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Motivating Question
Under what circumstances do quotients by finite equivalence relations
exist?
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Definition of Equivalence Relations

Given a scheme X over a base S, a scheme theoretic equivalence
relation on X over S is an S-scheme R together with a morphism

f : R → X ×S X

over S such that for any S-scheme T , the set map

f (T ) : R(T )→ X (T )× X (T )

is injective and its image is the graph of an equivalence relation on
X (T ) (here Z (T ) denotes the set of S-maps from T to Z ).

R is said to be finite if the two projections

R ⇒ X

are finite. A coequalizer of this two projections is called the quotient of
X by the equivalence relation R.
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The Affine Case
If k is a field and X = An

k is the n-dimensional affine space over k , then
OX ' k [x], where x = (x1, · · · , xn). An equivalence relation
R ⊂ X ×k X corresponds to an ideal I(x,y) ⊂ k [x,y]

satisfying:
1 (reflexivity)

I(x,y) ⊂ (x1 − y1, · · · , xn − yn)

2 (symmetry)
I(x,y) = I(y,x)

3 (transitivity)
I(x, z) ⊂ I(x,y) + I(y, z)

R is finite if and only if I satisfies
4 (finiteness)

k [x,y]/I(x,y) is finite over k [x]
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Effective Equivalence Relations

Definition
An equivalence relation R on X is said to be effective if there exists a
morphism X → Y such that

R ' X ×Y X .

In the affine case effectivity corresponds to the ideal I(x,y) of the
equivalence relation being generated by differences f (x)− f (y).

Question (Kollár)
Is every finite equivalence relation effective?

Answer: No. Example: to come. Also, Hironaka’s.
“Theorem” If X ,Y and f : X → Y are “nice”, and if it happens that the
effective equivalence relation R = X ×Y X defined by f is finite, then
the quotient X/R exists.



Effective Equivalence Relations

Definition
An equivalence relation R on X is said to be effective if there exists a
morphism X → Y such that

R ' X ×Y X .

In the affine case effectivity corresponds to the ideal I(x,y) of the
equivalence relation being generated by differences f (x)− f (y).

Question (Kollár)
Is every finite equivalence relation effective?

Answer: No. Example: to come. Also, Hironaka’s.
“Theorem” If X ,Y and f : X → Y are “nice”, and if it happens that the
effective equivalence relation R = X ×Y X defined by f is finite, then
the quotient X/R exists.



Effective Equivalence Relations

Definition
An equivalence relation R on X is said to be effective if there exists a
morphism X → Y such that

R ' X ×Y X .

In the affine case effectivity corresponds to the ideal I(x,y) of the
equivalence relation being generated by differences f (x)− f (y).

Question (Kollár)
Is every finite equivalence relation effective?

Answer: No.

Example: to come. Also, Hironaka’s.
“Theorem” If X ,Y and f : X → Y are “nice”, and if it happens that the
effective equivalence relation R = X ×Y X defined by f is finite, then
the quotient X/R exists.



Effective Equivalence Relations

Definition
An equivalence relation R on X is said to be effective if there exists a
morphism X → Y such that

R ' X ×Y X .

In the affine case effectivity corresponds to the ideal I(x,y) of the
equivalence relation being generated by differences f (x)− f (y).

Question (Kollár)
Is every finite equivalence relation effective?

Answer: No. Example: to come.

Also, Hironaka’s.
“Theorem” If X ,Y and f : X → Y are “nice”, and if it happens that the
effective equivalence relation R = X ×Y X defined by f is finite, then
the quotient X/R exists.



Effective Equivalence Relations

Definition
An equivalence relation R on X is said to be effective if there exists a
morphism X → Y such that

R ' X ×Y X .

In the affine case effectivity corresponds to the ideal I(x,y) of the
equivalence relation being generated by differences f (x)− f (y).

Question (Kollár)
Is every finite equivalence relation effective?

Answer: No. Example: to come. Also, Hironaka’s.

“Theorem” If X ,Y and f : X → Y are “nice”, and if it happens that the
effective equivalence relation R = X ×Y X defined by f is finite, then
the quotient X/R exists.



