Affine Toric Equivalence Relations are Effective

Claudiu Raicu

University of California, Berkeley

AMS-SMM Joint Meeting,
Berkeley, June 2010
Motivating Question

Under what circumstances do quotients by finite equivalence relations exist?

Outline of talk:

1. Equivalence Relations
2. The Amitsur Complex
3. A Noneffective Equivalence Relation
4. Questions
Definition of Equivalence Relations

Given a scheme X over a base S, a scheme theoretic equivalence relation on X over S is an S-scheme R together with a morphism

$$f : R \to X \times_S X$$

over S such that for any S-scheme T, the set map

$$f(T) : R(T) \to X(T) \times X(T)$$

is injective and its image is the graph of an equivalence relation on $X(T)$ (here $Z(T)$ denotes the set of S-maps from T to Z).
Definition of Equivalence Relations

Given a scheme X over a base S, a **scheme theoretic equivalence relation** on X over S is an S-scheme R together with a morphism

$$f : R \to X \times_S X$$

over S such that for any S-scheme T, the set map

$$f(T) : R(T) \to X(T) \times X(T)$$

is injective and its image is the graph of an equivalence relation on $X(T)$ (here $Z(T)$ denotes the set of S-maps from T to Z).

R is said to be **finite** if the two projections

$$R \rightrightarrows X$$

are finite.
Definition of Equivalence Relations

Given a scheme X over a base S, a **scheme theoretic equivalence relation** on X over S is an S-scheme R together with a morphism

$$f : R \to X \times_S X$$

over S such that for any S-scheme T, the set map

$$f(T) : R(T) \to X(T) \times X(T)$$

is injective and its image is the graph of an equivalence relation on $X(T)$ (here $Z(T)$ denotes the set of S-maps from T to Z). R is said to be **finite** if the two projections

$$R \to X$$

are finite. A coequalizer of this two projections is called the **quotient** of X by the equivalence relation R.
The Affine Case

If k is a field and $X = \mathbb{A}^n_k$ is the n-dimensional affine space over k, then $\mathcal{O}_X \cong k[x]$, where $x = (x_1, \cdots, x_n)$. An equivalence relation $R \subset X \times_k X$ corresponds to an ideal $I(x, y) \subset k[x, y]$.
The Affine Case

If k is a field and $X = \mathbb{A}_k^n$ is the n-dimensional affine space over k, then $\mathcal{O}_X \simeq k[x]$, where $x = (x_1, \cdots, x_n)$. An equivalence relation $R \subset X \times_k X$ corresponds to an ideal $I(x, y) \subset k[x, y]$ satisfying:

1. (reflexivity)

 \[I(x, y) \subset (x_1 - y_1, \cdots, x_n - y_n) \]
The Affine Case

If k is a field and $X = \mathbb{A}^n_k$ is the n-dimensional affine space over k, then $O_X \simeq k[x]$, where $x = (x_1, \cdots, x_n)$. An equivalence relation $R \subset X \times_k X$ corresponds to an ideal $I(x, y) \subset k[x, y]$ satisfying:

1. \textit{(reflexivity)}
 \[I(x, y) \subset (x_1 - y_1, \cdots, x_n - y_n) \]

2. \textit{(symmetry)}
 \[I(x, y) = I(y, x) \]
The Affine Case

If \(k \) is a field and \(X = \mathbb{A}^n_k \) is the \(n \)-dimensional affine space over \(k \), then \(\mathcal{O}_X \cong k[x] \), where \(x = (x_1, \cdots, x_n) \). An equivalence relation \(R \subset X \times_k X \) corresponds to an ideal \(l(x, y) \subset k[x, y] \) satisfying:

1. (reflexivity) \[l(x, y) \subset (x_1 - y_1, \cdots, x_n - y_n) \]

2. (symmetry) \[l(x, y) = l(y, x) \]

3. (transitivity) \[l(x, z) \subset l(x, y) + l(y, z) \]
The Affine Case

If \(k \) is a field and \(X = \mathbb{A}_k^n \) is the \(n \)-dimensional affine space over \(k \), then \(\mathcal{O}_X \simeq k[x] \), where \(x = (x_1, \ldots, x_n) \). An equivalence relation \(R \subset X \times_k X \) corresponds to an ideal \(l(x, y) \subset k[x, y] \) satisfying:

1. (reflexivity) \[
l(x, y) \subset (x_1 - y_1, \ldots, x_n - y_n)
\]

2. (symmetry) \[
l(x, y) = l(y, x)
\]

