
3× 3 MINORS OF CATALECTICANTS

CLAUDIU RAICU

Abstract. Secant varieties of Veronese embeddings of projective space are classical varieties
whose equations are far from being understood. Minors of catalecticant matrices furnish some of
their equations, and in some situations even generate their ideals. Geramita conjectured that this
is the case for the secant line variety of the Veronese variety, namely that its ideal is generated by
the 3 × 3 minors of any of the “middle” catalecticants. Part of this conjecture is the statement
that the ideals of 3 × 3 minors are equal for most catalecticants, and this was known to hold
set-theoretically. We prove the equality of 3 × 3 minors and derive Geramita’s conjecture as a
consequence of previous work by Kanev.

1. Introduction

A folklore theorem (see [GP82,Eis88,Con98]) states that the defining ideal of any secant variety
of a rational normal curve is generated by the minors of a generic Hankel matrix, and that apart
from trivial restrictions, it doesn’t matter which Hankel matrix we choose to take the minors of.
For example, consider a rational quartic curve C in P4, the image of the embedding

[x : y] −→ [x4 : x3y : x2y2 : xy3 : y4].

If we let z0, · · · , z4 denote the coordinate functions on P4, then the relevant Hankel matrices are[
z0 z1 z2 z3
z1 z2 z3 z4

]
and

 z0 z1 z2
z1 z2 z3
z2 z3 z4

 .
The ideals of 2 × 2 minors of the two matrices coincide and generate the ideal of C, while the
determinant of the second one cuts out the cubic 3-fold which is the union of the lines secant to
C. The union of the higher dimensional planes secant to C covers the whole ambient space P4,
which corresponds to the fact that the above matrices don’t have minors of size larger than three.

Unlike the case of P1 which is completely understood, we do not know in general the equations
of the secant varieties of Veronese embeddings of higher dimensional projective spaces. Minors
of catalecticant matrices (which are generalized versions of Hankel matrices, see Section 2.2 for
definitions) provide some equations for these secant varieties, but turn out not to be sufficient in
many cases.

Determinantal loci of catalecticant matrices are of particular interest in their own right, but
also via their connection to Hilbert functions of Gorenstein Artin algebras, the polynomial Waring
problem, or configurations of points in projective space (see [Ger96, IK99]). In [Ger99], Geramita
gives a beautiful exposition of classical results about catalecticant varieties, and proposes several
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further questions (see also [IK99, Chapter 9]). We recall the last one, which we shall answer
affirmatively. It is divided into two parts:

Question 1.1. Write Cat(t, d − t;n) for the t-th generic catalecticant matrix (see Section 2.2),
and I3(Cat(t, d− t;n)) for the ideal generated by its 3× 3 minors.

(a) Is it true that
I3(Cat(2, d− 2;n)) = I3(Cat(t, d− t;n))

for all t with 2 ≤ t ≤ d− 2?
(b) Is it true that for n ≥ 3 and d ≥ 4

I3(Cat(1, d− 1;n)) ( I3(Cat(2, d− 2;n))?

Our main result answers positively both parts of Question 1.1:

Theorem 5.1. Let K be a field of characteristic 0 and let n, d ≥ 2 be integers. The following
statements hold:

(1) For all t with 2 ≤ t ≤ d− 2 one has

I3(Cat(2, d− 2;n)) = I3(Cat(t, d− t;n)).

(2) If d ≥ 4 then there is a strict inclusion

I3(Cat(1, d− 1;n)) ( I3(Cat(2, d− 2;n)).

Geramita also conjectures that any of the catalecticant ideals I3(Cat(t, d− t;n)), 2 ≤ t ≤ d−2,
is the ideal of the secant line variety of the d-uple embedding of Pn−1. This follows by combining
Theorem 5.1 with the result of Kanev [Kan99] which states that the ideal of the secant line variety
of the Veronese variety is generated by the 3× 3 minors of the first and second catalecticants:

Corollary 5.2. Any of the ideals I3(Cat(t, d− t;n)), 2 ≤ t ≤ d− 2, is the ideal of the secant line
variety of the d-th Veronese embedding of Pn−1K .

