The GSS Conjecture

Claudiu Raicu

Department of Mathematics, University of California, Berkeley

Introduction

The projectivization of the space of matrices of rank one coincides with the image of the Segre embedding of a product of two projective spaces. Its variety of secant $(r-1)$-planes is the space of matrices of rank at most r, whose equations are given by the $(r+1) \times$ $(r+1)$ minors of a generic matrix. A fundamental problem, with applications in complexity theory and algebraic statistics, is to understand rank varieties of higher order tensors. This is a very complicated problem in general, even for the relatively small case of $\sigma_{4}\left(\mathbb{P}^{3} \times \mathbb{P}^{3} \times \mathbb{P}^{3}\right)$, the variety of secant 3 -planes to the Segre product of three projective 3 -spaces (also known as the Salmon Problem). Inspired by experiments related to Bayesian networks, Garcia, Stillman and Sturmfels ([GSS05]) gave a conjectural description of the ideal of the variety of secant lines to a Segre product of projective spaces. The case of an n-factor Segre product has been obtained for $n \leq 5$ in a series of papers ([LM04],[LW07],[AR08]). We have proved the general case of the conjecture in ([Rai10])

Flattenings and the GSS Conjecture

For a field K of characteristic zero and K-vector spaces V_{1}, \cdots, V_{n}, we consider the Segre embedding
Seg : $\mathbb{P} V_{1}^{*} \times \cdots \times \mathbb{P} V_{n}^{*} \rightarrow \mathbb{P}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$,
given by $\left(\left[e^{1}\right], \cdots,\left[e^{n}\right]\right) \mapsto\left[e^{1} \otimes \cdots \otimes e^{n}\right]$. We write X for the image of this map. Its k-th secant variety is the closure of the set
$\left\{\left\{\sum_{i=0}^{k} c_{i} \cdot v_{i}^{1} \otimes \cdots \otimes v_{i}^{n}\right]: c_{i} \in K, v_{i}^{j} \in V_{j}^{*}\right\}$ in $\mathbb{P}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$, which we denote by $\sigma_{k+1}(X)$ For a partition $I \sqcup J=\{1, \cdots, n\}=:[n]$, we write $V_{I}=\otimes_{i \in I} V_{i}, V_{J}=\otimes_{j \in J} V_{j}$, so that any tensor in $V_{1} \otimes \cdots \otimes V_{n}$ can be flattened to a 2 -tensor, i.e. a matrix, in $V_{I} \otimes V_{J}$. We get
$\sigma_{k}(X) \subset \sigma_{k}\left(\operatorname{Seg}\left(\mathbb{P} V_{I}^{*} \times \mathbb{P} V_{J}^{*}\right)\right)$,
so the $(k+1) \times(k+1)$ minors of the generic matrix in $V_{I} \otimes V_{J}$ give some of the equations for $\sigma_{k}(X)$.

GSS Conjecture. The ideal of the variety of secant lines to X is generated by 3×3 minors of flattenings.

Equations for $\sigma_{k}(X)$

The coordinate ring of $\mathbb{P}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$ is the polynomial ring $R:=\operatorname{Sym}\left(V_{1} \otimes \cdots \otimes V_{n}\right)=K\left[z_{\alpha}\right]$, where $z_{\alpha}=x_{a_{1}, 1} \otimes \cdots \otimes x_{a_{n}, n}$ for some bases $\mathcal{B}_{j}=\left\{x_{i j}\right\}_{i}$ of $V_{j}, \alpha=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. The ideal of $\sigma_{k}(X)$ is a $G L(V):=G L\left(V_{1}\right) \times \cdots \times G L\left(V_{n}\right)-$ subrepresentation of R. The irreducible $G L(V)$-representations that will concern us will have the form $S_{\lambda} V:=S_{\lambda^{1}} V_{1} \otimes \cdots \otimes S_{\lambda^{n}} V_{n}$, for λ^{i} partitions of some d, where $S_{\lambda^{i}}$ are Schur functors. We write $\lambda \vdash^{n} d$.

Theorem A. The GSS conjecture holds and

$$
K\left[\sigma_{2}(X)\right]_{d}=\underset{\lambda-n_{d}}{\oplus}\left(S_{\lambda} V\right)^{m_{\lambda}} \text { for } d \geq 0,
$$

where m_{λ} is as follows. Consider
$b=\max \left\{\lambda_{2}^{1}, \cdots, \lambda_{2}^{n}\right\}$ and $e=\lambda_{2}^{1}+\cdots+\lambda_{2}^{n}$. If some λ^{i} has more than two parts, or $e<2 b$, then $m_{\lambda}=0$. If $e \geq d-1$, then $m_{\lambda}=\lfloor d / 2\rfloor-$ $b+1$, unless e is odd and d is even, in which case $m_{\lambda}=\lfloor d / 2\rfloor-b$. If $e<d-1$ and $e \geq 2 b$, then $m_{\lambda}=\lfloor(e+1) / 2\rfloor-b+1$, unless e is odd, in which case $m_{\lambda}=\lfloor(e+1) / 2\rfloor-b$.

