Secant Varieties of Segre-Veronese Varieties

Claudiu Raicu

Princeton University

Raleigh, October 2011

Overview

(1) Secant Varieties
(2) Segre-Veronese Varieties
(3) Flattenings
(4) Main Results and Techniques

Secant Varieties

Definition

Given a subvariety $X \subset \mathbb{P}^{N}$, the $(k-1)$-st secant variety of X, denoted $\sigma_{k}(X)$, is the closure of the union of linear subspaces spanned by k points on X :

$$
\sigma_{k}(X)=\overline{\bigcup_{x_{1}, \cdots, x_{k} \in X} \mathbb{P}_{x_{1}, \cdots, x_{k}}}
$$

Secant Varieties

Definition

Given a subvariety $X \subset \mathbb{P}^{N}$, the $(k-1)$-st secant variety of X, denoted $\sigma_{k}(X)$, is the closure of the union of linear subspaces spanned by k points on X :

$$
\sigma_{k}(X)=\overline{\bigcup_{x_{1}, \cdots, x_{k} \in X} \mathbb{P}_{x_{1}, \cdots, x_{k}}}
$$

Alternatively, write $\mathbb{P}^{N}=\mathbb{P} W$ for some vector space W, and let $\hat{X} \subset W$ denote the cone over X. The cone $\widehat{\sigma_{k}(X)}$ over $\sigma_{k}(X)$ is the closure of the image of the map

$$
\begin{gathered}
s: \hat{X} \times \cdots \times \hat{X} \longrightarrow W \\
s\left(x_{1}, \cdots, x_{k}\right)=x_{1}+\cdots+x_{k}
\end{gathered}
$$

Secant Varieties

Definition

Given a subvariety $X \subset \mathbb{P}^{N}$, the $(k-1)$-st secant variety of X, denoted $\sigma_{k}(X)$, is the closure of the union of linear subspaces spanned by k points on X :

$$
\sigma_{k}(X)=\overline{\bigcup_{x_{1}, \cdots, x_{k} \in X} \mathbb{P}_{x_{1}, \cdots, x_{k}}}
$$

Alternatively, write $\mathbb{P}^{N}=\mathbb{P} W$ for some vector space W, and let $\hat{X} \subset W$ denote the cone over X. The cone $\widehat{\sigma_{k}(X)}$ over $\sigma_{k}(X)$ is the closure of the image of the map

$$
\begin{gathered}
s: \hat{X} \times \cdots \times \hat{X} \longrightarrow W \\
s\left(x_{1}, \cdots, x_{k}\right)=x_{1}+\cdots+x_{k}
\end{gathered}
$$

Problem

Given (the equations of) X, determine (the equations of) $\sigma_{k}(X)$.

Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$
s^{\#}: \operatorname{Sym}\left(W^{*}\right) \rightarrow K[X \times \cdots \times X]=K[X] \otimes \cdots \otimes K[X] .
$$

$I\left(\sigma_{k}(X)\right)$ and $K\left[\sigma_{k}(X)\right]$ are the kernel and image respectively of $s^{\#}$.

Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$
s^{\#}: \operatorname{Sym}\left(W^{*}\right) \rightarrow K[X \times \cdots \times X]=K[X] \otimes \cdots \otimes K[X] .
$$

$I\left(\sigma_{k}(X)\right)$ and $K\left[\sigma_{k}(X)\right]$ are the kernel and image respectively of $s^{\#}$.

Big Problem

Computing the kernel and image of s\# is really hard!

Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$
s^{\#}: \operatorname{Sym}\left(W^{*}\right) \rightarrow K[X \times \cdots \times X]=K[X] \otimes \cdots \otimes K[X] .
$$

$I\left(\sigma_{k}(X)\right)$ and $K\left[\sigma_{k}(X)\right]$ are the kernel and image respectively of $s^{\#}$.

Big Problem

Computing the kernel and image of s\# is really hard!
Interesting examples:
(1) curves;

Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$
s^{\#}: \operatorname{Sym}\left(W^{*}\right) \rightarrow K[X \times \cdots \times X]=K[X] \otimes \cdots \otimes K[X] .
$$

$I\left(\sigma_{k}(X)\right)$ and $K\left[\sigma_{k}(X)\right]$ are the kernel and image respectively of $s^{\#}$.

Big Problem

Computing the kernel and image of s\# is really hard!
Interesting examples:
(1) curves;
(2) toric varieties;

Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$
s^{\#}: \operatorname{Sym}\left(W^{*}\right) \rightarrow K[X \times \cdots \times X]=K[X] \otimes \cdots \otimes K[X] .
$$

$I\left(\sigma_{k}(X)\right)$ and $K\left[\sigma_{k}(X)\right]$ are the kernel and image respectively of $s^{\#}$.

Big Problem

Computing the kernel and image of s\# is really hard!
Interesting examples:
(0) curves;
(2) toric varieties;
(homogeneous spaces;

Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$
s^{\#}: \operatorname{Sym}\left(W^{*}\right) \rightarrow K[X \times \cdots \times X]=K[X] \otimes \cdots \otimes K[X] .
$$

$I\left(\sigma_{k}(X)\right)$ and $K\left[\sigma_{k}(X)\right]$ are the kernel and image respectively of $s^{\#}$.