As mentioned earlier, when n = 2 it is well-known [GP82,Eis88,Con98] that

Ik(Cat(k − 1, d− k + 1; 2)) = Ik(Cat(t, d− t; 2)) (1.1)

for all t with k − 1 ≤ t ≤ d − k + 1, and that any of these ideals is the ideal of the (k − 2)-nd
secant variety of the rational normal curve in Pd. This fact will turn out to be useful in the proof
of Theorem 5.1.

Theorem 5.1 yields special cases of two general conjectures. One of them is implicit in
Geramita’s question Q4 from [Ger99]:

Conjecture 1.2. For all k, n ≥ 2, d ≥ 2k − 2 and t with k − 1 ≤ t ≤ d− k + 1, one has

Ik(Cat(k − 1, d− k + 1;n)) = Ik(Cat(t, d− t;n)).

Moreover, the following inclusions hold:

Ik(Cat(1, d− 1;n)) ( Ik(Cat(2, d− 2;n)) ( · · · ( Ik(Cat(k − 1, d− k + 1;n)).

The other one is a conjecture by Sidman and Smith [SS11]:

Conjecture 1.3. Let k be a positive integer. If X ⊂ Pn is embedded by the complete linear series
of a sufficiently ample line bundle, then the homogeneous ideal of the (k− 2)-nd secant variety of
X is generated by the k × k-minors of a 1-generic matrix of linear forms.
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Conjecture 1.3 has been proven to be false for singular X [BGL10], but there are no known
smooth counterexamples. The case X = Pr is a sufficiently interesting special case. In [BB10]
it is shown that minors of catalecticants are not enough to cut out the secant varieties even for
very positive embeddings of projective space. Both conjectures 1.2 and 1.3 are known to be true
for k = 2, by results of Pucci [Puc98] and Sidman and Smith [SS11]. The argument in [Puc98] is
rather long, so we will give a simplified proof in Section 4. The case k = 3 is treated in Section 5.
We prove the case k = 4 of Conjecture 1.2 in [Rai11, Section 6.3], using similar techniques.

The main tool that we will be using in our proofs is the reduction to the “generic” situation, as
explained in [Rai12]. Showing the equality of the spaces of minors for the various catalecticants
reduces to the more combinatorial problem of showing that certain representations of a symmetric
group coincide.

The structure of the paper is as follows. In Section 2 we establish some notation from repre-
sentation theory, and recall some basic facts about catalecticant varieties and secant varieties of
Veronese varieties. In particular, we describe the relationship between catalecticant matrices and
Gorenstein Artin algebras, which motivates Conjecture 1.2. In Section 3 we set up the “generic
case”: we introduce certain representations of symmetric groups which correspond by specializa-
tion to ideals of minors of catalecticant matrices. We then illustrate our techniques in Section 4
by giving a simple proof of Pucci’s result - Conjecture 1.2 in the case k = 2. In Section 5 we give
an affirmative answer to Geramita’s Question 1.1 (Theorem 5.1).

2. Preliminaries

2.1. Representation theory. For an introduction to the representation theory of the symmetric
and general linear groups see [FH91] or [Mac95]. Given a finite dimensional vector space V over a
field K of characteristic zero, we denote by GL(V ) the group of invertible linear transformations
of V . For a positive integer N , we write SN for the group of permutations of the set {1, · · · , N}.

A partition λ of an integer N is a nonincreasing sequence λ1 ≥ λ2 ≥ · · · with N =
∑
λi. We

write λ = (λ1, λ2, · · · ). Alternatively, if µ is a partition having ij parts equal to µj for all j,

then we write µ = (µi11 · µ
i2
2 · · · ). To a partition λ we associate a Young diagram which consists of

left-justified rows of boxes, with λi boxes in the i-th row. We shall identify a partition λ with its
Young diagram. A tableau is a filling of the Young diagram. The canonical tableau is the one that
numbers the boxes consecutively from left to right, top to bottom. For λ = (3, 3, 1) = (11 · 32),
the canonical tableau is

1 2 3
4 5 6
7

.