For a partition $\mu=\left(\mu_{1}, \cdots, \mu_{t}\right)$ of $d>0$, written $\mu \vdash d$, we consider the set \mathcal{P}_{μ} of all partitions A of [d] of shape μ, i.e. $A=\left\{A_{1}, \cdots, A_{t}\right\}$ with $\left|A_{i}\right|=$ μ_{i} and $\sqcup_{i=1}^{t} A_{i}=[d]$. We write $\mu=\left(\mu_{1}^{\nu_{1}} \cdots \mu_{s}^{l_{s}}\right)$ with $\mu_{i} \neq \mu_{j}$, and consider the map

$$
\left.\pi_{\mu}: R_{d} \longrightarrow \underset{i=1}{\stackrel{8}{8}} S_{\left(i_{j}\right)} S_{\left(\mu_{j}\right)} V_{1} \otimes \cdots \otimes S_{\left(\mu_{j}\right)} V_{n}\right),
$$

given by
where m denotes the usual multiplication map
$m:\left(V_{1} \otimes \cdots \otimes V_{n}\right)^{\otimes \mu_{j}} \longrightarrow S_{\left(\mu_{j}\right)} V_{1} \otimes \cdots \otimes S_{\left(\mu_{j}\right)} V_{n}$
The intersection of the kernels of the maps π_{μ}, for $\mu \vdash d$ with at most k parts, gives all the equations of degree d of $\sigma_{k}(X)$ ([Rai10], Prop. 3.3).

If $n=3, \mu=(2,1), z_{1}=z_{(1,1,1)}, z_{2}=z_{(1,2,1)}$ and

 $z_{3}=z_{(2,1,2)}$, then$\pi_{\mu}\left(z_{1} \cdot z_{2} \cdot z_{3}\right)=z_{(\{1,1\},\{1,2\},\{1,1\})} \cdot z_{(2,1,2)}+$
$z_{(\{1,2\},\{1,1\},\{1,2\})} \cdot z_{(1,2,1)}+z_{(\{1,2\},\{1,2\},\{1,2\})} \cdot z_{(1,1,1)}$,
where $z_{(\{1,1\},\{1,2\},\{1,1\})}=x_{11}^{2} \otimes x_{12} x_{22} \otimes x_{13}^{2}$ etc.

The "Generic" Case

The induced representation $U_{d}^{n}:=\operatorname{Ind}_{S_{d}}^{S_{n}^{n}}(\mathbf{1})$, with $\mathbf{1}$ the trivial representation of the symmetric group S_{d}, and S_{d} included in S_{d}^{n} diagonally, has a basis of monomials $m=z_{\left(a_{1}, \cdots, a_{1 n}\right)} \cdots z_{\left(a_{d l}, \cdots, a_{d n}\right)}$, with $\left\{a_{1 j}, \cdots, a_{d j}\right\}=[d]$ for each j. S_{d}^{n} acts on U_{d}^{n} by letting the j-th copy of S_{d} act on $\left\{a_{1 j}, \cdots, a_{d j}\right\}$. For fixed λ, we identify m with an n-tableau $T=$ $T^{1} \otimes \cdots \otimes T^{n}$ of shape λ, where the $a_{i j}$-th box of T^{j} has entry i. We identify two n-tableaux if their entries differ by a permutation of $[d]$. E.g

For $\mu=(a \geq b) \vdash d$, we consider the space U_{μ}^{n} spanned by monomials $z_{\left(A_{1}, \cdots, A_{n}\right)} \cdot z_{\left(B_{1}, \cdots, B_{n}\right)}$, where $A_{i} \sqcup B_{i}=[d]$, with $\left|A_{i}\right|=a,\left|B_{i}\right|=b$. We define the map $\pi_{\mu}^{\prime}: U_{d}^{n} \rightarrow U_{\mu}^{n}$ by
$\pi_{\mu}^{\prime}(m)=\prod_{\{A, B\} \in \mathcal{P}_{\mu},|A|=a,|B|=b} z_{\left(A_{1}, \cdots, A_{n}\right)} \cdot z_{\left(B_{1}, \cdots, B_{n}\right)}$, $A_{j}=\left\{a_{i j}: i \in A\right\}, B_{j}=\left\{a_{i j} \in B\right\}$

For $m=z_{(1,1,2)} \cdot z_{(2,3,1)} \cdot z_{(3,2,3)}$ and $\mu=(2,1)$
 $$
\pi_{\mu}^{\prime}(m)=z_{(\{1,2\},\{1,3\},\{1,2\})} \cdot z_{(3,2,3)}+
$$
 $z_{(\{1,3\},\{1,2\},\{2,3\})} \cdot z_{(2,3,1)}+z_{(\{2,3\},\{2,3\},\{1,3\})} \cdot z_{(1,1,2)}$.

