

Introduction

The projectivization of the space of matrices of rank one coincides with the image of the Segre embedding of a product of two projective spaces. Its variety of secant (r-1)-planes is the space of matrices of rank at most r, whose equations are given by the $(r+1) \times$ (r+1) minors of a generic matrix. A fundamental problem, with applications in complexity theory and algebraic statistics, is to understand rank varieties of higher order tensors. This is a very complicated problem in general, even for the relatively small case of $\sigma_4(\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}^3)$, the variety of secant 3-planes to the Segre product of three projective 3-spaces (also known as the Salmon Problem). Inspired by experiments related to Bayesian networks, Garcia, Stillman and Sturmfels ([GSS05]) gave a conjectural description of the ideal of the variety of secant lines to a Segre product of projective spaces. The case of an n-factor Segre product has been obtained for $n \leq 5$ in a series of papers ([LM04],[LW07],[AR08]). We have proved the general case of the conjecture in ([Rai10]).

Flattenings and the GSS Conjecture

For a field K of characteristic zero and K-vector spaces V_1, \dots, V_n , we consider the *Segre embedding*

Seg : $\mathbb{P}V_1^* \times \cdots \times \mathbb{P}V_n^* \to \mathbb{P}(V_1^* \otimes \cdots \otimes V_n^*),$ given by $([e^1], \cdots, [e^n]) \mapsto [e^1 \otimes \cdots \otimes e^n]$. We write X for the image of this map. Its k-th secant *variety* is the closure of the set

 $\left\{ \left| \sum_{i=0}^{k} c_i \cdot v_i^1 \otimes \cdots \otimes v_i^n \right| : c_i \in K, \ v_i^j \in V_j^* \right\}$ in $\mathbb{P}(V_1^* \otimes \cdots \otimes V_n^*)$, which we denote by $\sigma_{k+1}(X)$. For a partition $I \sqcup J = \{1, \cdots, n\} =: [n]$, we write $V_I = \bigotimes_{i \in I} V_i, V_J = \bigotimes_{i \in J} V_i$, so that any tensor in $V_1 \otimes \cdots \otimes V_n$ can be *flattened* to a 2-tensor, i.e. a matrix, in $V_I \otimes V_J$. We get

 $\sigma_k(X) \subset \sigma_k(\operatorname{Seg}(\mathbb{P}V_I^* \times \mathbb{P}V_J^*)),$

so the $(k+1) \times (k+1)$ minors of the generic matrix in $V_I \otimes V_J$ give some of the equations for $\sigma_k(X)$.

GSS Conjecture. The ideal of the variety of secant lines to X is generated by 3×3 minors of flattenings.

Equations for $\sigma_k(X)$

The coordinate ring of $\mathbb{P}(V_1^* \otimes \cdots \otimes V_n^*)$ is the polynomial ring $\mathbf{R} := \operatorname{Sym}(V_1 \otimes \cdots \otimes V_n) = K[z_\alpha]$, where $z_{\alpha} = x_{a_1,1} \otimes \cdots \otimes x_{a_n,n}$ for some bases $\mathcal{B}_j = \{x_{ij}\}_i$ of V_j , $\alpha = (a_1, \cdots, a_n) \in \mathbb{Z}_{>0}^n$. The ideal of $\sigma_k(X)$ is a $GL(V) := GL(V_1) \times \cdots \times GL(V_n)$ subrepresentation of R. The irreducible GL(V)-representations that will concern us will have the form $S_{\lambda}V := S_{\lambda^1}V_1 \otimes \cdots \otimes S_{\lambda^n}V_n$, for λ^i partitions of some d, where S_{λ^i} are Schur functors. We write $\lambda \vdash^n d$.