The irreducible representations of GL(V ) and SN that will concern us are classified by parti-
tions. For GL(V ), they are the Schur functors SλV , with the convention that S(d)V = SymdV is

the d-th symmetric power of V , while S(1k)V = ΛkV is the k-th exterior power of V . For G = SN ,

we write [λ] for the irreducible representation corresponding to the partition λ. [(N)] denotes the
trivial representation, while [(1N )] denotes the sign representation.

The GL(V )– (resp. SN–) representations W that we consider decompose as a direct sum of
SλV ’s (resp. [λ]’s). We write

W =
⊕
λ

Wλ,



4 CLAUDIU RAICU

where Wλ ' (SλV )mλ (resp. Wλ ' [λ]mλ) is the λ-isotypic component of W . mλ = mλ(W ) is
called the multiplicity of SλV (resp. [λ]) in W .

Up to making some choices, each Wλ contains a distinguished subspace hwtλ(W ), called the
λ-highest weight space of W . For GL(V ), this is the space of vectors of weight λ invariant under
(some choice of) the Borel subgroup, while for SN it is the vector space cλ ·W , where cλ is a
Young symmetrizer. The defining property that will be important for us is that hwtλ(W ) is a
vector space of dimension mλ(W ) which generates Wλ as a GL(V )– (resp. SN–) representation.

2.2. Catalecticant varieties. Given a vector space V of dimension n over K, with basis B =
{x1, · · · , xn}, we consider its dual space V ∗ with dual basis E = {e1, · · · , en}. For every positive

integer d we get a basis of S(d)V
∗ consisting of divided power monomials e(α) of degree d in the

ei’s, as follows. If α ⊂ {1, · · · , n} is a multiset of size |α| = d, then we write eα for the monomial∏
i∈α

ei.

We often identify α with the multiindex (α1, · · · , αn), where αi represents the number of occur-

rences of i in the multiset α. We write e(α) for eα/α!, where α! = α1! · · ·αn!. For a, b > 0 with

a+ b = d we get a divided power multiplication map S(a)V
∗⊗S(b)V ∗ → S(d)V

∗, sending e(α)⊗ e(β)

to e(α∪β). We can represent this via a multiplication table whose rows and columns are indexed
by multisets of sizes a and b respectively, and whose entry in position (α, β) is e(α∪β). The generic
catalecticant matrix Cat(a, b;n) is defined to be the matrix obtained from this multiplication table

by replacing each e(α∪β) with the variable zα∪β, where (zγ)|γ|=d ⊂ S(d)V is the dual basis to

(e(γ))|γ|=d ⊂ S(d)V ∗.
One can also think of zγ ’s as the coefficients of the generic form of degree d in the ei’s, F =∑
zγe

(γ). Specializing the zγ ’s we get an actual form f ∈ S(d)V ∗, and we denote the corresponding
catalecticant matrix by Catf (a, b;n). Any such form f is the dual socle generator of some Gorenstein
Artin algebra A [Eis95, Thm. 21.6] with socle degree d and Hilbert function

hi(A) = rank(Catf (i, d− i;n)).

Macaulay’s theorem on the growth of the Hilbert function of an Artin algebra [BH93, Thm. 4.2.10]
implies that if hi < k for some i ≥ k−1, then the function becomes nonincreasing from that point
on. In particular, since A is Gorenstein, h is symmetric, so if hi < k for some k−1 ≤ i ≤ d−k+1,
then we have

h1 ≤ h2 ≤ · · · ≤ hk−1 = hk = · · · = hd−k+1 ≥ hd−k+2 ≥ · · · ≥ hd.

If we denote by Ik(i) = Ik(Cat(i, d− i;n)) the ideal of k× k minors of the i-th generic catalec-
ticant, then the remarks above show that whenever k − 1 ≤ d − k + 1 we have the following
up-to-radical relations:

Ik(1) ⊂ · · · ⊂ Ik(k − 1) = · · · = Ik(d− k + 1) ⊃ · · · ⊃ Ik(d− 1).