Big Problem

Computing the kernel and image of s\# is really hard!
Interesting examples:

- curves;
(2) toric varieties;
(homogeneous spaces;
(1) Grassmannians;

Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$
s^{\#}: \operatorname{Sym}\left(W^{*}\right) \rightarrow K[X \times \cdots \times X]=K[X] \otimes \cdots \otimes K[X] .
$$

$I\left(\sigma_{k}(X)\right)$ and $K\left[\sigma_{k}(X)\right]$ are the kernel and image respectively of $s^{\#}$.

Big Problem

Computing the kernel and image of s\# is really hard!
Interesting examples:

- curves;
(2) toric varieties;
(homogeneous spaces;
(- Grassmannians;
(0) Segre and Veronese varieties.

Segre-Veronese Varieties

Consider vector spaces $V_{i}, i=1, \cdots, n$ with duals V_{i}^{*}, and positive integers d_{1}, \cdots, d_{n}. We let

$$
X=\mathbb{P} V_{1}^{*} \times \cdots \times \mathbb{P} V_{n}^{*}
$$

and think of it as a subvariety in projective space via the embedding determined by the line bundle $\mathcal{O}_{X}\left(d_{1}, \cdots, d_{n}\right)$.

Segre-Veronese Varieties

Consider vector spaces $V_{i}, i=1, \cdots, n$ with duals V_{i}^{*}, and positive integers d_{1}, \cdots, d_{n}. We let

$$
X=\mathbb{P} V_{1}^{*} \times \cdots \times \mathbb{P} V_{n}^{*}
$$

and think of it as a subvariety in projective space via the embedding determined by the line bundle $\mathcal{O}_{X}\left(d_{1}, \cdots, d_{n}\right) . X$ is the image of

$$
\begin{gathered}
S V_{d_{1}, \cdots, d_{n}}: \mathbb{P} V_{1}^{*} \times \cdots \times \mathbb{P} V_{n}^{*} \rightarrow \mathbb{P}\left(\operatorname{Sym}^{d_{1}} V_{1}^{*} \otimes \cdots \otimes \operatorname{Sym}^{d_{n}} V_{n}^{*}\right), \\
\left(\left[e_{1}\right], \cdots,\left[e_{n}\right]\right) \mapsto\left[e_{1}^{d_{1}} \otimes \cdots \otimes e_{n}^{d_{n}}\right] .
\end{gathered}
$$

We call X a Segre-Veronese variety.

Segre-Veronese Varieties

Consider vector spaces $V_{i}, i=1, \cdots, n$ with duals V_{i}^{*}, and positive integers d_{1}, \cdots, d_{n}. We let

$$
X=\mathbb{P} V_{1}^{*} \times \cdots \times \mathbb{P} V_{n}^{*}
$$

and think of it as a subvariety in projective space via the embedding determined by the line bundle $\mathcal{O}_{X}\left(d_{1}, \cdots, d_{n}\right) . X$ is the image of

$$
\begin{gathered}
S V_{d_{1}, \cdots, d_{n}}: \mathbb{P} V_{1}^{*} \times \cdots \times \mathbb{P} V_{n}^{*} \rightarrow \mathbb{P}\left(\operatorname{Sym}^{d_{1}} V_{1}^{*} \otimes \cdots \otimes \operatorname{Sym}^{d_{n}} V_{n}^{*}\right), \\
\left(\left[e_{1}\right], \cdots,\left[e_{n}\right]\right) \mapsto\left[e_{1}^{d_{1}} \otimes \cdots \otimes e_{n}^{d_{n}}\right] .
\end{gathered}
$$

We call X a Segre-Veronese variety. Write W^{*} for the linear forms on the target of $S V_{d_{1}, \cdots, d_{n}}, W^{*}=\operatorname{Sym}^{d_{1}} V_{1} \otimes \cdots \otimes \operatorname{Sym}^{d_{n}} V_{n}$. To compute the equations of $\sigma_{k}(X)$ it's "enough" to understand the kernel of

$$
s^{\#}: \operatorname{Sym}\left(W^{*}\right) \longrightarrow\left(\bigoplus_{r \geq 0} \operatorname{Sym}^{r d_{1}} V_{1} \otimes \cdots \otimes \operatorname{Sym}^{r d_{n}} V_{n}\right)^{\otimes k}
$$

Example: generic matrices, flattenings

When all $d_{i}=1, X$ is the Segre variety (pure tensors). When $n=2$ we get matrices of rank 1 as the image of

$$
S V_{1,1}: \mathbb{P} V_{1}^{*} \times \mathbb{P} V_{2}^{*} \rightarrow \mathbb{P}\left(V_{1}^{*} \otimes V_{2}^{*}\right)
$$

Example: generic matrices, flattenings

When all $d_{i}=1, X$ is the Segre variety (pure tensors). When $n=2$ we get matrices of rank 1 as the image of

$$
S V_{1,1}: \mathbb{P} V_{1}^{*} \times \mathbb{P} V_{2}^{*} \rightarrow \mathbb{P}\left(V_{1}^{*} \otimes V_{2}^{*}\right)
$$

More generally, $\sigma_{k}(X)$ is the collection of matrices of rank at most k, which are defined by the vanishing of their $(k+1)$-minors.