Theorem A. The GSS conjecture holds and $K[\sigma_2(X)]_d = \bigoplus_{\lambda \vdash n_d} (S_\lambda V)^{m_\lambda} \text{ for } d \ge 0,$

where m_{λ} is as follows. Consider $b = \max{\{\lambda_2^1, \cdots, \lambda_2^n\}}$ and $e = \lambda_2^1 + \cdots + \lambda_2^n$. If some λ^i has more than two parts, or e < 2b, then $m_{\lambda} = 0$. If $e \geq d-1$, then $m_{\lambda} = |d/2| - d/2|$ b+1, unless e is odd and d is even, in which case $m_{\lambda} = |d/2| - b$. If e < d - 1 and $e \ge 2b$, then $m_{\lambda} = |(e+1)/2| - b + 1$, unless e is odd, in which case $m_{\lambda} = |(e+1)/2| - b$.

For a partition $\mu = (\mu_1, \cdots, \mu_t)$ of d > 0, written $\mu \vdash d$, we consider the set \mathcal{P}_{μ} of all partitions A of [d] of shape μ , i.e. $A = \{A_1, \cdots, A_t\}$ with $|A_i| =$ μ_i and $\sqcup_{i=1}^t A_i = [d]$. We write $\mu = (\mu_1^{i_1} \cdots \mu_s^{i_s})$ with $\mu_i \neq \mu_j$, and consider the map

$$\pi_{\mu}: R_d \longrightarrow \bigotimes_{j=1}^s S_{(i_j)}(S_{(\mu_j)}V_1 \otimes \cdots \otimes S_{(\mu_j)}V_n),$$

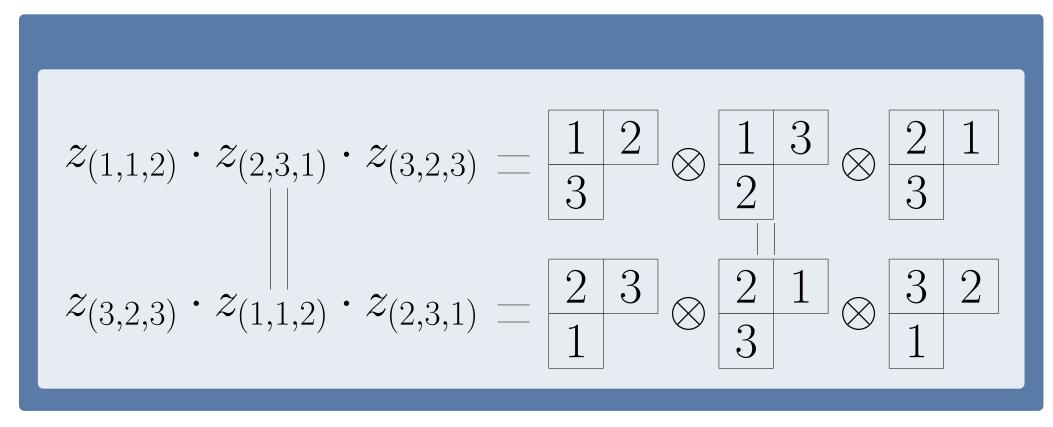
given by

$$z_1 \cdots z_d \mapsto \sum_{A \in \mathcal{P}_{\mu}} \bigotimes_{j=1}^s \prod_{\substack{B \in A \\ |B| = \mu_j}} m(z_i : i \in B),$$

where m denotes the usual multiplication map $m: (V_1 \otimes \cdots \otimes V_n)^{\otimes \mu_j} \longrightarrow S_{(\mu_i)} V_1 \otimes \cdots \otimes S_{(\mu_i)} V_n.$ The intersection of the kernels of the maps π_{μ} , for $\mu \vdash d$ with at most k parts, gives all the equations of degree d of $\sigma_k(X)$ ([Rai10], Prop. 3.3).