Conjecture 1.2 states that these relations hold exactly. We prove the conjecture in the case k = 3
in Section 5.
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2.3. Secant Varieties of Veronese Varieties. Given a vector space U over a field K of char-
acteristic zero, we write PU for the projective space of lines in U . For 0 6= u ∈ U , we denote by
[u] the corresponding line. For d a positive integer, we consider the Veronese embedding

Verd : P(V ∗)→ P(S(d)V
∗), given by [e] 7→ [e(d)].

Its k-th secant variety is the Zariski closure of the union of the linear subspaces spanned by
collections of k + 1 points in the image of Verd. We denote it by σk+1(Verd(PV ∗)). Note that for
k = 0 this is just the image of Verd.

The homogeneous coordinate ring of P(S(d)V
∗) is S = Sym(S(d)V ), the symmetric algebra over

S(d)V . Using the basis (zα) ⊂ S(d)V dual to (e(α)) ⊂ S(d)V
∗ we can write S as the polynomial

ring K[zα]. An important open problem is to find the ideal I ⊂ S of polynomials vanishing on
σk(Verd(PV ∗)) (see [LO11] for the current state of the art). The following result is well-known
(see [IK99] or [Lan12]).

Lemma 2.1. For every 1 ≤ i ≤ d and k ≥ 1, the ideal Ik+1(Cat(i, d − i;n)) is contained in the
ideal of σk(Verd(PV ∗)).

3. The “Generic” Case

The material in this section is based on [Rai12, Section 3B]. The basic idea is to use Schur-Weyl
duality in order to translate questions about representations of general linear groups, such as the
vector spaces spanned by the minors of catalecticants, into questions about representations of
symmetric groups and tableau combinatorics.

We write N = N(r, d) = r · d, and consider the vector space W r
d with basis consisting of

monomials in commuting variables zαi

m = zα1 · · · zαr , where α1 t · · · t αr is a partition of the set {1, · · · , N},
with |αi| = d for all i = 1, · · · , r.

An element σ of the symmetric group SN acts on a monomial m as follows:

σ(m) = σ(zα1 · · · zαr) = zσ(α1) · · · zσ(αr),

where for a subset α ⊂ {1, · · · , N}, σ(α) = {σ(x) : x ∈ α}.

Definition 3.1 (Generic flattenings). For k ≤ r, a, b with a + b = d, and disjoint subsets
α1, · · · , αk, β1, · · · , βk ⊂ {1, · · · , N} with |αi| = a, |βi| = b for all i = 1, · · · k, we let

[α1, · · · , αk|β1, · · · , βk] = det(zαi∪βj )1≤i,j≤k.

Fixing k, d and a, b with a+b = d, we define the ideal of generic k×k minors of the a-th catalecticant
to be the collection, indexed by the degree r, of subrepresentations Irk(a, b) ⊂W r

d spanned by the
expressions

[α1, · · · , αk|β1, · · · , βk] · zγ1 · · · zγr−k ,

where α1 t · · · t αk t β1 t · · · t βk t γ1 t · · · t γr−k form a partition of the set {1, · · · , N}, with
|αi| = a, |βi| = b, |γi| = d.
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Example 3.2. Take d = k = r = 3, a = 2 and b = 1. A typical element of I33 (a, b) looks like

D = [{1, 2}, {4, 6}, {5, 8}|{3}, {7}, {9}] = det

 z{1,2,3} z{1,2,7} z{1,2,9}
z{4,6,3} z{4,6,7} z{4,6,9}
z{5,8,3} z{5,8,7} z{5,8,9}

 .
It would be desirable to understand the decomposition into irreducible SN–representations of

all Irk(a, b). This is of course a hopeless goal at this point, since not even the case k = 1, i.e. the
symmetric plethysm problem of decomposing W r

d , is understood in general. Nevertheless, we will
be able to achieve our goal in the case of the representations I22 (a, b) and I33 (a, b). This will allow
us to prove conjectures 1.2 and 1.3 in the special case k = 3, X = Pn, and to reprove Pucci’s
result (Theorem 4.1). We start with a general observation:

Proposition 3.3. For any k, r, d, the subrepresentation Irk(1, d − 1) ⊂ W r
d is the sum of the

irreducible subrepresentations of W r
d corresponding to partitions λ with at least k parts.

