Affine Toric Equivalence Relations are Effective

Claudiu Raicu

University of California, Berkeley
AMS-SMM Joint Meeting,
Berkeley, June 2010

Motivating Question

Under what circumstances do quotients by finite equivalence relations exist?

Outline of talk:
(1) Equivalence Relations
(2) The Amitsur Complex
(3) A Noneffective Equivalence Relation
4) Questions

Definition of Equivalence Relations

Given a scheme X over a base S, a scheme theoretic equivalence relation on X over S is an S-scheme R together with a morphism

$$
f: R \rightarrow X \times_{s} X
$$

over S such that for any S-scheme T, the set map

$$
f(T): R(T) \rightarrow X(T) \times X(T)
$$

is injective and its image is the graph of an equivalence relation on $X(T)$ (here $Z(T)$ denotes the set of S-maps from T to Z).

Definition of Equivalence Relations

Given a scheme X over a base S, a scheme theoretic equivalence relation on X over S is an S-scheme R together with a morphism

$$
f: R \rightarrow X \times_{s} X
$$

over S such that for any S-scheme T, the set map

$$
f(T): R(T) \rightarrow X(T) \times X(T)
$$

is injective and its image is the graph of an equivalence relation on $X(T)$ (here $Z(T)$ denotes the set of S-maps from T to Z). R is said to be finite if the two projections

$$
R \rightrightarrows X
$$

are finite.

Definition of Equivalence Relations

Given a scheme X over a base S, a scheme theoretic equivalence relation on X over S is an S-scheme R together with a morphism

$$
f: R \rightarrow X \times_{S} X
$$

over S such that for any S-scheme T, the set map

$$
f(T): R(T) \rightarrow X(T) \times X(T)
$$

is injective and its image is the graph of an equivalence relation on $X(T)$ (here $Z(T)$ denotes the set of S-maps from T to Z). R is said to be finite if the two projections

$$
R \rightrightarrows X
$$

are finite. A coequalizer of this two projections is called the quotient of X by the equivalence relation R.

The Affine Case

If k is a field and $X=\mathbb{A}_{k}^{n}$ is the n-dimensional affine space over k, then $\mathcal{O}_{X} \simeq k[\boldsymbol{x}]$, where $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$. An equivalence relation $R \subset X \times_{k} X$ corresponds to an ideal $I(\boldsymbol{x}, \boldsymbol{y}) \subset k[\boldsymbol{x}, \boldsymbol{y}]$

The Affine Case

If k is a field and $X=\mathbb{A}_{k}^{n}$ is the n-dimensional affine space over k, then $\mathcal{O}_{X} \simeq k[\boldsymbol{x}]$, where $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$. An equivalence relation $R \subset X \times_{k} X$ corresponds to an ideal $I(\boldsymbol{x}, \boldsymbol{y}) \subset k[\boldsymbol{x}, \boldsymbol{y}]$ satisfying:
(1) (reflexivity)

$$
I(\boldsymbol{x}, \boldsymbol{y}) \subset\left(x_{1}-y_{1}, \cdots, x_{n}-y_{n}\right)
$$

The Affine Case

If k is a field and $X=\mathbb{A}_{k}^{n}$ is the n-dimensional affine space over k, then $\mathcal{O}_{X} \simeq k[\boldsymbol{x}]$, where $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$. An equivalence relation $R \subset X \times_{k} X$ corresponds to an ideal $I(\boldsymbol{x}, \boldsymbol{y}) \subset k[\boldsymbol{x}, \boldsymbol{y}]$ satisfying:
(1) (reflexivity)

$$
I(\boldsymbol{x}, \boldsymbol{y}) \subset\left(x_{1}-y_{1}, \cdots, x_{n}-y_{n}\right)
$$

(2) (symmetry)

$$
I(\boldsymbol{x}, \boldsymbol{y})=I(\boldsymbol{y}, \boldsymbol{x})
$$

The Affine Case

If k is a field and $X=\mathbb{A}_{k}^{n}$ is the n-dimensional affine space over k, then $\mathcal{O}_{X} \simeq k[\boldsymbol{x}]$, where $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$. An equivalence relation $R \subset X \times_{k} X$ corresponds to an ideal $I(\boldsymbol{x}, \boldsymbol{y}) \subset k[\boldsymbol{x}, \boldsymbol{y}]$ satisfying:
(1) (reflexivity)

$$
I(\boldsymbol{x}, \boldsymbol{y}) \subset\left(x_{1}-y_{1}, \cdots, x_{n}-y_{n}\right)
$$