Example: generic matrices, flattenings

When all $d_{i}=1, X$ is the Segre variety (pure tensors). When $n=2$ we get matrices of rank 1 as the image of

$$
S V_{1,1}: \mathbb{P} V_{1}^{*} \times \mathbb{P} V_{2}^{*} \rightarrow \mathbb{P}\left(V_{1}^{*} \otimes V_{2}^{*}\right)
$$

More generally, $\sigma_{k}(X)$ is the collection of matrices of rank at most k, which are defined by the vanishing of their $(k+1)$-minors. If $n=3, \operatorname{dim}\left(V_{i}\right)=3$, the ambient space consists of $3 \times 3 \times 3$ tensors $T=\left(x_{i j k}\right)$, which we can flatten by thinking of $V_{1}^{*} \otimes V_{2}^{*}$ as a single factor:

$$
V_{1}^{*} \otimes V_{2}^{*} \otimes V_{3}^{*}=\left(V_{1}^{*} \otimes V_{2}^{*}\right) \otimes V_{3}^{*} .
$$

Example: generic matrices, flattenings

When all $d_{i}=1, X$ is the Segre variety (pure tensors). When $n=2$ we get matrices of rank 1 as the image of

$$
S V_{1,1}: \mathbb{P} V_{1}^{*} \times \mathbb{P} V_{2}^{*} \rightarrow \mathbb{P}\left(V_{1}^{*} \otimes V_{2}^{*}\right)
$$

More generally, $\sigma_{k}(X)$ is the collection of matrices of rank at most k, which are defined by the vanishing of their $(k+1)$-minors. If $n=3, \operatorname{dim}\left(V_{i}\right)=3$, the ambient space consists of $3 \times 3 \times 3$ tensors $T=\left(x_{i j k}\right)$, which we can flatten by thinking of $V_{1}^{*} \otimes V_{2}^{*}$ as a single factor:

$$
V_{1}^{*} \otimes V_{2}^{*} \otimes V_{3}^{*}=\left(V_{1}^{*} \otimes V_{2}^{*}\right) \otimes V_{3}^{*} .
$$

The tensor T flattens to a 3×9 matrix

$$
\left[\begin{array}{lll|lll|lll}
x_{11,1} & x_{12,1} & x_{13,1} & x_{21,1} & x_{22,1} & x_{23,1} & x_{31,1} & x_{32,1} & x_{33,1} \\
x_{11,2} & x_{12,2} & x_{13,2} & x_{21,2} & x_{22,2} & x_{23,2} & x_{31,2} & x_{32,2} & x_{33,2} \\
x_{11,3} & x_{12,3} & x_{13,3} & x_{21,3} & x_{22,3} & x_{23,3} & x_{31,3} & x_{32,3} & x_{33,3}
\end{array}\right]
$$

A conjecture about flattenings

(1) $\sigma_{1}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 2-minors of flattenings. (Kostant)

A conjecture about flattenings

(1) $\sigma_{1}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right):$ 2-minors of flattenings. (Kostant)
(2) $\sigma_{2}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 3-minors of flattenings. (Landsberg-Manivel)

A conjecture about flattenings

(1) $\sigma_{1}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right):$ 2-minors of flattenings. (Kostant)
(2) $\sigma_{2}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right):$ 3-minors of flattenings. (Landsberg-Manivel)
(3) $\sigma_{3}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right): 4-$ minors of flattenings

A conjecture about flattenings

(1) $\sigma_{1}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right):$ 2-minors of flattenings. (Kostant)
(2) $\sigma_{2}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 3-minors of flattenings. (Landsberg-Manivel)
(3) $\sigma_{3}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 4-minors of flattenings give nothing. Instead, use Strassen's commutation conditions. (Landsberg-Weyman)

A conjecture about flattenings

(1) $\sigma_{1}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 2-minors of flattenings. (Kostant)
(2) $\sigma_{2}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 3-minors of flattenings. (Landsberg-Manivel)
(3) $\sigma_{3}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 4-minors of flattenings give nothing. Instead, use Strassen's commutation conditions. (Landsberg-Weyman)

Conjecture (Garcia-Stillman-Sturmfels, Pachter-Sturmfels)

The 3-minors of flattenings generate the ideal of $\sigma_{2}(X)$ when X is a Segre variety.

A conjecture about flattenings

(1) $\sigma_{1}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 2-minors of flattenings. (Kostant)
(2) $\sigma_{2}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 3-minors of flattenings. (Landsberg-Manivel)
(3) $\sigma_{3}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 4-minors of flattenings give nothing. Instead, use Strassen's commutation conditions. (Landsberg-Weyman)

Conjecture (Garcia-Stillman-Sturmfels, Pachter-Sturmfels)

The 3-minors of flattenings generate the ideal of $\sigma_{2}(X)$ when X is a Segre variety.

Known cases:
(1) 2 factors (classical)

A conjecture about flattenings

(1) $\sigma_{1}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 2-minors of flattenings. (Kostant)
(2) $\sigma_{2}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 3-minors of flattenings. (Landsberg-Manivel)
(3) $\sigma_{3}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 4-minors of flattenings give nothing. Instead, use Strassen's commutation conditions. (Landsberg-Weyman)

Conjecture (Garcia-Stillman-Sturmfels, Pachter-Sturmfels)

The 3-minors of flattenings generate the ideal of $\sigma_{2}(X)$ when X is a Segre variety.

