Secant Varieties of Segre–Veronese Varieties

Claudiu Raicu

Princeton University

Raleigh, October 2011
Overview

1. Secant Varieties
2. Segre–Veronese Varieties
3. Flattenings
4. Main Results and Techniques
Secant Varieties

Definition

Given a subvariety $X \subset \mathbb{P}^N$, the $(k - 1)$–st secant variety of X, denoted $\sigma_k(X)$, is the closure of the union of linear subspaces spanned by k points on X:

$$\sigma_k(X) = \bigcup_{x_1, \ldots, x_k \in X} \mathbb{P}_{x_1, \ldots, x_k}.$$
Secant Varieties

Definition

Given a subvariety $X \subset \mathbb{P}^N$, the $(k - 1)$–st secant variety of X, denoted $\sigma_k(X)$, is the closure of the union of linear subspaces spanned by k points on X:

$$\sigma_k(X) = \bigcup_{x_1, \ldots, x_k \in X} \mathbb{P}^{x_1, \ldots, x_k}.$$

Alternatively, write $\mathbb{P}^N = \mathbb{P}W$ for some vector space W, and let $\hat{X} \subset W$ denote the cone over X. The cone $\sigma_k(X)$ over $\sigma_k(X)$ is the closure of the image of the map

$$s : \hat{X} \times \cdots \times \hat{X} \rightarrow W,$$

$$s(x_1, \cdots, x_k) = x_1 + \cdots + x_k.$$
Secant Varieties

Definition

Given a subvariety $X \subset \mathbb{P}^N$, the $(k - 1)$–st secant variety of X, denoted $\sigma_k(X)$, is the closure of the union of linear subspaces spanned by k points on X:

$$\sigma_k(X) = \bigcup_{x_1, \ldots, x_k \in X} \mathbb{P}^{x_1, \ldots , x_k}.$$

Alternatively, write $\mathbb{P}^N = \mathbb{P} W$ for some vector space W, and let $\hat{X} \subset W$ denote the cone over X. The cone $\sigma_k(X)$ over $\sigma_k(X)$ is the closure of the image of the map

$$s : \hat{X} \times \cdots \times \hat{X} \longrightarrow W,$$

$$s(x_1, \cdots , x_k) = x_1 + \cdots + x_k.$$

Problem

Given (the equations of) X, determine (the equations of) $\sigma_k(X)$.
Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$s^\# : \text{Sym}({\mathcal{W}^*}) \rightarrow K[X \times \cdots \times X] = K[X] \otimes \cdots \otimes K[X].$$

$I(\sigma_k(X))$ and $K[\sigma_k(X)]$ are the kernel and image respectively of $s^\#$.

Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$s^\# : \text{Sym}(W^*) \rightarrow K[X \times \cdots \times X] = K[X] \otimes \cdots \otimes K[X].$$

$I(\sigma_k(X))$ and $K[\sigma_k(X)]$ are the kernel and image respectively of $s^\#$.

Big Problem

Computing the kernel and image of $s^\#$ is really hard!
Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$s^\# : \text{Sym}(W^*) \to K[X \times \cdots \times X] = K[X] \otimes \cdots \otimes K[X].$$

$I(\sigma_k(X))$ and $K[\sigma_k(X)]$ are the kernel and image respectively of $s^\#$.

Big Problem

Computing the kernel and image of $s^\#$ is really hard!

Interesting examples:

1. curves;
Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$s^\# : \text{Sym}(W^*) \to K[X \times \cdots \times X] = K[X] \otimes \cdots \otimes K[X].$$

$I(\sigma_k(X))$ and $K[\sigma_k(X)]$ are the kernel and image respectively of $s^\#$.

Big Problem

Computing the kernel and image of $s^\#$ is really hard!

Interesting examples:

1. curves;
2. toric varieties;
Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$s^\# : \text{Sym}(W^*) \to K[X \times \cdots \times X] = K[X] \otimes \cdots \otimes K[X].$$

$I(\sigma_k(X))$ and $K[\sigma_k(X)]$ are the kernel and image respectively of $s^\#$.

Big Problem

Computing the kernel and image of $s^\#$ is really hard!

Interesting examples:

1. curves;
2. toric varieties;
3. homogeneous spaces;
Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$s^\# : \operatorname{Sym}(W^*) \to K[X \times \cdots \times X] = K[X] \otimes \cdots \otimes K[X].$$

$I(\sigma_k(X))$ and $K[\sigma_k(X)]$ are the kernel and image respectively of $s^\#$.

Big Problem

Computing the kernel and image of $s^\#$ is really hard!

Interesting examples:

1. curves;
2. toric varieties;
3. homogeneous spaces;
4. Grassmannians;
Solution to Problem

The morphism s of affine varieties corresponds to a ring map

$$s^\# : \text{Sym}(W^*) \to K[X \times \cdots \times X] = K[X] \otimes \cdots \otimes K[X].$$

$I(\sigma_k(X))$ and $K[\sigma_k(X)]$ are the kernel and image respectively of $s^\#$.