If n = 3, $\mu = (2, 1)$, $z_1 = z_{(1,1,1)}$, $z_2 = z_{(1,2,1)}$ and $z_3 = z_{(2,1,2)}$, then $\pi_\mu(z_1\cdot z_2\cdot z_3)=z_{(\{1,1\},\{1,2\},\{1,1\})}\cdot z_{(2,1,2)}+$

 $z_{(\{1,2\},\{1,1\},\{1,2\})} \cdot z_{(1,2,1)} + z_{(\{1,2\},\{1,2\},\{1,2\})} \cdot z_{(1,1,1)},$ where $z_{(\{1,1\},\{1,2\},\{1,1\})} = x_{11}^2 \otimes x_{12} x_{22} \otimes x_{13}^2$ etc.



The "Generic" Case

The induced representation $U_d^n := \operatorname{Ind}_{S_d}^{S_d^n}(\mathbf{1})$, with $\mathbf{1}$ the trivial representation of the symmetric group S_d , and S_d included in S_d^n diagonally, has a basis of monomials $m = z_{(a_{11}, \dots, a_{1n})} \cdots z_{(a_{d1}, \dots, a_{dn})}$, with $\{a_{1j}, \cdots, a_{dj}\} = [d]$ for each j. S_d^n acts on U_d^n by letting the *j*-th copy of S_d act on $\{a_{1j}, \cdots, a_{dj}\}$. For fixed λ , we identify m with an n-tableau T = $T^1 \otimes \cdots \otimes T^n$ of shape λ , where the a_{ij} -th box of T^{j} has entry *i*. We identify two *n*-tableaux if their entries differ by a permutation of [d]. E.g.

For $\mu = (a \ge b) \vdash d$, we consider the space U_{μ}^{n} spanned by monomials $z_{(A_1,\cdots,A_n)} \cdot z_{(B_1,\cdots,B_n)}$, where $A_i \sqcup B_i = [d]$, with $|A_i| = a$, $|B_i| = b$. We define the map $\pi'_{\mu}: U^n_d \to U^n_{\mu}$ by $\pi'_{\mu}(m) =$ $\prod_{\{A,B\}\in\mathcal{P}_{\mu},|A|=a,|B|=b} z_{(A_{1},\cdots,A_{n})} \cdot z_{(B_{1},\cdots,B_{n})},$ $A_{j} = \{a_{ij} : i \in A\}, B_{j} = \{a_{ij} : i \in B\}$

For $m = z_{(1,1,2)} \cdot z_{(2,3,1)} \cdot z_{(3,2,3)}$ and $\mu = (2,1)$ $\pi'_{\mu}(m) = z_{(\{1,2\},\{1,3\},\{1,2\})} \cdot z_{(3,2,3)} +$ $z_{(\{1,3\},\{1,2\},\{2,3\})} \cdot z_{(2,3,1)} + z_{(\{2,3\},\{2,3\},\{1,3\})} \cdot z_{(1,1,2)}$

For $I \sqcup J = [n], F_{I,J} \subset U_d^n$ denotes the "ideal" of 3×3 minors of generic (I, J)-flattenings

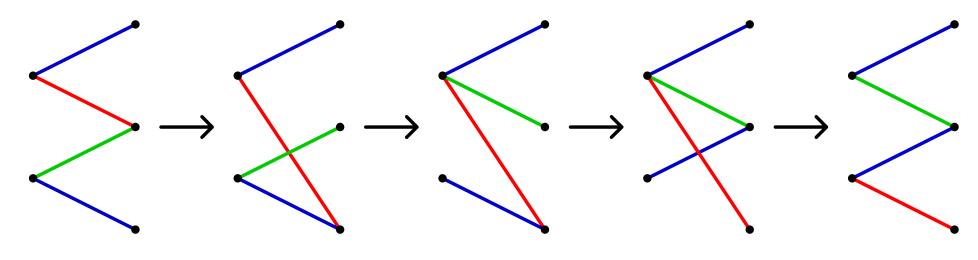
 $F_{I,J} = \operatorname{Span}([\alpha_1, \alpha_2, \alpha_3 | \beta_1, \beta_2, \beta_3] \cdot z_{\gamma_4} \cdots z_{\gamma_d}),$ where $[\alpha_1, \alpha_2, \alpha_3 | \beta_1, \beta_2, \beta_3] = \det(z_{\alpha_i + \beta_i}), \alpha_i =$ $(a_{ij})_{j=1}^n, \ \beta_i = (b_{ij})_{j=1}^n, \ \gamma_i = (c_{ij})_{j=1}^n, \ \text{with} \ a_{ij} = 0$ for $i \in J$ and $b_{ij} = 0$ for $i \in I$, and for each j, $\cup_i \{a_{ij}, b_{ij}, c_{ij}\} = \{0, 1, \cdots, d\}.$ For n = d = 3,