Known cases:
(1) 2 factors (classical)
(2) 3 factors, and the set-theoretic version for any number of factors (Landsberg and Manivel)

A conjecture about flattenings

(1) $\sigma_{1}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 2-minors of flattenings. (Kostant)
(2) $\sigma_{2}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 3-minors of flattenings. (Landsberg-Manivel)
(3) $\sigma_{3}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 4-minors of flattenings give nothing. Instead, use Strassen's commutation conditions. (Landsberg-Weyman)

Conjecture (Garcia-Stillman-Sturmfels, Pachter-Sturmfels)

The 3-minors of flattenings generate the ideal of $\sigma_{2}(X)$ when X is a Segre variety.

Known cases:
(1) 2 factors (classical)
(2) 3 factors, and the set-theoretic version for any number of factors (Landsberg and Manivel)
(3) 4 factors (Landsberg and Weyman)

A conjecture about flattenings

(1) $\sigma_{1}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right):$ 2-minors of flattenings. (Kostant)
(2) $\sigma_{2}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 3-minors of flattenings. (Landsberg-Manivel)
(3) $\sigma_{3}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$: 4-minors of flattenings give nothing. Instead, use Strassen's commutation conditions. (Landsberg-Weyman)

Conjecture (Garcia-Stillman-Sturmfels, Pachter-Sturmfels)

The 3-minors of flattenings generate the ideal of $\sigma_{2}(X)$ when X is a Segre variety.

Known cases:
(1) 2 factors (classical)
(2) 3 factors, and the set-theoretic version for any number of factors
(Landsberg and Manivel)
(3) 4 factors (Landsberg and Weyman)
(4) 5 factors (Allman and Rhodes)

Example: Veronese embeddings of \mathbb{P}^{1}

When $n=1$, write $V=V_{1}, d=d_{1}$. If $\operatorname{dim}(V)=2$ (with basis $\{x, y\}$ of $\left.V^{*}\right), X$ is a rational normal curve of degree d, embedded by

$$
[x: y] \longrightarrow\left[x^{d}: x^{d-1} \cdot y: \cdots: x \cdot y^{d-1}: y^{d}\right]
$$

Write $z_{i} \in \operatorname{Sym}^{d} V$ for the coordinate function of the ambient projective space $\mathbb{P}\left(\right.$ Sym $\left.^{d} V^{*}\right)$ corresponding to $x^{d-i} \cdot y^{i}$.

Example: Veronese embeddings of \mathbb{P}^{1}

When $n=1$, write $V=V_{1}, d=d_{1}$. If $\operatorname{dim}(V)=2$ (with basis $\{x, y\}$ of V^{*}), X is a rational normal curve of degree d, embedded by

$$
[x: y] \longrightarrow\left[x^{d}: x^{d-1} \cdot y: \cdots: x \cdot y^{d-1}: y^{d}\right]
$$

Write $z_{i} \in \operatorname{Sym}^{d} V$ for the coordinate function of the ambient projective space $\mathbb{P}\left(\right.$ Sym $\left.^{d} V^{*}\right)$ corresponding to $x^{d-i} \cdot y^{i}$. We obtain symmetric flattenings (or catalecticant matrices $\operatorname{Cat}(a, b)$) by writing the multiplication table of $\mathrm{Sym}^{a} V \otimes \operatorname{Sym}^{b} V \rightarrow \operatorname{Sym}^{d} V$.

Example: Veronese embeddings of \mathbb{P}^{1}

When $n=1$, write $V=V_{1}, d=d_{1}$. If $\operatorname{dim}(V)=2$ (with basis $\{x, y\}$ of V^{*}), X is a rational normal curve of degree d, embedded by

$$
[x: y] \longrightarrow\left[x^{d}: x^{d-1} \cdot y: \cdots: x \cdot y^{d-1}: y^{d}\right]
$$

Write $z_{i} \in \operatorname{Sym}^{d} V$ for the coordinate function of the ambient projective space $\mathbb{P}\left(\right.$ Sym $\left.^{d} V^{*}\right)$ corresponding to $x^{d-i} \cdot y^{i}$. We obtain symmetric flattenings (or catalecticant matrices $\operatorname{Cat}(a, b)$) by writing the multiplication table of $\mathrm{Sym}^{a} V \otimes \mathrm{Sym}^{b} V \rightarrow \mathrm{Sym}^{d} V$. For $d=6$, we get
x^{3}
$x^{2} \cdot y$

$x \cdot y^{2}$

y^{3}
$\begin{array}{ccccc}x^{3} & x^{2} \cdot y & x \cdot y^{2} & y^{3} \\ z_{0} & z_{1} & z_{2} & z_{3} \\ z_{1} & z_{2} & z_{3} & z_{4} \\ z_{2} & z_{3} & z_{4} & z_{5} \\ z_{3} & z_{4} & z_{5} & z_{6}\end{array}$

Example: Veronese embeddings of \mathbb{P}^{1}

When $n=1$, write $V=V_{1}, d=d_{1}$. If $\operatorname{dim}(V)=2$ (with basis $\{x, y\}$ of V^{*}), X is a rational normal curve of degree d, embedded by

$$
[x: y] \longrightarrow\left[x^{d}: x^{d-1} \cdot y: \cdots: x \cdot y^{d-1}: y^{d}\right]
$$