3. (transitivity) \[
l(x, z) \subset l(x, y) + l(y, z)
\]

\(R \) is finite if and only if \(l \) satisfies

4. (finiteness) \[
k[x, y]/l(x, y) \text{ is finite over } k[x]
\]
Effective Equivalence Relations

Definition

An equivalence relation R on X is said to be effective if there exists a morphism $X \rightarrow Y$ such that

$$R \cong X \times_Y X.$$

In the affine case effectivity corresponds to the ideal $I(x, y)$ of the equivalence relation being generated by differences $f(x) - f(y)$.
Effective Equivalence Relations

Definition

An equivalence relation R on X is said to be effective if there exists a morphism $X \to Y$ such that

$$R \cong X \times_Y X.$$

In the affine case effectivity corresponds to the ideal $I(x, y)$ of the equivalence relation being generated by differences $f(x) - f(y)$.

Question (Kollár)

Is every finite equivalence relation effective?
Effective Equivalence Relations

Definition

An equivalence relation R on X is said to be **effective** if there exists a morphism $X \to Y$ such that

$$R \cong X \times_Y X.$$

In the affine case effectivity corresponds to the ideal $I(x, y)$ of the equivalence relation being generated by differences $f(x) - f(y)$.

Question (Kollár)

Is every finite equivalence relation effective?

Answer: No.
Effective Equivalence Relations

Definition

An equivalence relation R on X is said to be **effective** if there exists a morphism $X \rightarrow Y$ such that

$$R \cong X \times_Y X.$$

In the affine case effectivity corresponds to the ideal $I(x, y)$ of the equivalence relation being generated by differences $f(x) - f(y)$.

Question (Kollár)

Is every finite equivalence relation effective?

Answer: No. Example: to come.
Effective Equivalence Relations

Definition

An equivalence relation R on X is said to be effective if there exists a morphism $X \to Y$ such that

$$R \simeq X \times_Y X.$$

In the affine case effectivity corresponds to the ideal $I(x, y)$ of the equivalence relation being generated by differences $f(x) - f(y)$.

Question (Kollár)

Is every finite equivalence relation effective?

Answer: No. Example: to come. Also, Hironaka’s.
Effective Equivalence Relations

Definition

An equivalence relation \(R \) on \(X \) is said to be **effective** if there exists a morphism \(X \rightarrow Y \) such that

\[
R \simeq X \times_Y X.
\]

In the affine case effectivity corresponds to the ideal \(I(x, y) \) of the equivalence relation being generated by differences \(f(x) - f(y) \).

Question (Kollár)

Is every finite equivalence relation effective?

Answer: No. Example: to come. Also, Hironaka’s.

“**Theorem**” If \(X, Y \) and \(f : X \rightarrow Y \) are “nice”, and if it happens that the effective equivalence relation \(R = X \times_Y X \) defined by \(f \) is finite, then the quotient \(X/R \) exists.
Toric Equivalence Relations

If X is a (not necessarily normal) toric variety, an equivalence relation R on X is said to be **toric** if it is invariant under the diagonal action of the torus.

Remarks:
Theorem (–, 2009) Let k be a field, X/k an affine toric variety, and R a toric equivalence relation on X. Then there exists an affine toric variety Y together with a toric map $X \to Y$ such that $R \cong X \times Y$.

If R is finite, the quotient exists and is also an affine toric variety. The theorem is false in the nonaffine case: an equivalence relation on $X = \mathbb{P}^2$ identifying the points of a (torus-invariant) line L can't be effective; if it were, then the map $X \to Y$ defining it would have to contract L and therefore be constant.
Toric Equivalence Relations

If \(X \) is a (not necessarily normal) toric variety, an equivalence relation \(R \) on \(X \) is said to be \textbf{toric} if it is invariant under the diagonal action of the torus. In the affine case, this suffices to insure effectivity:

\[\text{Theorem (\textemdash, 2009)} \]

\textit{Let} \(k \) \textit{be a field,} \(X/k \) \textit{an affine toric variety, and} \(R \) \textit{a toric equivalence relation on} \(X \). \textit{Then there exists an affine toric variety} \(Y \) \textit{together with a toric map} \(X \to Y \) \textit{such that} \(R \simeq X \times_Y X \).
Toric Equivalence Relations

If X is a (not necessarily normal) toric variety, an equivalence relation R on X is said to be toric if it is invariant under the diagonal action of the torus. In the affine case, this suffices to insure effectivity:

Theorem (–, 2009)

Let k be a field, X/k an affine toric variety, and R a toric equivalence relation on X. Then there exists an affine toric variety Y together with a toric map $X \to Y$ such that $R \simeq X \times_Y X$.