Proof. This is a special case of Proposition 3.20 in [Rai12]. �

Remark 3.4. Proposition 3.3 is the analogue in the setting of SN -representations of Corollary
7.2.3 in [Wey03] or Theorem 5.2.3.6 in [Lan12]. The representations Irk(1, d− 1) give the “generic
equations” for the subspace varieties.

Given a partition λ of N , we index the boxes of its Young diagram in the usual way: the
i-th box is the one whose entry in the canonical tableau is equal to i. Given a partition λ and
monomial m = zα1 · · · zαr , we identify the element cλ ·m ∈ hwtλ(W r

d ) with a tableau of shape λ,
having d entries equal to i in the positions indexed by the elements of the set αi. For example, if
λ = (6, 2), r = d = 3, m = z1,3,8 · z2,4,7 · z5,6,9, we write

cλ ·m = 1 2 1 2 3 3
2 1 3

.

Two tableaux differing by a permutation of the numbers {1, · · · , r} correspond to the same mono-
mial, so we identify them:

cλ ·m = cλ · z2,4,7 · z5,6,9 · z1,3,8 = 3 1 3 1 2 2
1 3 2

.

Lemma 3.5. With the above conventions, we have

(1) T = cλ ·m = 0 if T has repeated entries in some column.
(2) T1 = cλ·m1 and T2 = cλ·m2 are equal up to sign (T1 = ±T2) if T1, T2 differ by permutations

within columns or by permutations of columns of the same size.

Proof. This is a special case of Lemma 3.16 in [Rai12]. �

Definition 3.6. Let a, b and Irk(a, b) as in Definition 3.1, let

D = [α1, · · · , αk|β1, · · · , βk] · zγk+1 · · · zγr ∈ Irk(a, b),

and let λ be a partition of N . We let γi = αi ∪ βi for i = 1, · · · , k, and consider the tableau
T = cλ ·m corresponding to the monomial m = zγ1 · · · zγr . We represent the element cλ · D ∈
hwtλ(Irk(a, b)) as a tableau T̂ with some of the entries circled, obtained from T by circling the

entries in the boxes located at positions indexed by the elements of α1, · · · , αk. Alternatively, since
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[α1, · · · , αk|β1, · · · , βk] = [β1, · · · , βk|α1, · · · , αk], we can circle the entries in the boxes located
at positions indexed by the elements of β1, · · · , βk, and obtain a different tableau with circled
entries which represents the same element of Irk(a, b). Using the expansion of the determinant

T̂ =
∑
σ∈Sk

sgn(σ) · T σ,

where sgn(σ) denotes the sign of σ, and T σ is the tableau obtained from T by replacing the entries
located at positions indexed by elements of αi with σ(i), for i = 1, · · · , k.

Example 3.7. Let D be as in Example 3.2, α1 = {1, 2}, α2 = {4, 6}, α3 = {5, 8}, β1 = {3},
β2 = {7}, and β3 = {9}. We get

m = z1,2,3 · z4,6,7 · z5,8,9,
so that

T = cλ ·m =
1 1 1 2 3
2 2 3
3

,

and

T̂ = cλ ·D =

'&%$ !"#1 '&%$ !"#1 1 '&%$ !"#2 '&%$ !"#3'&%$ !"#2 2 '&%$ !"#3
3

.

We have

T̂ = T −
2 2 1 1 3
1 2 3
3

−
3 3 1 2 1
2 2 1
3

−
1 1 1 3 2
3 2 2
3

+
2 2 1 3 1
3 2 1
3

+
3 3 1 1 2
1 2 2
3

.

Notice that all the tableaux pictured above have a repeated entry in one of their columns, hence
are equal to zero by Lemma 3.5. This shows that T = T̂ ∈ I33 (2, 1). This example captures the
main trick in our proof of Geramita’s conjecture.