(2) (symmetry)

$$
I(\boldsymbol{x}, \boldsymbol{y})=I(\boldsymbol{y}, \boldsymbol{x})
$$

(3) (transitivity)

$$
I(\boldsymbol{x}, \boldsymbol{z}) \subset I(\boldsymbol{x}, \boldsymbol{y})+I(\boldsymbol{y}, \boldsymbol{z})
$$

The Affine Case

If k is a field and $X=\mathbb{A}_{k}^{n}$ is the n-dimensional affine space over k, then $\mathcal{O}_{X} \simeq k[\boldsymbol{x}]$, where $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$. An equivalence relation $R \subset X \times_{k} X$ corresponds to an ideal $I(\boldsymbol{x}, \boldsymbol{y}) \subset k[\boldsymbol{x}, \boldsymbol{y}]$ satisfying:
(1) (reflexivity)

$$
I(\boldsymbol{x}, \boldsymbol{y}) \subset\left(x_{1}-y_{1}, \cdots, x_{n}-y_{n}\right)
$$

(2) (symmetry)

$$
I(\boldsymbol{x}, \boldsymbol{y})=I(\boldsymbol{y}, \boldsymbol{x})
$$

(3) (transitivity)

$$
I(x, z) \subset I(x, y)+I(y, z)
$$

R is finite if and only if I satisfies
(4) (finiteness)

$$
k[\boldsymbol{x}, \boldsymbol{y}] / l(\boldsymbol{x}, \boldsymbol{y}) \text { is finite over } k[\boldsymbol{x}]
$$

Effective Equivalence Relations

Definition

An equivalence relation R on X is said to be effective if there exists a morphism $X \rightarrow Y$ such that

$$
R \simeq X \times_{Y} X
$$

In the affine case effectivity corresponds to the ideal $I(\boldsymbol{x}, \boldsymbol{y})$ of the equivalence relation being generated by differences $f(\boldsymbol{x})-f(\boldsymbol{y})$.

Effective Equivalence Relations

Definition

An equivalence relation R on X is said to be effective if there exists a morphism $X \rightarrow Y$ such that

$$
R \simeq X \times_{Y} X
$$

In the affine case effectivity corresponds to the ideal $I(\boldsymbol{x}, \boldsymbol{y})$ of the equivalence relation being generated by differences $f(\boldsymbol{x})-f(\boldsymbol{y})$.

Question (Kollár)

Is every finite equivalence relation effective?

Effective Equivalence Relations

Definition

An equivalence relation R on X is said to be effective if there exists a morphism $X \rightarrow Y$ such that

$$
R \simeq X \times_{Y} X
$$

In the affine case effectivity corresponds to the ideal $I(\boldsymbol{x}, \boldsymbol{y})$ of the equivalence relation being generated by differences $f(\boldsymbol{x})-f(\boldsymbol{y})$.

Question (Kollár)

Is every finite equivalence relation effective?
Answer: No.

Effective Equivalence Relations

Definition

An equivalence relation R on X is said to be effective if there exists a morphism $X \rightarrow Y$ such that

$$
R \simeq X \times_{Y} X
$$

In the affine case effectivity corresponds to the ideal $I(\boldsymbol{x}, \boldsymbol{y})$ of the equivalence relation being generated by differences $f(\boldsymbol{x})-f(\boldsymbol{y})$.

Question (Kollár)

Is every finite equivalence relation effective?
Answer: No. Example: to come.

Effective Equivalence Relations

Definition

An equivalence relation R on X is said to be effective if there exists a morphism $X \rightarrow Y$ such that

$$
R \simeq X \times_{Y} X
$$

In the affine case effectivity corresponds to the ideal $I(\boldsymbol{x}, \boldsymbol{y})$ of the equivalence relation being generated by differences $f(\boldsymbol{x})-f(\boldsymbol{y})$.