Remarks:

- The theorem holds without any finiteness assumptions.
Toric Equivalence Relations

If \(X \) is a (not necessarily normal) toric variety, an equivalence relation \(R \) on \(X \) is said to be \textbf{toric} if it is invariant under the diagonal action of the torus. In the affine case, this suffices to insure effectivity:

\begin{quote}
\textbf{Theorem (–, 2009)}

Let \(k \) be a field, \(X/k \) an affine toric variety, and \(R \) a toric equivalence relation on \(X \). Then there exists an affine toric variety \(Y \) together with a toric map \(X \to Y \) such that \(R \cong X \times_Y X \).
\end{quote}

Remarks:

- The theorem holds without any finiteness assumptions.
- If \(R \) is finite, the quotient exists and is also an affine toric variety.
Toric Equivalence Relations

If X is a (not necessarily normal) toric variety, an equivalence relation R on X is said to be toric if it is invariant under the diagonal action of the torus. In the affine case, this suffices to insure effectivity:

Theorem (–, 2009)

Let k be a field, X/k an affine toric variety, and R a toric equivalence relation on X. Then there exists an affine toric variety Y together with a toric map $X \to Y$ such that $R \simeq X \times_Y X$.

Remarks:

- The theorem holds without any finiteness assumptions.
- If R is finite, the quotient exists and is also an affine toric variety.
- The theorem is false in the nonaffine case: an equivalence relation on $X = \mathbb{P}^2$ identifying the points of a (torus-invariant) line L can’t be effective; if it were, then the map $X \to Y$ defining it would have to contract L and therefore be constant.
Definition of the Amitsur Complex

Given a commutative ring A and an A-algebra B, we consider the Amitsur complex

$$ C(A, B) : B \rightarrow B \otimes_A B \rightarrow \cdots \rightarrow B^\otimes_A m \rightarrow \cdots $$

with differentials given by the formula

$$ d(b_1 \otimes b_2 \otimes \cdots \otimes b_m) = \sum_{i=1}^{m+1} (-1)^i b_1 \otimes \cdots \otimes b_{i-1} \otimes 1 \otimes b_i \otimes \cdots \otimes b_m. $$
Definition of the Amitsur Complex

Given a commutative ring A and an A-algebra B, we consider the Amitsur complex

$$C(A, B) : B \rightarrow B \otimes_A B \rightarrow \cdots \rightarrow B^{\otimes_A m} \rightarrow \cdots$$

with differentials given by the formula

$$d(b_1 \otimes b_2 \otimes \cdots \otimes b_m) = \sum_{i=1}^{m+1} (-1)^i b_1 \otimes \cdots \otimes b_{i-1} \otimes 1 \otimes b_i \otimes \cdots \otimes b_m.$$

It is well known that if B is a faithfully flat or augmented A-algebra, then $C(A, B)$ is exact. In these cases, the kernel of the first differential is A.
Exactness of the Amitsur Complex

It turns out that exactness holds also when A, B are monoid rings and the map $A \to B$ is defined on the monoid level:

Theorem (–, 2009)

Let k be any commutative ring, let τ and σ be commutative monoids, and let $\varphi : \tau \to \sigma$ be a map of monoids. If $A = k[\tau], B = k[\sigma]$, and B is considered as an A-algebra via the map $A \to B$ induced by φ, then the Amitsur complex $C(A, B)$ is exact.
Exactness of the Amitsur Complex

It turns out that exactness holds also when A, B are monoid rings and the map $A \to B$ is defined on the monoid level:

Theorem (−, 2009)

Let k be any commutative ring, let τ and σ be commutative monoids, and let $\varphi : \tau \to \sigma$ be a map of monoids. If $A = k[\tau]$, $B = k[\sigma]$, and B is considered as an A-algebra via the map $A \to B$ induced by φ, then the Amitsur complex $C(A, B)$ is exact.