Write $z_{i} \in \operatorname{Sym}^{d} V$ for the coordinate function of the ambient projective space $\mathbb{P}\left(\right.$ Sym $\left.^{d} V^{*}\right)$ corresponding to $x^{d-i} \cdot y^{i}$. We obtain symmetric flattenings (or catalecticant matrices $\operatorname{Cat}(a, b)$) by writing the multiplication table of $\mathrm{Sym}^{a} V \otimes \operatorname{Sym}^{b} V \rightarrow \operatorname{Sym}^{d} V$. For $d=6$, we get

$$
\begin{aligned}
& \begin{array}{c}
\\
\\
x^{3} \\
x^{2} \cdot y \\
\\
x \cdot y^{2} \\
\\
y^{3}
\end{array} \begin{array}{ccccc}
x^{3} & x^{2} \cdot y & x \cdot y^{2} & y^{3} \\
z_{0} & z_{1} & z_{2} & z_{3} \\
z_{1} & z_{2} & z_{3} & z_{4} \\
z_{2} & z_{3} & z_{4} & z_{5} \\
z_{3} & z_{4} & z_{5} & z_{6}
\end{array} \\
& \operatorname{Cat}(2,4):\left[\begin{array}{lllll}
z_{0} & z_{1} & z_{2} & z_{3} & z_{4} \\
z_{1} & z_{2} & z_{3} & z_{4} & z_{5} \\
z_{2} & z_{3} & z_{4} & z_{5} & z_{6}
\end{array}\right]
\end{aligned}
$$

Example: Veronese embeddings of \mathbb{P}^{1}

When $n=1$, write $V=V_{1}, d=d_{1}$. If $\operatorname{dim}(V)=2$ (with basis $\{x, y\}$ of V^{*}), X is a rational normal curve of degree d, embedded by

$$
[x: y] \longrightarrow\left[x^{d}: x^{d-1} \cdot y: \cdots: x \cdot y^{d-1}: y^{d}\right]
$$

Write $z_{i} \in \operatorname{Sym}^{d} V$ for the coordinate function of the ambient projective space $\mathbb{P}\left(\right.$ Sym $\left.^{d} V^{*}\right)$ corresponding to $x^{d-i} \cdot y^{i}$. We obtain symmetric flattenings (or catalecticant matrices $\operatorname{Cat}(a, b)$) by writing the multiplication table of $\mathrm{Sym}^{a} V \otimes \operatorname{Sym}^{b} V \rightarrow \operatorname{Sym}^{d} V$. For $d=6$, we get
$\begin{array}{rrrrr} & x^{3} \\ \operatorname{Cat}(3,3): x^{3} & x^{2} \cdot y & x \cdot y^{2} & y^{3} \\ x^{2} \cdot y \\ x \cdot y^{2} & z_{1} & z_{2} & z_{3} & \operatorname{Cat}(5,1): \\ y^{3} & z_{1} & z_{2} & z_{3} & z_{4} \\ z_{2} & z_{3} & z_{4} & z_{5} \\ z_{3} & z_{4} & z_{5} & z_{6}\end{array} \quad\left[\begin{array}{cc}z_{0} & z_{1} \\ z_{1} & z_{2} \\ z_{2} & z_{3} \\ z_{3} & z_{4} \\ z_{4} & z_{5} \\ z_{5} & z_{6}\end{array}\right]$

Veronese varieties

Theorem (Gruson-Peskine, Eisenbud, Conca)
If X is a rational normal curve of degree d, then $I\left(\sigma_{k}(X)\right)$ is generated by the $(k+1)$-minors of any $\operatorname{Cat}(a, b)$, where $a, b \geq k, a+b=d$.

Veronese varieties

Theorem (Gruson-Peskine, Eisenbud, Conca)

If X is a rational normal curve of degree d, then $I\left(\sigma_{k}(X)\right)$ is generated by the $(k+1)$-minors of any $\operatorname{Cat}(a, b)$, where $a, b \geq k, a+b=d$.

Now assume that $\operatorname{dim}(V)$ is arbitrary. We can still talk about catalecticant matrices $\operatorname{Cat}(a, b)$ whenever $a+b=d$.

Veronese varieties

Theorem (Gruson-Peskine, Eisenbud, Conca)

If X is a rational normal curve of degree d, then $I\left(\sigma_{k}(X)\right)$ is generated by the $(k+1)$-minors of any $\operatorname{Cat}(a, b)$, where $a, b \geq k, a+b=d$.

Now assume that $\operatorname{dim}(V)$ is arbitrary. We can still talk about catalecticant matrices $\operatorname{Cat}(a, b)$ whenever $a+b=d$.
(0) $(k+1)$-minors of catalecticants vanish on $\sigma_{k}(X)$.

Veronese varieties

Theorem (Gruson-Peskine, Eisenbud, Conca)

If X is a rational normal curve of degree d, then $I\left(\sigma_{k}(X)\right)$ is generated by the $(k+1)$-minors of any $\operatorname{Cat}(a, b)$, where $a, b \geq k, a+b=d$.