	$ig z_{(1,1,2)} \; z_{(1,1,1)} \; z_{(1,1,3)} ig $
	$ig z_{(2,3,2)} \; z_{(2,3,1)} \; z_{(2,3,3)} ig .$
(0, 0, 1), (0, 0, 3)]	$ig z_{(3,2,2)} \; z_{(3,2,1)} \; z_{(3,2,3)} ig $

We let $F_d^n := \Sigma F_{I,J}$ be the space of all generic flattenings and $I_d^n := \bigcap_{\mu} \operatorname{Ker}(\pi'_{\mu})$ for $\mu = (a \ge b) \vdash d$.

Theorem A follows by a specialization argument from its generic analogue below (V_{λ} denotes the irreducible S_d^n -representation corresponding to $\lambda \vdash^n d$)

Theorem B. $F_d^n = I_d^n$ and $U_d^n/I_d^n = \bigoplus_{\lambda \vdash n_d} V_\lambda^{m_\lambda} for \ d \ge 0,$ where m_{λ} is as in Theorem A.



[AR08]	Ĵ
[GSS05]]
[LM04]	

Generic GSS

Let c_{λ} be the Young symmetrizer corresponding to λ . If some $\lambda_3^i > 0$, $Q_{\lambda} := c_{\lambda} \cdot (U_d^n / F_d^n) = 0$. Otherwise, we associate to an *n*-tableau T of shape λ a graph G: for each column $\frac{|x|}{|u|}$ of some T^i , G has an edge (x, y) of color *i*. If we write $G = c_{\lambda} \cdot T \in Q_{\lambda}$, $c_{\lambda} \cdot \boxed{\begin{array}{c}1 & 2\\3\end{array}} \otimes \boxed{\begin{array}{c}1 & 3\\2\end{array}} \otimes \boxed{\begin{array}{c}2 & 1\\3\end{array}} = \begin{array}{c}2\\\end{array}$

G = 0 if it contains an odd cycle, or if it has a bipartition (a, a), an odd number of edges, and is connected. $G_1 = \pm G_2$ if they are connected and bipartite, with the same bipartition $(a \ge b)$. We get from G_1 to G_2 by a sequence of basic operations:

A set \mathcal{B} of nonzero G's, which are connected and bipartite with distinct bipartitions, generates Q_{λ} and its image via $\oplus_{\mu} \pi'_{\mu}$ is a linearly independent set, hence $F_d^n = I_d^n$, and \mathcal{B} is a basis of Q_{λ} .

References

E. S. Allman, J. A. Rhodes, *Phylogenetic Ideals and Varieties* for the General Markov Model, Adv. in Appl. Math. 40, no. 2: 127-148, 2008.

L. D. Garcia, M. Stillman, B. Sturmfels, Algebraic Geometry of Bayesian Networks, J. Symbolic Comput. 39, no. 3-4:331-355,

J. M. Landsberg, L. Manivel, On the Ideals of Secant Varieties of Segre Varieties, Found. Comput. Math. 4, no.4:397–422, 2004.

[[]LW07] J. M. Landsberg, J. Weyman, On the Ideals and Singularities of Secant Varieties of Segre Varieties, Bull. Lond. Math. Soc. 39, no.4:685–697, 2007.

[[]Rai10] C. Raicu, The GSS Conjecture, in preparation.