As opposed to the faithfully flat and augmented cases, the kernel of the first differential

$$d : B \to B \otimes_A B, \quad b \mapsto b \otimes 1 - 1 \otimes b$$

is usually larger than A.
A 1–Dimensional Zig–zag

If we consider

\[A = k[t^3, t^5] \subset B = k[t] \]

then \(t^7 \in B \) is not an element of \(A \), but it goes to zero under the first differential in the Amitsur complex.
A 1–Dimensional Zig–zag

If we consider

\[A = k[t^3, t^5] \subset B = k[t] \]

then \(t^7 \in B \) is not an element of \(A \), but it goes to zero under the first differential in the Amitsur complex.

\[t^7 \otimes 1 \]
A 1–Dimensional Zig–zag

If we consider

\[A = k[t^3, t^5] \subset B = k[t] \]

then \(t^7 \in B \) is not an element of \(A \), but it goes to zero under the first differential in the Amitsur complex.

\[t^7 \otimes 1 = t^2 \otimes t^5 \]
If we consider
\[A = k[t^3, t^5] \subset B = k[t] \]
then \(t^7 \in B \) is not an element of \(A \), but it goes to zero under the first differential in the Amitsur complex.

\[t^7 \otimes 1 = t^2 \otimes t^5 = t^2 \cdot t^3 \otimes t^2 \]
A 1–Dimensional Zig–zag

If we consider

\[A = k[t^3, t^5] \subset B = k[t] \]

then \(t^7 \in B \) is not an element of \(A \), but it goes to zero under the first differential in the Amitsur complex.

\[t^7 \otimes 1 = t^2 \otimes t^5 = t^2 \cdot t^3 \otimes t^2 = t^5 \otimes t^2 \]
A 1–Dimensional Zig–zag

If we consider

\[A = k[t^3, t^5] \subset B = k[t] \]

then \(t^7 \in B \) is not an element of \(A \), but it goes to zero under the first differential in the Amitsur complex.

\[t^7 \otimes 1 = t^2 \otimes t^5 = t^2 \cdot t^3 \otimes t^2 = t^5 \otimes t^2 = 1 \otimes t^7 \]
A 1–Dimensional Zig–zag

If we consider

$$A = k[t^3, t^5] \subset B = k[t]$$

then $t^7 \in B$ is not an element of A, but it goes to zero under the first differential in the Amitsur complex.

$$t^7 \otimes 1 = t^2 \otimes t^5 = t^2 \cdot t^3 \otimes t^2 = t^5 \otimes t^2 = 1 \otimes t^7$$
A 2–Dimensional Zig–zag
A Noneffective Affine Equivalence Relation

If k is any ring, $A = k[f_1, \cdots, f_m] \subset B = k[x]$, and $f(x, y)$ is a 1–cocycle in the Amitsur complex $C(A, B)$, i.e.

$$f(y, z) - f(x, z) + f(x, y) = 0 \in k[x, y, z]/(f_i(x) - f_i(y), f_i(x) - f_i(z)),$$

then the ideal

$$I(x, y) = (f(x, y), f_i(x) - f_i(y) : i = 1, \cdots, m) \subset k[x, y]$$

defines an equivalence relation on $\text{Spec}(B)$. When the f_i’s are homogeneous, noneffectivity of this equivalence relation amounts to f not being a coboundary.
A Noneffective Affine Equivalence Relation

If k is any ring, $A = k[f_1, \cdots, f_m] \subset B = k[x]$, and $f(x, y)$ is a 1–cocycle in the Amitsur complex $C(A, B)$, i.e.

$$f(y, z) - f(x, z) + f(x, y) = 0 \in k[x, y, z]/(f_i(x) - f_i(y), f_i(x) - f_i(z)),$$

then the ideal

$$I(x, y) = (f(x, y), f_i(x) - f_i(y) : i = 1, \cdots, m) \subset k[x, y]$$

defines an equivalence relation on Spec(B). When the f_i’s are homogeneous, noneffectivity of this equivalence relation amounts to f not being a coboundary.

Example

$$f_1(x) = x_1^2, \ f_2(x) = x_1x_2 - x_2^2, \ f_3(x) = x_2^3,$$

$$f(x, y) = (x_1y_2 - x_2y_1)y_2^3.$$
Questions

- Do quotients by finite equivalence relations exist in characteristic 0?
Questions

- Do quotients by finite equivalence relations exist in characteristic 0?

- Given a finite equivalence relation on an affine variety, is there a method of producing invariant sections?
Questions

- Do quotients by finite equivalence relations exist in characteristic 0?

- Given a finite equivalence relation on an affine variety, is there a method of producing invariant sections?

- Are finite toric equivalence relations effective?
Questions

- Do quotients by finite equivalence relations exist in characteristic 0?

- Given a finite equivalence relation on an affine variety, is there a method of producing invariant sections?

- Are finite toric equivalence relations effective?

- Is there a geometric way of explaining the noneffective equivalence relations coming from the nonvanishing of the first cohomology of the Amitsur complex?