Question (Kollár)

Is every finite equivalence relation effective?
Answer: No. Example: to come. Also, Hironaka's.

Effective Equivalence Relations

Definition

An equivalence relation R on X is said to be effective if there exists a morphism $X \rightarrow Y$ such that

$$
R \simeq X \times_{Y} X
$$

In the affine case effectivity corresponds to the ideal $I(\boldsymbol{x}, \boldsymbol{y})$ of the equivalence relation being generated by differences $f(\boldsymbol{x})-f(\boldsymbol{y})$.

Question (Kollár)

Is every finite equivalence relation effective?
Answer: No. Example: to come. Also, Hironaka's.
"Theorem" If X, Y and $f: X \rightarrow Y$ are "nice", and if it happens that the effective equivalence relation $R=X{ }_{{ }_{Y}} X$ defined by f is finite, then the quotient X / R exists.

Toric Equivalence Relations

If X is a (not necessarily normal) toric variety, an equivalence relation R on X is said to be toric if it is invariant under the diagonal action of the torus.

Toric Equivalence Relations

If X is a (not necessarily normal) toric variety, an equivalence relation R on X is said to be toric if it is invariant under the diagonal action of the torus. In the affine case, this suffices to insure effectivity:

Theorem (-, 2009)

Let k be a field, X / k an affine toric variety, and R a toric equivalence relation on X. Then there exists an affine toric variety Y together with a toric map $X \rightarrow Y$ such that $R \simeq X{ }_{{ }_{Y}} X$.

Toric Equivalence Relations

If X is a (not necessarily normal) toric variety, an equivalence relation R on X is said to be toric if it is invariant under the diagonal action of the torus. In the affine case, this suffices to insure effectivity:

Theorem (-, 2009)

Let k be a field, X / k an affine toric variety, and R a toric equivalence relation on X. Then there exists an affine toric variety Y together with a toric map $X \rightarrow Y$ such that $R \simeq X{ }_{{ }_{Y}} X$.

Remarks:

- The theorem holds without any finiteness assumptions.

Toric Equivalence Relations

If X is a (not necessarily normal) toric variety, an equivalence relation R on X is said to be toric if it is invariant under the diagonal action of the torus. In the affine case, this suffices to insure effectivity:

Theorem (-, 2009)

Let k be a field, X / k an affine toric variety, and R a toric equivalence relation on X. Then there exists an affine toric variety Y together with a toric map $X \rightarrow Y$ such that $R \simeq X{ }_{{ }_{Y}} X$.

Remarks:

- The theorem holds without any finiteness assumptions.
- If R is finite, the quotient exists and is also an affine toric variety.

Toric Equivalence Relations

If X is a (not necessarily normal) toric variety, an equivalence relation R on X is said to be toric if it is invariant under the diagonal action of the torus. In the affine case, this suffices to insure effectivity:

Theorem (-, 2009)

Let k be a field, X / k an affine toric variety, and R a toric equivalence relation on X. Then there exists an affine toric variety Y together with a toric map $X \rightarrow Y$ such that $R \simeq X{ }_{{ }_{Y}} X$.

Remarks:

- The theorem holds without any finiteness assumptions.
- If R is finite, the quotient exists and is also an affine toric variety.
- The theorem is false in the nonaffine case: an equivalence relation on $X=\mathbb{P}^{2}$ identifying the points of a (torus-invariant) line L can't be effective; if it were, then the map $X \rightarrow Y$ defining it would have to contract L and therefore be constant.

Definition of the Amitsur Complex

Given a commutative ring A and an A-algebra B, we consider the Amitsur complex

$$
C(A, B): B \rightarrow B \otimes_{A} B \rightarrow \cdots \rightarrow B^{\otimes_{A} m} \rightarrow \cdots
$$

with differentials given by the formula

$$
d\left(b_{1} \otimes b_{2} \otimes \cdots \otimes b_{m}\right)=\sum_{i=1}^{m+1}(-1)^{i} b_{1} \otimes \cdots \otimes b_{i-1} \otimes 1 \otimes b_{i} \otimes \cdots \otimes b_{m}
$$

