ O[x] be the monic irreducible factor
of f(x) singled out by t. Then,

1. The Okutsu depth of F is

R =
{
r, if erfr > 1,
r − 1, if erfr = 1.

In the first case, [φ1, . . . , φr] is an Okutsu frame of F , and φr+1 is an Okutsu approxi-
mation to F . In the second case, [φ1, . . . , φr−1] is an Okutsu frame of F , and φr, φr+1

are both Okutsu approximations to F .
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2. F (x) ≡ φr+1(x) (mod mν), where

ν =
⌈h1

e1
+

h2

e1e2
+ · · · hr

e1 · · · er
+

hr+1

e(L/K)

⌉
.

Corollaries.

1. The optimized Montes algorithm outputs an essentially canonical representation of
the irreducible factors.

2. All irreducible factors are parameterized by strongly optimal types if and only if these
factors are pairwise inequivalent under the equivalence relation “to be an Okutsu
approximation to”.

3. The numerical invariants hi, ei, fi, λi, for 1 ≤ i ≤ R, and the discrete valuations
v1, . . . , vR+1 are invariants of F (x).

4. In spite of the philosophy of Montes algorithm, that detects factorization but never
computes it, the last polynomials of the output types are approximations to the ir-
reducible factors, with a controlled precision. Therefore, the algorithm provides a
factorization of the input polynomial indeed.

In a recent work with J. Guàrdia and S. Pauli [GNP10], we develop a single-factor
approximation algorithm that improves each one of these approximations up to a prescribed
precision. This algorithm has quadratic convergence and although it has the same complex-
ity than the Hensel lift routine, it has a slightly better performance in practice.

4 Computation of Integral Closures in Global Fields

For simplicity, we discuss only the computation of the maximal order of a number field.

Let K = Q[x]/(f(x)) be the number field defined by a monic irreducible polynomial
f(x) with integer coefficients and degree n. Let θ ∈ Q be a root of f(x) and ZK the ring
of integers.

We already mentioned in section 1.2 that an integral basis of K (i.e. a Z-basis of
ZK) can be computed by an standard application of the Chinese remainder theorem, from
a family of p-integral basis in Hermite Normal Form, for all prime numbers p dividing
disc(f).
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In this section we deal with the computation of a p-integral basis for a given prime
number p. We saw in section 1.2 that Montes algorithm attaches to each prime ideal p of
K lying over p an OM representation:

p = [p;φ1,p, . . . , φr,p;φp],

where φp is just the r + 1-th polynomial of the f -complete and optimal type attached to
the p-adic irreducible factor of f(x) corresponding to p. The common feature of the two
methods we are about to present is the computation of a p-integral basis in terms of the
data encoded by these OM representations.

4.1 Standard OM method

Let P be the set of prime ideals of K dividing p. For each p ∈ P, we fix a topological
embedding

ιp : K ↪→ Kp ↪→ Qp,

and we denote τp := ιp(θ). Let Fp(x) ∈ Zp[x] be the minimal polynomial of τp over Qp, and
denote by np = e(p/p)f(p/p), its degree.

Recall that Montes algorithm can be slightly modified to compute a Zp-basis of the
local ring of integers ZKp , for all p ∈ P. Let us denote by:

Bp =
{

1,
g1,p(τp)
pν1,p

. . . ,
gnp−1,p(τp)
pνnp−1,p

}
, p ∈ P.

these p-integral bases. The exponents of the denominators were defined as νm,p := bj1v(φ1,p(τp))+
· · · + jrv(φr,p(τp))c; thus, the Theorem of the polygon provides an explicit computation of
these νm,p in terms of the data of the OM representation of p (see section 2.7).

We compute multipliers bp ∈ ZK satisfying:

vp(bp) = 0, vq(bp) ≥ (exp(Fp) + 1)e(q/p). (2.4)

Proposition. [Ore25] The family
⋃

p∈P bpBp is a p-integral basis of K.

Proof. Let us denote
αm,p := bp

gm,p(θ)
pνm,p

, ∀ 0 ≤ m < np.

Although gm,p(θ)/pνm,p is not necessarily (globally) integral, the element αm,p belongs to
ZK and, even more, it satisfies

vq(αm,p) ≥ e(q/p), ∀ q ∈ P, q 6= p. (2.5)
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In fact, this is an immediate consequence of (2.4), because νm,p ≤ νnp−1,p = exp(Fp), for all
m, p.