Now assume that $\operatorname{dim}(V)$ is arbitrary. We can still talk about catalecticant matrices $\operatorname{Cat}(a, b)$ whenever $a+b=d$.
(1) ($k+1$)-minors of catalecticants vanish on $\sigma_{k}(X)$.
(2) $X=\sigma_{1}(X)$ is defined by the $2-$ minors of any $\operatorname{Cat}(a, b)$. (Pucci)

Veronese varieties

Theorem (Gruson-Peskine, Eisenbud, Conca)

If X is a rational normal curve of degree d, then $I\left(\sigma_{k}(X)\right)$ is generated by the $(k+1)$-minors of any $\operatorname{Cat}(a, b)$, where $a, b \geq k, a+b=d$.

Now assume that $\operatorname{dim}(V)$ is arbitrary. We can still talk about catalecticant matrices $\operatorname{Cat}(a, b)$ whenever $a+b=d$.
(1) $(k+1)$-minors of catalecticants vanish on $\sigma_{k}(X)$.
(2) $X=\sigma_{1}(X)$ is defined by the $2-$ minors of any $\operatorname{Cat}(a, b)$. (Pucci)
(3) $\sigma_{2}(X)$ is defined by the 3 -minors of $\operatorname{Cat}(1, d-1)$ and Cat(2, $d-2$). (Kanev)

Veronese varieties

Theorem (Gruson-Peskine, Eisenbud, Conca)

If X is a rational normal curve of degree d, then $I\left(\sigma_{k}(X)\right)$ is generated by the $(k+1)$-minors of any $\operatorname{Cat}(a, b)$, where $a, b \geq k, a+b=d$.

Now assume that $\operatorname{dim}(V)$ is arbitrary. We can still talk about catalecticant matrices $\operatorname{Cat}(a, b)$ whenever $a+b=d$.
(1) $(k+1)$-minors of catalecticants vanish on $\sigma_{k}(X)$.
(2) $X=\sigma_{1}(X)$ is defined by the $2-$ minors of any $\operatorname{Cat}(a, b)$. (Pucci)
(3) $\sigma_{2}(X)$ is defined by the 3 -minors of $\operatorname{Cat}(1, d-1)$ and $\operatorname{Cat}(2, d-2)$. (Kanev)
(9) $\sigma_{k}(X)$ is NOT defined by $(k+1)$-minors of catalecticants in general. (Buczyńska-Buczyński)

Veronese varieties

Theorem (Gruson-Peskine, Eisenbud, Conca)

If X is a rational normal curve of degree d, then $I\left(\sigma_{k}(X)\right)$ is generated by the $(k+1)$-minors of any $\operatorname{Cat}(a, b)$, where $a, b \geq k, a+b=d$.

Now assume that $\operatorname{dim}(V)$ is arbitrary. We can still talk about catalecticant matrices $\operatorname{Cat}(a, b)$ whenever $a+b=d$.
(1) $(k+1)$-minors of catalecticants vanish on $\sigma_{k}(X)$.
(2) $X=\sigma_{1}(X)$ is defined by the $2-$ minors of any $\operatorname{Cat}(a, b)$. (Pucci)
(3) $\sigma_{2}(X)$ is defined by the 3 -minors of $\operatorname{Cat}(1, d-1)$ and Cat(2, $d-2$). (Kanev)
(9) $\sigma_{k}(X)$ is NOT defined by $(k+1)$-minors of catalecticants in general. (Buczyńska-Buczyński)

Conjecture (Geramita)

The ideals of 3-minors of $\operatorname{Cat}(a, b)$ are all equal for $a, b \geq 2$.

Main Results

Theorem (-)
Geramita conjecture holds, as well as its generalization to 4-minors.

Main Results

Theorem (-)
Geramita conjecture holds, as well as its generalization to 4-minors.

Question

Are the ideals of k-minors of $\operatorname{Cat}(a, b)$ all equal for $a, b \geq k-1$?

Main Results

Theorem (-)
Geramita conjecture holds, as well as its generalization to 4-minors.

Question

Are the ideals of k-minors of $\operatorname{Cat}(a, b)$ all equal for $a, b \geq k-1$?

Theorem (-)

For X a Segre-Veronese variety, the ideal of $\sigma_{2}(X)$ is generated by 3 -minors of flattenings. Moreover, one has an explicit description of the multiplicities of the irreducible representations that occur in the decomposition of the homogeneous coordinate ring of $\sigma_{2}(X)$.

Polarization and Specialization

Suppose $n=2, d_{1}=2, d_{2}=1$, and focus on the equations of degree 4 of $\sigma_{2}(X)$. We look for the kernel of

$$
\begin{gathered}
s^{\#}: \operatorname{Sym}^{4}\left(\operatorname{Sym}^{2} V_{1} \otimes V_{2}\right) \longrightarrow \\
\bigoplus_{a+b=4}\left(\operatorname{Sym}^{2 a} V_{1} \otimes \operatorname{Sym}^{a} V_{2}\right) \otimes\left(\operatorname{Sym}^{2 b} V_{1} \otimes \operatorname{Sym}^{b} V_{2}\right)
\end{gathered}
$$

Polarization and Specialization

Suppose $n=2, d_{1}=2, d_{2}=1$, and focus on the equations of degree 4 of $\sigma_{2}(X)$. We look for the kernel of

$$
\begin{gathered}
s^{\#}: \operatorname{Sym}^{4}\left(\operatorname{Sym}^{2} V_{1} \otimes V_{2}\right) \longrightarrow \\
\bigoplus_{a+b=4}\left(\operatorname{Sym}^{2 a} V_{1} \otimes \operatorname{Sym}^{a} V_{2}\right) \otimes\left(\operatorname{Sym}^{2 b} V_{1} \otimes \operatorname{Sym}^{b} V_{2}\right)
\end{gathered}
$$

"Representation theory yoga" \Longrightarrow free to choose $m_{i}=\operatorname{dim}\left(V_{i}\right)$ arbitrarily, as long as $m_{i} \geq 2$.