Definition of the Amitsur Complex

Given a commutative ring A and an A-algebra B, we consider the Amitsur complex

$$
C(A, B): B \rightarrow B \otimes_{A} B \rightarrow \cdots \rightarrow B^{\otimes_{A} m} \rightarrow \cdots
$$

with differentials given by the formula

$$
d\left(b_{1} \otimes b_{2} \otimes \cdots \otimes b_{m}\right)=\sum_{i=1}^{m+1}(-1)^{i} b_{1} \otimes \cdots \otimes b_{i-1} \otimes 1 \otimes b_{i} \otimes \cdots \otimes b_{m}
$$

It is well known that if B is a faithfully flat or augmented A-algebra, then $C(A, B)$ is exact. In these cases, the kernel of the first differential is A.

Exactness of the Amitsur Complex

It turns out that exactness holds also when A, B are monoid rings and the map $A \rightarrow B$ is defined on the monoid level:

Theorem (-, 2009)
Let k be any commutative ring, let τ and σ be commutative monoids, and let $\varphi: \tau \rightarrow \sigma$ be a map of monoids. If $A=k[\tau], B=k[\sigma]$, and B is considered as an A-algebra via the map $A \rightarrow B$ induced by φ, then the Amitsur complex $C(A, B)$ is exact.

Exactness of the Amitsur Complex

It turns out that exactness holds also when A, B are monoid rings and the map $A \rightarrow B$ is defined on the monoid level:

Theorem (-, 2009)

Let k be any commutative ring, let τ and σ be commutative monoids, and let $\varphi: \tau \rightarrow \sigma$ be a map of monoids. If $A=k[\tau], B=k[\sigma]$, and B is considered as an A-algebra via the map $A \rightarrow B$ induced by φ, then the Amitsur complex $C(A, B)$ is exact.

As opposed to the faithfully flat and augmented cases, the kernel of the first differential

$$
d: B \rightarrow B \otimes_{A} B, \quad b \mapsto b \otimes 1-1 \otimes b
$$

is usually larger than A.

A 1-Dimensional Zig-zag

If we consider

$$
A=k\left[t^{3}, t^{5}\right] \subset B=k[t]
$$

then $t^{7} \in B$ is not an element of A, but it goes to zero under the first differential in the Amitsur complex.

A 1-Dimensional Zig-zag

If we consider

$$
A=k\left[t^{3}, t^{5}\right] \subset B=k[t]
$$

then $t^{7} \in B$ is not an element of A, but it goes to zero under the first differential in the Amitsur complex.

$$
t^{7} \otimes 1
$$

A 1-Dimensional Zig-zag

If we consider

$$
A=k\left[t^{3}, t^{5}\right] \subset B=k[t]
$$

then $t^{7} \in B$ is not an element of A, but it goes to zero under the first differential in the Amitsur complex.

$$
t^{7} \otimes 1=t^{2} \otimes t^{5}
$$

A 1-Dimensional Zig-zag

If we consider

$$
A=k\left[t^{3}, t^{5}\right] \subset B=k[t]
$$

then $t^{7} \in B$ is not an element of A, but it goes to zero under the first differential in the Amitsur complex.

$$
t^{7} \otimes 1=t^{2} \otimes t^{5}=t^{2} \cdot t^{3} \otimes t^{2}
$$

A 1-Dimensional Zig-zag

If we consider

$$
A=k\left[t^{3}, t^{5}\right] \subset B=k[t]
$$

then $t^{7} \in B$ is not an element of A, but it goes to zero under the first differential in the Amitsur complex.

$$
t^{7} \otimes 1=t^{2} \otimes t^{5}=t^{2} \cdot t^{3} \otimes t^{2}=t^{5} \otimes t^{2}
$$

A 1-Dimensional Zig-zag

If we consider

$$
A=k\left[t^{3}, t^{5}\right] \subset B=k[t]
$$

then $t^{7} \in B$ is not an element of A, but it goes to zero under the first differential in the Amitsur complex.

$$
t^{7} \otimes 1=t^{2} \otimes t^{5}=t^{2} \cdot t^{3} \otimes t^{2}=t^{5} \otimes t^{2}=1 \otimes t^{7}
$$