Proposition 3.8. Let W denote the GL(V )-representation S(r)(S(d)V ), let N = r · d and let
W ′ = W r

d be the SN -representation described above. We fix a partition λ of N having at most
n = dim(V ) parts. There exist polarization and specialization maps

Pλ : hwtλ(W ) −→ hwtλ(W ′), Qλ : hwtλ(W ′) −→ hwtλ(W ),

inducing inverse isomorphisms between

hwtλ(Irk(a, b)) ' hwtλ(Ik(Cat(a, b;n))r). (3.1)

Proof. This is a special case of Proposition 3.27 in [Rai12]. �

It follows that in order to show that Ik(Cat(a, b;n)) are all the same as long as a, b ≥ 2, it
suffices to prove the corresponding statement in the generic case, i.e. for the representations
Irk(a, b).

Corollary 3.9 (Inheritance, [Lan12]). Let k, r ≥ 0 and fix λ a partition with t parts. The multi-
plicity of the irreducible representation SλV in Ik(Cat(a, b;n))r is independent of the dimension
n of the vector space V , as long as t ≤ n.

Proof. The left hand side of (3.1) is independent on n, and the isomorphism holds as long as
t ≤ n. �
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4. 2× 2 Minors

In this section we give two proofs of the following result of Pucci, which is the case k = 2
of Conjecture 1.2. The first proof works in arbitrary characteristic, while the second one is a
characteristic zero proof meant to illustrate the methods that we shall use in the case of higher
minors.

Theorem 4.1 ([Puc98]). Let K be a field of arbitrary characteristic and let n, d ≥ 2 be integers.
For all t with 1 ≤ t ≤ d− 1 we have

I2(Cat(1, d− 1;n)) = I2(Cat(t, d− t;n)).

Proof in arbitrary characteristic. For multisets m1,m2, n1, n2 we let

[m1,m2|n1, n2] =

∣∣∣∣ zm1∪n1 zm1∪n2

zm2∪n1 zm2∪n2

∣∣∣∣ .
With this notation, we have the following identity for multisets u1, u2, v1, v2, α1, α2, β1, β2:

[u1 ∪ u2, v1 ∪ v2|α1 ∪ α2, β1 ∪ β2] = [u1 ∪ α1, v1 ∪ β1|u2 ∪ α2, v2 ∪ β2]
+ [u1 ∪ β2, v1 ∪ α2|v2 ∪ α1, u2 ∪ β1].

(4.1)

We shall prove that I2(Cat(a, b;n)) ⊂ I2(Cat(a + 1, b − 1;n)) for a + b = d and 1 ≤ a ≤
d − 2. This is enough to prove the equality of the 2 × 2 minors of all the catalecticants, since
I2(Cat(1, d− 1;n)) = I2(Cat(d− 1, 1;n)). Since the ideal I2(Cat(a, b;n)) is generated by minors
[m1,m2|n1, n2] with |m1| = |m2| = a and |n1| = |n2| = b, it follows from 4.1 that it’s enough to
decompose m1,m2, n1, n2 as

m1 = u1 ∪ u2, m2 = v1 ∪ v2, n1 = α1 ∪ α2, n2 = β1 ∪ β2,

in such a way that

|u1|+ |α1| = |v1|+ |β1| = a+ 1, |u2|+ |α2| = |v2|+ |β2| = b− 1,

|u1|+ |β2| = |v1|+ |α2| = b− 1, |v2|+ |α1| = |u2|+ |β1| = a+ 1,
(4.2)

or

|u1|+ |α1| = |v1|+ |β1| = a+ 1, |u2|+ |α2| = |v2|+ |β2| = b− 1,

|u1|+ |β2| = |v1|+ |α2| = a+ 1, |v2|+ |α1| = |u2|+ |β1| = b− 1.
(4.3)

If a ≤ 2b − 2, then we can find 0 ≤ x, y ≤ b − 1 with x + y = a. Choose any such x, y and
decompose

m1 = u1 ∪ u2, m2 = v1 ∪ v2, with |u2| = |v1| = x and |u1| = |v2| = y,

and

n1 = α1 ∪ α2, n2 = β1 ∪ β2, with

|α1| = x+ 1, |β1| = y + 1, |α2| = b− 1− x and |β2| = b− 1− y.