Polarization and Specialization

Suppose $n=2, d_{1}=2, d_{2}=1$, and focus on the equations of degree 4 of $\sigma_{2}(X)$. We look for the kernel of

$$
\begin{gathered}
s^{\#}: \operatorname{Sym}^{4}\left(\operatorname{Sym}^{2} V_{1} \otimes V_{2}\right) \longrightarrow \\
\bigoplus_{a+b=4}\left(\operatorname{Sym}^{2 a} V_{1} \otimes \operatorname{Sym}^{a} V_{2}\right) \otimes\left(\operatorname{Sym}^{2 b} V_{1} \otimes \operatorname{Sym}^{b} V_{2}\right)
\end{gathered}
$$

"Representation theory yoga" \Longrightarrow free to choose $m_{i}=\operatorname{dim}\left(V_{i}\right)$ arbitrarily, as long as $m_{i} \geq 2$. Take $m_{1}=8, m_{2}=4$.

Polarization and Specialization

Suppose $n=2, d_{1}=2, d_{2}=1$, and focus on the equations of degree 4 of $\sigma_{2}(X)$. We look for the kernel of

$$
\begin{gathered}
s^{\#}: \operatorname{Sym}^{4}\left(\operatorname{Sym}^{2} V_{1} \otimes V_{2}\right) \longrightarrow \\
\bigoplus_{a+b=4}\left(\operatorname{Sym}^{2 a} V_{1} \otimes \operatorname{Sym}^{a} V_{2}\right) \otimes\left(\operatorname{Sym}^{2 b} V_{1} \otimes \operatorname{Sym}^{b} V_{2}\right) .
\end{gathered}
$$

"Representation theory yoga" \Longrightarrow free to choose $m_{i}=\operatorname{dim}\left(V_{i}\right)$ arbitrarily, as long as $m_{i} \geq 2$. Take $m_{1}=8, m_{2}=4$. The (SL-) zero-weight spaces S and T of the source and target of $s^{\#}$ are representations of the Weyl group $S_{8} \times S_{4}$. Enough to analyze

$$
s_{0}^{\#}: S \longrightarrow T .
$$

Polarization and Specialization

Suppose $n=2, d_{1}=2, d_{2}=1$, and focus on the equations of degree 4 of $\sigma_{2}(X)$. We look for the kernel of

$$
\begin{gathered}
s^{\#}: \operatorname{Sym}^{4}\left(\operatorname{Sym}^{2} V_{1} \otimes V_{2}\right) \longrightarrow \\
\bigoplus_{a+b=4}\left(\operatorname{Sym}^{2 a} V_{1} \otimes \operatorname{Sym}^{a} V_{2}\right) \otimes\left(\operatorname{Sym}^{2 b} V_{1} \otimes \operatorname{Sym}^{b} V_{2}\right) .
\end{gathered}
$$

"Representation theory yoga" \Longrightarrow free to choose $m_{i}=\operatorname{dim}\left(V_{i}\right)$ arbitrarily, as long as $m_{i} \geq 2$. Take $m_{1}=8, m_{2}=4$. The (SL-) zero-weight spaces S and T of the source and target of $s^{\#}$ are representations of the Weyl group $S_{8} \times S_{4}$. Enough to analyze

$$
s_{0}^{\#}: S \longrightarrow T
$$

To do that, use the representation theory of (products of) symmetric groups, and the combinatorics that comes with it.

Polarization and Specialization

A typical monomial in S looks like

$$
\left(x_{1} x_{2} \otimes y_{2}\right) \cdot\left(x_{3} x_{6} \otimes y_{1}\right) \cdot\left(x_{4} x_{7} \otimes y_{4}\right) \cdot\left(x_{5} x_{8} \otimes y_{3}\right)
$$

$\left(\left(x_{i}\right)_{i}\right.$ and $\left(y_{j}\right)_{j}$ are bases for $\left.V_{1}, V_{2}\right)$.