A 1-Dimensional Zig-zag

If we consider

$$
A=k\left[t^{3}, t^{5}\right] \subset B=k[t]
$$

then $t^{7} \in B$ is not an element of A, but it goes to zero under the first differential in the Amitsur complex.

$$
t^{7} \otimes 1=t^{2} \otimes t^{5}=t^{2} \cdot t^{3} \otimes t^{2}=t^{5} \otimes t^{2}=1 \otimes t^{7}
$$

A 2-Dimensional Zig-zag

A Noneffective Affine Equivalence Relation

If k is any ring, $A=k\left[f_{1}, \cdots, f_{m}\right] \subset B=k[\boldsymbol{x}]$, and $f(\boldsymbol{x}, \boldsymbol{y})$ is a 1-cocycle in the Amitsur complex $C(A, B)$, i.e.

$$
f(\boldsymbol{y}, \boldsymbol{z})-f(\boldsymbol{x}, \boldsymbol{z})+f(\boldsymbol{x}, \boldsymbol{y})=0 \in k[\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}] /\left(f_{i}(\boldsymbol{x})-f_{i}(\boldsymbol{y}), f_{i}(\boldsymbol{x})-f_{i}(\boldsymbol{z})\right)
$$

then the ideal

$$
I(\boldsymbol{x}, \boldsymbol{y})=\left(f(\boldsymbol{x}, \boldsymbol{y}), f_{i}(\boldsymbol{x})-f_{i}(\boldsymbol{y}): i=1, \cdots, m\right) \subset k[\boldsymbol{x}, \boldsymbol{y}]
$$

defines an equivalence relation on $\operatorname{Spec}(B)$. When the f_{i} 's are homogeneous, noneffectivity of this equivalence relation amounts to f not being a coboundary.

A Noneffective Affine Equivalence Relation

If k is any ring, $A=k\left[f_{1}, \cdots, f_{m}\right] \subset B=k[\boldsymbol{x}]$, and $f(\boldsymbol{x}, \boldsymbol{y})$ is a 1-cocycle in the Amitsur complex $C(A, B)$, i.e.

$$
f(\boldsymbol{y}, \boldsymbol{z})-f(\boldsymbol{x}, \boldsymbol{z})+f(\boldsymbol{x}, \boldsymbol{y})=0 \in k[\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}] /\left(f_{i}(\boldsymbol{x})-f_{i}(\boldsymbol{y}), f_{i}(\boldsymbol{x})-f_{i}(\boldsymbol{z})\right)
$$

then the ideal

$$
I(\boldsymbol{x}, \boldsymbol{y})=\left(f(\boldsymbol{x}, \boldsymbol{y}), f_{i}(\boldsymbol{x})-f_{i}(\boldsymbol{y}): i=1, \cdots, m\right) \subset k[\boldsymbol{x}, \boldsymbol{y}]
$$

defines an equivalence relation on $\operatorname{Spec}(B)$. When the f_{i} 's are homogeneous, noneffectivity of this equivalence relation amounts to f not being a coboundary.

Example

$$
\begin{gathered}
f_{1}(\boldsymbol{x})=x_{1}^{2}, f_{2}(\boldsymbol{x})=x_{1} x_{2}-x_{2}^{2}, f_{3}(\boldsymbol{x})=x_{2}^{3}, \\
f(\boldsymbol{x}, \boldsymbol{y})=\left(x_{1} y_{2}-x_{2} y_{1}\right) y_{2}^{3} .
\end{gathered}
$$

Questions

- Do quotients by finite equivalence relations exist in characteristic 0 ?

Questions

- Do quotients by finite equivalence relations exist in characteristic 0 ?
- Given a finite equivalence relation on an affine variety, is there a method of producing invariant sections?

Questions

- Do quotients by finite equivalence relations exist in characteristic 0 ?
- Given a finite equivalence relation on an affine variety, is there a method of producing invariant sections?
- Are finite toric equivalence relations effective?

Questions

- Do quotients by finite equivalence relations exist in characteristic 0 ?
- Given a finite equivalence relation on an affine variety, is there a method of producing invariant sections?
- Are finite toric equivalence relations effective?
- Is there a geometric way of explaining the noneffective equivalence relations coming from the nonvanishing of the first cohomology of the Amitsur complex?