Let us check that {αm,p}m,p is an Fp-linearly independent family in ZK⊗ZFp. Suppose
that for certain integers am,p we have∑

m,p

am,pαm,p ∈ pZK =
∏
p∈P

pe(p/p).

Let us fix one of the primes p ∈ P. By (2.5),∑
m

am,pαm,p ∈ pe(p/p).

Since vp(bp) = 0, if we apply ιp to this identity, we get∑
m

am,p
gm,p(τp)
pνm,p

∈ (pZKp)e(p/p) = pZKp .

This implies that all am,p are multiples of p. 2

The computation of the multipliers bp in terms of the data of the OM representations
of the prime ideals is explained in [GMN10, Secs.3.2+4.2]. This computation requires to
improve the approximations φp till vp(φp(θ)) has a sufficiently large value. As mentioned
at the end of the last section, this can be carried out with the single-factor approximation
algorithm [GNP10].

4.2 Method of the quotients

Let t = [φ1, . . . , φi] be a type of order i − 1 labelling one of the nodes of the tree T along
the flow of Montes algorithm. Before computing N−i (f), we know a priori the length of this
polygon:

` := `(N−i (f)) = ordψi−1
Ri−1(f).

Hence, we need only to compute the first `+ 1 coefficients of the φi-adic expansion of f(x):

f(x) = φi(x)qi,1(x) + a0(x),
qi,1(x) = φi(x)qi,2(x) + a1(x),
· · · · · ·

qi,`−1(x) = φi(x)qi,`(x) + a`−1(x),
qi,`(x) = φi(x)qi,`+1(x) + a`(x).

The polynomials qi,1(x), . . . , qi,`(x) are called the quotients of i-th order of f(x) with respect
to t. There are two relevant facts concerning these polynomials:
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1. They are obtained at cost zero along the computation of the coefficients of the φi-
development of f(x) that are necessary to build up the principal polygon N−i (f).

2. The element qi,j(θ)/pbHi,jc is integral, for an easy computable rational number Hi,j .
More precisely [GMN09a, Prop.10],

Hi,j = (Yj − jvi(φi))/e1 · · · ei−1,

where Yj is the ordinate of the point of abscissa j lying on Ni(f).

Conjecture. For each p = [p;φ1, . . . , φr;φp] ∈ P, compute the family

Bp :=
{
bp, bp

g1(θ)
pν1

, · · · bp
gnp−1(θ)
pνnp−1

}
,

where now:

1. bp := qr+1,1(θ).

2. For each 0 ≤ m < np, written in a unique way as:

m = j0 + j1m1 + · · ·+ jrmr, 0 ≤ ji < (mi+1/mi),

take gm(x), νm to be:

gm(x) := xj0q1,j1(x) · · · qr,jr(x), νm := bH1,j1 + · · ·+Hr,jr +Hr+1,1c.

Then,
⋃

p∈P Bp is a p-integral basis of K.

The advantage with respect to the standard method is twofold:

1. We replace the computation of the powers φjii by a single polynomial qi,j that was
obtained at zero cost.

2. We replace the whole construction of the multiplier bp by the consideration of the
polynomial qr+1,1, which is obtained at the cost of only one division with remainder:
f(x) = φp(x)qr+1,1(x) + a0(x).

The disadvantage is that the polynomials gm(x) considered in the standard method
have degree m, while those of the quotients method have, by nature, large degree.
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In practice, the method of the quotients has a slightly better generic performance, and
it is more regular, in the sense that in the examples where the standard method is faster,
the difference of the times of execution is very small, while there are peak cases in which the
quotients method is extremely faster than the standard one. Anyhow, no accurate analysis
of the complexities of either method has been made yet.

In spite of being based on a conjecture, in the +Ideals package we compute integral
closures by using the method of the quotients. Since Montes algorithm computes ind(f) as a
by-product, it is easy to check a posteriori that

⋃
p∈P Bp is a p-integral basis indeed. Thus,

our implementation outputs an unconditional result. If the output contains no warning
message, it means that the p-integral basis was correct. We have run this implementation
in thousands of examples and got no counterexample.
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[Mon99] J. Montes, Poĺıgonos de Newton de orden superior y aplicaciones aritméticas,
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