Polarization and Specialization

A typical monomial in S looks like

$$
\left(x_{1} x_{2} \otimes y_{2}\right) \cdot\left(x_{3} x_{6} \otimes y_{1}\right) \cdot\left(x_{4} x_{7} \otimes y_{4}\right) \cdot\left(x_{5} x_{8} \otimes y_{3}\right),
$$

$\left(\left(x_{i}\right)_{i}\right.$ and $\left(y_{j}\right)_{j}$ are bases for $\left.V_{1}, V_{2}\right)$. It specializes to

$$
m=\left(x_{1}^{2} \otimes y_{2}\right) \cdot\left(x_{3} x_{2} \otimes y_{1}\right) \cdot\left(x_{2} x_{3} \otimes y_{2}\right) \cdot\left(x_{3}^{2} \otimes y_{2}\right)
$$

via the specialization map ϕ that sends

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\} \rightarrow & x_{1},\left\{x_{4}, x_{6}\right\} \rightarrow x_{2},\left\{x_{3}, x_{5}, x_{7}, x_{8}\right\} \rightarrow x_{3}, \\
& \left\{y_{1}\right\} \rightarrow y_{1},\left\{y_{2}, y_{3}, y_{4}\right\} \rightarrow y_{2} .
\end{aligned}
$$

Polarization and Specialization

A typical monomial in S looks like

$$
\left(x_{1} x_{2} \otimes y_{2}\right) \cdot\left(x_{3} x_{6} \otimes y_{1}\right) \cdot\left(x_{4} x_{7} \otimes y_{4}\right) \cdot\left(x_{5} x_{8} \otimes y_{3}\right),
$$

$\left(\left(x_{i}\right)_{i}\right.$ and $\left(y_{j}\right)_{j}$ are bases for $\left.V_{1}, V_{2}\right)$. It specializes to

$$
m=\left(x_{1}^{2} \otimes y_{2}\right) \cdot\left(x_{3} x_{2} \otimes y_{1}\right) \cdot\left(x_{2} x_{3} \otimes y_{2}\right) \cdot\left(x_{3}^{2} \otimes y_{2}\right)
$$

via the specialization map ϕ that sends

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\} \rightarrow & x_{1},\left\{x_{4}, x_{6}\right\} \rightarrow x_{2},\left\{x_{3}, x_{5}, x_{7}, x_{8}\right\} \rightarrow x_{3}, \\
& \left\{y_{1}\right\} \rightarrow y_{1},\left\{y_{2}, y_{3}, y_{4}\right\} \rightarrow y_{2} .
\end{aligned}
$$

Any kernel element of $s_{0}^{\#}$ specializes to a kernel element of $s^{\#}$.

Polarization and Specialization

A typical monomial in S looks like

$$
\left(x_{1} x_{2} \otimes y_{2}\right) \cdot\left(x_{3} x_{6} \otimes y_{1}\right) \cdot\left(x_{4} x_{7} \otimes y_{4}\right) \cdot\left(x_{5} x_{8} \otimes y_{3}\right),
$$

$\left(\left(x_{i}\right)_{i}\right.$ and $\left(y_{j}\right)_{j}$ are bases for $\left.V_{1}, V_{2}\right)$. It specializes to

$$
m=\left(x_{1}^{2} \otimes y_{2}\right) \cdot\left(x_{3} x_{2} \otimes y_{1}\right) \cdot\left(x_{2} x_{3} \otimes y_{2}\right) \cdot\left(x_{3}^{2} \otimes y_{2}\right)
$$

via the specialization map ϕ that sends

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\} \rightarrow & x_{1},\left\{x_{4}, x_{6}\right\} \rightarrow x_{2},\left\{x_{3}, x_{5}, x_{7}, x_{8}\right\} \rightarrow x_{3}, \\
& \left\{y_{1}\right\} \rightarrow y_{1},\left\{y_{2}, y_{3}, y_{4}\right\} \rightarrow y_{2} .
\end{aligned}
$$

Any kernel element of $s_{0}^{\#}$ specializes to a kernel element of $s^{\#}$. We can polarize m by

$$
m \mapsto \operatorname{average}\left(m_{0}: \phi\left(m_{0}\right)=m\right) .
$$

Polarization and Specialization

A typical monomial in S looks like

$$
\left(x_{1} x_{2} \otimes y_{2}\right) \cdot\left(x_{3} x_{6} \otimes y_{1}\right) \cdot\left(x_{4} x_{7} \otimes y_{4}\right) \cdot\left(x_{5} x_{8} \otimes y_{3}\right),
$$

$\left(\left(x_{i}\right)_{i}\right.$ and $\left(y_{j}\right)_{j}$ are bases for $\left.V_{1}, V_{2}\right)$. It specializes to

$$
m=\left(x_{1}^{2} \otimes y_{2}\right) \cdot\left(x_{3} x_{2} \otimes y_{1}\right) \cdot\left(x_{2} x_{3} \otimes y_{2}\right) \cdot\left(x_{3}^{2} \otimes y_{2}\right)
$$

via the specialization map ϕ that sends

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\} \rightarrow & x_{1},\left\{x_{4}, x_{6}\right\} \rightarrow x_{2},\left\{x_{3}, x_{5}, x_{7}, x_{8}\right\} \rightarrow x_{3}, \\
& \left\{y_{1}\right\} \rightarrow y_{1},\left\{y_{2}, y_{3}, y_{4}\right\} \rightarrow y_{2} .
\end{aligned}
$$

Any kernel element of $s_{0}^{\#}$ specializes to a kernel element of $s^{\#}$. We can polarize m by

$$
m \mapsto \operatorname{average}\left(m_{0}: \phi\left(m_{0}\right)=m\right) .
$$

Any kernel element of $s^{\#}$ polarizes to a kernel element of $s_{0}^{\#}$.