It’s easy to see then that (4.2) is satisfied.
If b ≤ 2a+ 2, then since b ≥ 2 (a ≤ d− 2), we can find 1 ≤ x, y ≤ a+ 1 with x+ y = b. Choose

any such x, y and decompose

n1 = α1 ∪ α2, n2 = β1 ∪ β2, with |α2| = |β1| = x and |α1| = |β2| = y,
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and

m1 = u1 ∪ u2, m2 = v1 ∪ v2, with

|u1| = a+ 1− y, |v1| = a+ 1− x, |u2| = y − 1 and |v2| = x− 1.

It’s easy to see then that (4.3) is satisfied.
If neither of a ≤ 2b− 2 and b ≤ 2a+ 2 holds, then

a ≥ 2b− 1 ≥ 2(2a+ 3)− 1 = 4a+ 5,

so 0 ≥ 3a+ 5, a contradiction. �

Proof in characteristic zero. By Proposition 3.8, it’s enough to treat the “generic case”. We
want to show that for positive integers a, b with a+ b = d, and N = 2d, all SN -subrepresentations

I22 (a, b) ⊂W 2
d = indSNSd∼S2

(1) are the same. Clearly the trivial representation [(N)] is not contained

in any I22 (a, b), so

I22 (a, b) ⊆W 2
d /[(N)] =

bd/2c⊕
i=1

[(2 · (d− i), 2 · i)], for all a, b with a+ b = d.

(see [Mac95, I.8, Ex. 6] for the formula of the decomposition of W 2
d into irreducible represen-

tations; as the rest of the proof will show, we don’t really need the precise description of this
decomposition).

We will finish the proof by showing that the above inclusions are in fact equalities for all a, b.
To see this, it’s enough to prove that for any a, b with a+ b = d, any partition λ with two parts,
and any monomial m = zα · zβ, with αt β = {1, · · · , N}, we have cλ ·m ∈ I22 (a, b). Fix then such
a, b, λ = (λ1, λ2) and m = zα · zβ.

Recall from Section 3 that we can identify cλ ·m with a tableau T of shape λ with 1’s in the
positions indexed by the elements of α, and 2’s in the positions indexed by the elements of β.
Recall also that if T has repeated entries in a column, then T = 0. Since permutations within
columns of T can only change the sign of T , and permutations of the columns of T of the same
size don’t change the value of T (Lemma 3.5), we can assume that in fact m = z{1,··· ,d} ·z{d+1,··· ,N}
and

T = cλ · z{1,··· ,d} · z{d+1,··· ,N} = 1 1 1 · · · 2 2 · · ·
2 2 · · · .

Consider the sets

α1 = {2, · · · , a+ 1}, α2 = {1, · · · , d} \ α1, β1 and β2 = {d+ 1, · · · , N} \ β1,

where β1 is any subset with a elements of {d+ 1, · · · , N} containing λ1 + 1. Let T̃ be the tableau
obtained from T by circling the boxes corresponding to the entries of α1 and β1 (see Definition 3.6).
We have

T̃ = cλ · [α1, β1|α2, β2] = cλ · (zα1∪α2 · zβ1∪β2 − zα1∪β2 · zα2∪β1) = T − T ′,

where T ′ is a tableau with two equal entries in its first column, i.e. T ′ = 0. We get

T = T̃ ∈ I22 (a, b),

completing the proof. �
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Remark 4.2. The characteristic zero case also follows by inheritance (Proposition 3.8 and Corol-
lary 3.9): since all the partitions λ that show up have at most two parts, it suffices by inheritance
to prove the theorem when n = 2, but in this case all the catalecticant ideals are the same, as
remarked in the introduction (1.1).

5. Geramita’s Conjecture

We are now ready to give an affirmative answer to Geramita’s Question 1.1 in the Introduction.

Theorem 5.1. Let K be a field of characteristic 0 and let n ≥ 2, d ≥ 4 be integers. The following
statements hold:

(1) For all t with 2 ≤ t ≤ d− 2 we have

I3(Cat(2, d− 2;n)) = I3(Cat(t, d− t;n)).

