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Introduction

Any map of schemes X → Y defines an equiva-
lence relation R = X ×Y X → X × X , the rela-
tion of “being in the same fiber”. János Kollár has
asked whether all finite equivalence relations have
this form, namely: given an S-schemeX and a finite
scheme theoretic equivalence relation R ⊂ X×SX ,
does there exist an S-scheme Y and a finite surjec-
tive map X → Y over S such that R ' X ×Y X?
The answer to this question is in general negative,
but is affirmative in the case of toric equivalence
relations on affine toric varieties. One example of
an equivalence relation not given by a map comes
(as always) from Hironaka’s construction of a proper
nonprojective scheme ([Har77], p.443), but there are
other easier and very explicit examples coming from
the nonvanishing of the first Amitsur cohomology
group associated to certain maps of algebras.

Equivalence Relations

Given a schemeX over a base S, a scheme theoretic
equivalence relation on X over S is an S-scheme
R together with a morphism f : R → X ×S X
over S such that for any S-scheme T , the set map
f (T ) : R(T ) → X(T ) × X(T ) is injective and
its image is the graph of an equivalence relation on
X(T ) (where for S-schemes Z, T we denote by Z(T )
the set of S-maps from T to Z).
In the affine case, we get a more down to earth de-
scription of equivalence relations. If k is a field and
X = An

k is the n-dimensional affine space over k,
then OX ' k[x], where x = (x1, · · · , xn). To give
an equivalence relation R ⊂ X ×kX is the same as
giving an ideal I(x,y) ⊂ k[x,y] that satisfies the
following properties:
1 (reflexivity) I(x,y) ⊂ (x1 − y1, · · · , xn − yn);
2 (symmetry) I(x,y) = I(y,x);
3 (transitivity) I(x, z) ⊂ I(x,y) + I(y, z);
R is finite if and only if I satisfies
4 (finiteness) k[x,y]/I(x,y) is finite over k[x].
Any map X → Y defines an equivalence relation
R = X ×Y X , which we call effective. In the affine
case effectivity corresponds to the ideal I(x,y) being
generated by differences f (x)− f (y).

Toric Equivalence Relations

If X is a (not necessarily normal) toric variety, an
equivalence relation R on X is said to be toric if it
is invariant under the diagonal action of the torus.
In the affine case, this suffices to insure effectivity:

Theorem A. Let k be a field, X/k an affine
toric variety, and R a toric equivalence rela-
tion on X. Then there exists an affine toric
variety Y together with a toric map X → Y
such that R ' X ×Y X.

However, in the nonaffine case this is no longer true:
an equivalence relation on X = P2 identifying the
points of a (torus-invariant) line L can’t be effective;
if it were, then the map X → Y defining it would
have to contract L and therefore be constant. Kollár
proved that quotients by finite equivalence relations
exist in positive characteristic ([Kol08]). This is not
known in general, but is true in the case of finite
affine toric equivalence relations ([Rai09], Cor. 5.3).

The Amitsur Complex

Given a commutative ring A and an A-algebra B,
we consider the Amitsur complex
C(A,B) : B → B ⊗A B → · · · → B⊗Am→ · · ·

starting in degree zero, with differentials given by
the formula

dm−1(b1 ⊗ b2 ⊗ · · · ⊗ bm) =
Σm+1
i=1 (−1)ib1 ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi ⊗ · · · ⊗ bm.

It is well known that if B is a faithfully flat or aug-
mented A-algebra, then C(A,B) is exact (see [FD],
Lemma 2.6). By Theorem B below this is also true
when A,B are monoid rings (and the map A→ B
is defined on the monoid level).

Theorem B. Let k be any commutative ring,
let τ and σ be commutative monoids, and let
ϕ : τ → σ be a map of monoids. If A = k[τ ],
B = k[σ], and B is considered as an A-algebra
via the map A → B induced by ϕ, then the
Amitsur complex C(A,B) is exact.

Zig-zags

The kernel A′ of the zeroth differential in C(A,B)
is (in nice situations) the coordinate ring of the quo-
tient of the equivalence relation induced by the map
ϕ : A → B. In general A′ is larger than A,
but they are equal when ϕ is flat or augmented.
When A = k[τ ] and B = k[σ] are monoid rings,
and ϕ is induced by a map τ → σ, A′ = k[τ ′]
is also a monoid ring, where τ ′ ⊂ σ can be de-
scribed as follows (Isbell’s Zig-zag theorem, [How95],
Thm. 8.3.4): an element s ∈ σ belongs to τ ′ if and
only if there exist a1, · · · , an−1, b1, · · · , bn−1 ∈ σ
and s1, · · · , sn, t1, · · · , tn−1 ∈ τ giving a “zig-zag”

a = a1s1, s1 = t1b1,

aiti = ai+1si+1, si+1bi = ti+1bi+1 (1 ≤ i ≤ n− 2),
an−1tn−1 = sn, snbn−1 = a.

Figure 1: A 1-dimensional zig-zag

A minimal nontrivial zig-zag has n = 2. It turns out
that when σ = N every element of τ ′ can be given by
such a zig-zag. For example, if τ = 〈3, 5〉 ⊂ σ = N,
we get that 7 ∈ τ ′\τ via the zig-zag pictured in Fig-
ure 1. The submonoids τ ⊂ N for which τ = τ ′ are
called Arf semigroups, and their associated monoid

rings are particular examples of Arf rings. An Arf
ring is essentially a 1-dimensional ring which is the
quotient of the equivalence relation defined by the
map to its normalization. For a beautiful story re-
lating Arf rings to multiplicity sequences of curve
branches see [Arf49] and [Lip71].

Figure 2: A 2-dimensional zig-zag

In contrast with the one-dimensional case, in higher
dimension arbitrarily long zig-zags may be needed
to recover the elements of τ ′. For example, if we
start with
τ = 〈(n, 1), (n + 1, 0), (2n− 1, 1)〉 ⊂ σ = N2,

we can see that p = (2n − 1, n) ∈ τ ′ \ τ and the
minimal zig-zag producing p has length 2n− 1. See
Figure 2 for the case n = 4.

A Noneffective Equivalence Relation

If k is any ring, A = k[f1, · · · , fm] ⊂ B = k[x], and
f (x,y) is a 1-cocycle in C(A,B), then the ideal
I(x,y) = (f (x,y), fi(x)− fi(y), i = 1, · · · ,m)

defines an equivalence relation on Spec(B). When
the fi’s are homogeneous, noneffectivity of this
equivalence relation amounts to f not being a
coboundary. If the fi’s are such that B is finite
over A, then the equivalence relation is also finite.
The following choice of fi’s yields an “universal” (i.e.
characteristic free) noneffective equivalence relation:

f1(x) = x2
1, f2(x) = x1x2 − x2

2, f3(x) = x3
2,

f (x,y) = (x1y2 − x2y1)y3
2.
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