Effective Equivalence Relations

Definition
An equivalence relation R on X is said to be effective if there exists a
morphism X → Y such that

R ' X ×Y X .

In the affine case effectivity corresponds to the ideal I(x,y) of the
equivalence relation being generated by differences f (x)− f (y).

Question (Kollár)
Is every finite equivalence relation effective?

Answer: No. Example: to come. Also, Hironaka’s.
“Theorem” If X ,Y and f : X → Y are “nice”, and if it happens that the
effective equivalence relation R = X ×Y X defined by f is finite, then
the quotient X/R exists.



Toric Equivalence Relations
If X is a (not necessarily normal) toric variety, an equivalence relation
R on X is said to be toric if it is invariant under the diagonal action of
the torus.

In the affine case, this suffices to insure effectivity:

Theorem (–, 2009)
Let k be a field, X/k an affine toric variety, and R a toric equivalence
relation on X. Then there exists an affine toric variety Y together with
a toric map X → Y such that R ' X ×Y X.

Remarks:

The theorem holds without any finiteness assumptions.
If R is finite, the quotient exists and is also an affine toric variety.
The theorem is false in the nonaffine case: an equivalence
relation on X = P2 identifying the points of a (torus-invariant) line
L can’t be effective; if it were, then the map X → Y defining it
would have to contract L and therefore be constant.
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Definition of the Amitsur Complex

Given a commutative ring A and an A-algebra B, we consider the
Amitsur complex

C(A,B) : B → B ⊗A B → · · · → B⊗Am → · · ·

with differentials given by the formula

d(b1 ⊗ b2 ⊗ · · · ⊗ bm) =
m+1∑
i=1

(−1)ib1 ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi ⊗ · · · ⊗ bm.

It is well known that if B is a faithfully flat or augmented A-algebra, then
C(A,B) is exact. In these cases, the kernel of the first differential is A.
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Exactness of the Amitsur Complex

It turns out that exactness holds also when A,B are monoid rings and
the map A→ B is defined on the monoid level:

Theorem (–, 2009)
Let k be any commutative ring, let τ and σ be commutative monoids,
and let ϕ : τ → σ be a map of monoids. If A = k [τ ], B = k [σ], and B is
considered as an A-algebra via the map A→ B induced by ϕ, then the
Amitsur complex C(A,B) is exact.

As opposed to the faithfully flat and augmented cases, the kernel of
the first differential

d : B → B ⊗A B, b 7→ b ⊗ 1− 1⊗ b

is usually larger than A.
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A 1–Dimensional Zig–zag

If we consider
A = k [t3, t5] ⊂ B = k [t ]

then t7 ∈ B is not an element of A, but it goes to zero under the first
differential in the Amitsur complex.

t7 ⊗ 1 = t2 ⊗ t5 = t2 · t3 ⊗ t2 = t5 ⊗ t2 = 1⊗ t7
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A 2–Dimensional Zig–zag



A Noneffective Affine Equivalence Relation

If k is any ring, A = k [f1, · · · , fm] ⊂ B = k [x], and f (x,y) is a 1–cocycle
in the Amitsur complex C(A,B), i.e.

f (y, z)− f (x, z) + f (x,y) = 0 ∈ k [x,y, z]/(fi(x)− fi(y), fi(x)− fi(z)),

then the ideal

I(x,y) = (f (x,y), fi(x)− fi(y) : i = 1, · · · ,m) ⊂ k [x,y]

defines an equivalence relation on Spec(B). When the fi ’s are
homogeneous, noneffectivity of this equivalence relation amounts to f
not being a coboundary.

Example

f1(x) = x2
1 , f2(x) = x1x2 − x2

2 , f3(x) = x3
2 ,

f (x,y) = (x1y2 − x2y1)y3
2 .
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Questions

Do quotients by finite equivalence relations exist in characteristic
0?

Given a finite equivalence relation on an affine variety, is there a
method of producing invariant sections?

Are finite toric equivalence relations effective?

Is there a geometric way of explaining the noneffective
equivalence relations coming from the nonvanishing of the first
cohomology of the Amitsur complex?
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