(2) There is a strict inclusion

I3(Cat(1, d− 1;n)) ( I3(Cat(2, d− 2;n)).

Corollary 5.2. Any of the ideals I3(Cat(t, d− t;n)), 2 ≤ t ≤ d− 2, is the ideal of the secant line
variety of the d-th Veronese embedding of Pn−1K .

Proof. This follows from [Kan99, Theorem 3.3(ii)] and Theorem 5.1. �

Proof of Theorem 5.1. To prove (1), it suffices by Proposition 3.8 to show that I33 (2, d − 2) =
I33 (t, d− t) ⊂W 3

d for 2 ≤ t ≤ d− 2. The λ-highest weight spaces of all I33 (t, d− t), 2 ≤ t ≤ d− 2,
are the same when λ has at most two parts. This follows by inheritance: combine Proposition 3.8
with the fact that the theorem is known when n = 2 (1.1). We shall prove that when λ has three
parts, the λ-isotypic component of I33 (t, d− t) is equal to the λ-isotypic component of W 3

d for all
t with 1 ≤ t ≤ d− 1 (we already know this when t = 1, by Proposition 3.3). This will imply (1)
and the inclusion of (2). The reason why this inclusion is strict for d ≥ 4 is because it is already
strict when n = 2, and because inheritance holds for catalecticant ideals.

Consider a partition λ = (λ1, λ2, λ3) with 3 parts, a monomial m ∈ W 3
d with corresponding

tableau T = cλ · m, and integers 2 ≤ a ≤ b with a + b = d. We shall prove that T ∈ I33 (a, b).
We will see that if λ has only one entry in the second column, then T = 0, so let’s assume
this isn’t the case for the moment. We may also assume that T has no repeated entries in a
column (Lemma 3.5). Since permuting the numbers 1, 2, 3 in the tableau T doesn’t change T ,
and permutations within the columns of T preserve T up to sign, we may assume that T contains
the subtableau

1 1
2 2
3

in its first two columns (there may or may not be a third box in the second column of λ).
It follows that m = zγ1zγ2zγ3 , with γ1 = {1, 2, · · · }, γ2 = {λ1 + 1, λ1 + 2, · · · } and γ3 =

{λ1 + λ2 + 1, · · · }, |γi| = d. Consider subsets αi ⊂ γi, |αi| = a satisfying the conditions

1, 2 ∈ α1, λ1 + 1 ∈ α2, λ1 + 2 /∈ α2, λ1 + λ2 + 1 /∈ α3,
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and let βi = γi \ αi, for i = 1, 2, 3. Let T̃ be the tableau obtained from T by circling the entries

of α1, α2, α3, so that T̃ ∈ I33 (a, b). T̃ looks like

T̃ =

'&%$ !"#1 '&%$ !"#1 · · ·'&%$ !"#2 2 · · ·
3 · · ·

.

We get

T̃ = cλ · [α1, α2, α3|β1, β2, β3] = T +

5∑
j=1

±Tj ,

where each Tj is a tableau with repeated entries in one of its first two columns (i.e. Tj = 0). It
follows that

T = T̃ ∈ I33 (a, b),

as in Example 3.7, which is what we wanted to prove.
To see that T = cλ ·m = 0 for all monomials m when λ = (3d − 2, 1, 1), it suffices to notice

that if σ is the transposition of the (3d− 1)-st and 3d-th boxes of λ (the 2nd and 3rd boxes in the
first column of λ), then σ(T ) = cλ · (σ ·m) and T are the same up to permutations of columns
size 1 (and permutations of the entries of the alphabet A = {1, 2, 3}). It follows that

cλ ·m = cλ · (σ ·m) = (cλ · σ) ·m = −cλ ·m,
so that T = cλ ·m = 0, as desired. Alternatively, it follows from [Mac95, I.8, Ex. 9] that [λ] does
not appear in the decomposition of W 3

d into irreducible representations, so cλ ·W 3
d = 0. �
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