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Introduction

The projectivization of the space of matrices of rank
one coincides with the image of the Segre embedding
of a product of two projective spaces. Its variety of
secant (r−1)–planes is the space of matrices of rank
at most r, whose equations are given by the (r+1)×
(r + 1) minors of a generic matrix. A fundamental
problem, with applications in complexity theory and
algebraic statistics, is to understand rank varieties
of higher order tensors. This is a very complicated
problem in general, even for the relatively small case
of σ4(P3 × P3 × P3), the variety of secant 3–planes
to the Segre product of three projective 3–spaces
(also known as the Salmon Problem). Inspired by
experiments related to Bayesian networks, Garcia,
Stillman and Sturmfels ([GSS05]) gave a conjectural
description of the ideal of the variety of secant lines
to a Segre product of projective spaces. The case
of an n–factor Segre product has been obtained for
n ≤ 5 in a series of papers ([LM04],[LW07],[AR08]).
We have proved the general case of the conjecture
in ([Rai10]).

Flattenings and the GSS Conjecture

For a field K of characteristic zero and K–vector
spaces V1, · · · , Vn, we consider the Segre embedding

Seg : PV ∗1 × · · · × PV ∗n → P(V ∗1 ⊗ · · · ⊗ V ∗n ),
given by ([e1], · · · , [en]) 7→ [e1 ⊗ · · · ⊗ en]. We
write X for the image of this map. Its k–th secant
variety is the closure of the set
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in P(V ∗1 ⊗ · · · ⊗ V ∗n ), which we denote by σk+1(X).
For a partition I t J = {1, · · · , n} =: [n], we write
VI = ⊗i∈IVi, VJ = ⊗j∈JVj, so that any tensor in
V1⊗ · · · ⊗ Vn can be flattened to a 2–tensor, i.e. a
matrix, in VI ⊗ VJ . We get

σk(X) ⊂ σk(Seg(PV ∗I × PV ∗J )),
so the (k+ 1)× (k+ 1) minors of the generic matrix
in VI ⊗ VJ give some of the equations for σk(X).

GSS Conjecture. The ideal of the variety
of secant lines to X is generated by 3× 3 mi-
nors of flattenings.

Equations for σk(X)

The coordinate ring of P(V ∗1 ⊗· · ·⊗V ∗n ) is the poly-
nomial ringR := Sym(V1⊗· · ·⊗Vn) = K[zα], where
zα = xa1,1 ⊗ · · · ⊗ xan,n for some bases Bj = {xij}i
of Vj, α = (a1, · · · , an) ∈ Zn

≥0. The ideal of
σk(X) is a GL(V ) := GL(V1) × · · · × GL(Vn)–
subrepresentation of R. The irreducible GL(V )-re-
presentations that will concern us will have the form
SλV := Sλ1V1⊗· · ·⊗SλnVn, for λi partitions of some
d, where Sλi are Schur functors. We write λ `n d.

Theorem A. The GSS conjecture holds and
K[σ2(X)]d = ⊕

λ`nd
(SλV )mλ for d ≥ 0,

where mλ is as follows. Consider
b = max{λ1

2, · · · , λn2} and e = λ1
2 + · · · + λn2 .

If some λi has more than two parts, or e < 2b,
then mλ = 0. If e ≥ d− 1, then mλ = bd/2c−
b + 1, unless e is odd and d is even, in which
case mλ = bd/2c− b. If e < d− 1 and e ≥ 2b,
then mλ = b(e+ 1)/2c− b+ 1, unless e is odd,
in which case mλ = b(e + 1)/2c − b.

For a partition µ = (µ1, · · · , µt) of d > 0, written
µ ` d, we consider the set Pµ of all partitions A of
[d] of shape µ, i.e. A = {A1, · · · , At} with |Ai| =
µi and tti=1Ai = [d]. We write µ = (µi11 · · ·µiss ) with
µi 6= µj, and consider the map

πµ : Rd −→
s⊗
j=1
S(ij)(S(µj)V1 ⊗ · · · ⊗ S(µj)Vn),

given by
z1 · · · zd 7→ Σ

A∈Pµ

s⊗
j=1

Π
B∈A
|B|=µj

m(zi : i ∈ B),

where m denotes the usual multiplication map
m : (V1⊗ · · · ⊗ Vn)⊗µj −→ S(µj)V1⊗ · · · ⊗ S(µj)Vn.

The intersection of the kernels of the maps πµ, for
µ ` d with at most k parts, gives all the equations
of degree d of σk(X) ([Rai10], Prop. 3.3).