For $I \sqcup J=[n], F_{I, J} \subset U_{d}^{n}$ denotes the "ideal" of 3×3 minors of generic (I, J)-flattenings
$F_{I, J}=\operatorname{Span}\left(\left[\alpha_{1}, \alpha_{2}, \alpha_{3} \mid \beta_{1}, \beta_{2}, \beta_{3}\right] \cdot z_{\gamma_{4}} \cdots z_{\gamma_{d}}\right)$,
where $\left[\alpha_{1}, \alpha_{2}, \alpha_{3} \mid \beta_{1}, \beta_{2}, \beta_{3}\right]=\operatorname{det}\left(z_{\alpha_{i}+\beta_{i}}\right), \alpha_{i}=$ $\left(a_{i j}\right)_{j=1}^{n}, \beta_{i}=\left(b_{i j}\right)_{j=1}^{n}, \gamma_{i}=\left(c_{i j}\right)_{j=1}^{n}$, with $a_{i j}=0$ for $i \in J$ and $b_{i j}=0$ for $i \in I$, and for each j, $\cup_{i}\left\{a_{i j}, b_{i j}, c_{i j}\right\}=\{0,1, \cdots, d\}$. For $n=d=3$,
> $\left[(1,1,0),(2,3,0), \quad z_{(1,1,2)} z_{(1,1,1)} z_{(1,1,3)}\right.$ $(3,2,0) \mid(0,0,2),=z_{(2,3,2)} z_{(2,3,1)} z_{(2,3,3)}$ $(0,0,1),(0,0,3)] \quad z_{(3,2,2)} z_{(3,2,1)} z_{(3,2,3)}$

We let $F_{d}^{n}:=\Sigma F_{I, J}$ be the space of all generic flattenings and $I_{d}^{n}:=\cap_{\mu} \operatorname{Ker}\left(\pi_{\mu}^{\prime}\right)$ for $\mu=(a \geq b) \vdash d$.

Generic GSS
Theorem A follows by a specialization argument from its generic analogue below (V_{λ} denotes the irreducible S_{d}^{n}-representation corresponding to $\lambda \vdash^{n} d$)

Theorem B. $F_{d}^{n}=I_{d}^{n}$ and
 $$
U_{d}^{n} / I_{d}^{n}=\underset{\lambda \mid n_{d} n_{\lambda}}{V_{\lambda}} \text { for } d \geq 0,
$$

where m_{λ} is as in Theorem A

Let c_{λ} be the Young symmetrizer corresponding to λ. If some $\lambda_{3}^{i}>0, Q_{\lambda}:=c_{\lambda} \cdot\left(U_{d}^{n} / F_{d}^{n}\right)=0$. Otherwise, we associate to an n-tableau T of shape λ a graph G : for each column $\frac{x}{y}$ of some T^{i}, G has an edge (x, y) of color i. If we write $G=\widehat{c_{\lambda} \cdot T} \in Q_{\lambda}$,
(1)

$$
\begin{array}{ll}
1 \\
3
\end{array} \otimes \frac{1}{2} 3-\otimes \frac{2}{3} 1=2 / 1
$$

$G=0$ if it contains an odd cycle, or if it has a bipartition (a, a), an odd number of edges, and is connected. $\quad G_{1}= \pm G_{2}$ if they are connected and bipartite, with the same bipartition $(a \geq b)$. We get from G_{1} to G_{2} by a sequence of basic operations:

A set \mathcal{B} of nonzero G 's, which are connected and bipartite with distinct bipartitions, generates Q_{λ} and its image via $\oplus_{\mu} \pi_{\mu}^{\prime}$ is a linearly independent set, hence $F_{d}^{n}=I_{d}^{n}$, and \mathcal{B} is a basis of Q_{λ}.

References

AR08] E. S. Allman, J. A. Rhodes, Phylogenetic Ideals and Varieties for the General Markov Model, Adv. in Appl. Math. 40, no. 127-148, 2008.
[GSS05] L. D. Garcia, M. Stillman, B. Sturmeels, Algebraic Geometry of Bayesian Networks, J. Symbolic Comput. 39, no. 3-4:331-355, 2005.

LM04] J. M. Landsberg, L. Manivel, On the Ideals of Secant Varieties of Segre Varieties, Found. Comput. Math. 4, no.4:397-422, 2004
LW07] J. M. Landsberg, J. Weyman, On the Ideals and Singularitie of Secant Varieties of Segre Varieties, Bull. Lond. Math. Soc. 39, no.4:685-697, 2007.
Pai10] C. Raien The GSS Conjecture in prepration