If n = 3, µ = (2, 1), z1 = z(1,1,1), z2 = z(1,2,1) and
z3 = z(2,1,2), then

πµ(z1 · z2 · z3) = z({1,1},{1,2},{1,1}) · z(2,1,2)+
z({1,2},{1,1},{1,2}) · z(1,2,1) + z({1,2},{1,2},{1,2}) · z(1,1,1),

where z({1,1},{1,2},{1,1}) = x2
11 ⊗ x12x22 ⊗ x2

13 etc.

The “Generic” Case

The induced representation Un
d := IndS

n
d
Sd(1), with 1

the trivial representation of the symmetric group
Sd, and Sd included in Snd diagonally, has a ba-
sis of monomials m = z(a11,··· ,a1n) · · · z(ad1,··· ,adn), with
{a1j, · · · , adj} = [d] for each j. Snd acts on Un

d by
letting the j–th copy of Sd act on {a1j, · · · , adj}.
For fixed λ, we identify m with an n–tableau T =
T 1 ⊗ · · · ⊗ T n of shape λ, where the aij–th box of
T j has entry i. We identify two n-tableaux if their
entries differ by a permutation of [d]. E.g.

z(1,1,2) · z(2,3,1) · z(3,2,3) 1 2
3 ⊗ 1 3

2 ⊗ 2 1
3

z(3,2,3) · z(1,1,2) · z(2,3,1) 2 3
1 ⊗ 2 1

3 ⊗ 3 2
1

For µ = (a ≥ b) ` d, we consider the space Un
µ

spanned by monomials z(A1,··· ,An) · z(B1,··· ,Bn), where
Ai t Bi = [d], with |Ai| = a, |Bi| = b. We define
the map π′µ : Un

d → Un
µ by

π′µ(m) = Π
{A,B}∈Pµ,|A|=a,|B|=b

Aj={aij:i∈A},Bj={aij:i∈B}

z(A1,··· ,An) · z(B1,··· ,Bn),

For m = z(1,1,2) · z(2,3,1) · z(3,2,3) and µ = (2, 1)
π′µ(m) = z({1,2},{1,3},{1,2}) · z(3,2,3)+

z({1,3},{1,2},{2,3}) · z(2,3,1) + z({2,3},{2,3},{1,3}) · z(1,1,2).

For I t J = [n], FI,J ⊂ Un
d denotes the “ideal” of

3× 3 minors of generic (I, J)–flattenings
FI,J = Span([α1, α2, α3|β1, β2, β3] · zγ4 · · · zγd),

where [α1, α2, α3|β1, β2, β3] = det(zαi+βj), αi =
(aij)nj=1, βi = (bij)nj=1, γi = (cij)nj=1, with aij = 0
for i ∈ J and bij = 0 for i ∈ I , and for each j,
∪i{aij, bij, cij} = {0, 1, · · · , d}. For n = d = 3,

[(1, 1, 0), (2, 3, 0),
(3, 2, 0)|(0, 0, 2),
(0, 0, 1), (0, 0, 3)]

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z(1,1,2) z(1,1,1) z(1,1,3)
z(2,3,2) z(2,3,1) z(2,3,3)
z(3,2,2) z(3,2,1) z(3,2,3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We let F n
d := ΣFI,J be the space of all generic flat-

tenings and Ind := ∩µKer(π′µ) for µ = (a ≥ b) ` d.

Generic GSS

Theorem A follows by a specialization argument
from its generic analogue below (Vλ denotes the irre-
ducible Snd–representation corresponding to λ `n d)

Theorem B. F n
d = Ind and

Un
d /I

n
d = ⊕

λ`nd
V mλ
λ for d ≥ 0,

where mλ is as in Theorem A.

Let cλ be the Young symmetrizer corresponding to
λ. If some λi3 > 0, Qλ := cλ · (Un

d /F
n
d ) = 0. Other-

wise, we associate to an n–tableau T of shape λ a
graph G: for each column x

y
of some T i, G has an

edge (x, y) of color i. If we write G = ĉλ · T ∈ Qλ,
_^]\XYZ[1

2
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cλ · 1 2
3 ⊗ 1 3

2 ⊗ 2 1
3 =

_^]\XYZ[2 3
//_^]\XYZ[3

G = 0 if it contains an odd cycle, or if it has a
bipartition (a, a), an odd number of edges, and is
connected. G1 = ±G2 if they are connected and
bipartite, with the same bipartition (a ≥ b). We
get fromG1 toG2 by a sequence of basic operations:

A set B of nonzero G’s, which are connected and bi-
partite with distinct bipartitions, generates Qλ and
its image via ⊕µπ′µ is a linearly independent set,
hence F n

d = Ind , and B is a basis of Qλ.
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