Big Problem

Computing the kernel and image of $s^\#$ is really hard!

Interesting examples:

1. curves;
2. toric varieties;
3. homogeneous spaces;
4. Grassmannians;
5. Segre and Veronese varieties.
Segre–Veronese Varieties

Consider vector spaces V_i, $i = 1, \cdots, n$ with duals V_i^*, and positive integers d_1, \cdots, d_n. We let

$$X = \mathbb{P} V_1^* \times \cdots \times \mathbb{P} V_n^*$$

and think of it as a subvariety in projective space via the embedding determined by the line bundle $\mathcal{O}_X(d_1, \cdots, d_n)$.
Segre–Veronese Varieties

Consider vector spaces V_i, $i = 1, \cdots, n$ with duals V_i^*, and positive integers d_1, \cdots, d_n. We let

$$X = \mathbb{P} V_1^* \times \cdots \times \mathbb{P} V_n^*$$

and think of it as a subvariety in projective space via the embedding determined by the line bundle $\mathcal{O}_X(d_1, \cdots, d_n)$. X is the image of

$$SV_{d_1, \cdots, d_n} : \mathbb{P} V_1^* \times \cdots \times \mathbb{P} V_n^* \to \mathbb{P}(\text{Sym}^{d_1} V_1^* \otimes \cdots \otimes \text{Sym}^{d_n} V_n^*),$$

$$([e_1], \cdots, [e_n]) \mapsto [e_1^{d_1} \otimes \cdots \otimes e_n^{d_n}].$$

We call X a Segre–Veronese variety.
Segre–Veronese Varieties

Consider vector spaces V_i, $i = 1, \cdots, n$ with duals V_i^*, and positive integers d_1, \cdots, d_n. We let

$$X = \mathbb{P} V_1^* \times \cdots \times \mathbb{P} V_n^*$$

and think of it as a subvariety in projective space via the embedding determined by the line bundle $\mathcal{O}_X(d_1, \cdots, d_n)$. X is the image of

$$SV_{d_1, \cdots, d_n} : \mathbb{P} V_1^* \times \cdots \times \mathbb{P} V_n^* \to \mathbb{P} (\text{Sym}^{d_1} V_1^* \otimes \cdots \otimes \text{Sym}^{d_n} V_n^*),$$

$$([e_1], \cdots, [e_n]) \mapsto [e_1^{d_1} \otimes \cdots \otimes e_n^{d_n}].$$

We call X a Segre–Veronese variety. Write W^* for the linear forms on the target of SV_{d_1, \cdots, d_n}, $W^* = \text{Sym}^{d_1} V_1 \otimes \cdots \otimes \text{Sym}^{d_n} V_n$. To compute the equations of $\sigma_k(X)$ it’s “enough” to understand the kernel of

$$s^\# : \text{Sym}(W^*) \to \left(\bigoplus_{r \geq 0} \text{Sym}^{rd_1} V_1 \otimes \cdots \otimes \text{Sym}^{rd_n} V_n \right)^{\otimes k}.$$
Example: generic matrices, flattenings

When all $d_i = 1$, X is the Segre variety (pure tensors). When $n = 2$ we get matrices of rank 1 as the image of

$$SV_{1,1} : \mathbb{P}V_1^* \times \mathbb{P}V_2^* \to \mathbb{P}(V_1^* \otimes V_2^*).$$
Example: generic matrices, flattenings

When all $d_i = 1$, X is the Segre variety (pure tensors). When $n = 2$ we get matrices of rank 1 as the image of

$$SV_{1,1} : \mathbb{P} V_1^* \times \mathbb{P} V_2^* \to \mathbb{P}(V_1^* \otimes V_2^*).$$

More generally, $\sigma_k(X)$ is the collection of matrices of rank at most k, which are defined by the vanishing of their $(k + 1)$–minors.
Example: generic matrices, flattenings

When all $d_i = 1$, X is the Segre variety (pure tensors). When $n = 2$ we get matrices of rank 1 as the image of

$$SV_{1,1} : \mathbb{P}V_1^* \times \mathbb{P}V_2^* \to \mathbb{P}(V_1^* \otimes V_2^*).$$

More generally, $\sigma_k(X)$ is the collection of matrices of rank at most k, which are defined by the vanishing of their $(k + 1)$–minors.

If $n = 3$, $\dim(V_i) = 3$, the ambient space consists of $3 \times 3 \times 3$ tensors $T = (x_{ijk})$, which we can flatten by thinking of $V_1^* \otimes V_2^*$ as a single factor:

$$V_1^* \otimes V_2^* \otimes V_3^* = (V_1^* \otimes V_2^*) \otimes V_3^*.$$
Example: generic matrices, flattenings

When all $d_i = 1$, X is the Segre variety (pure tensors). When $n = 2$ we get matrices of rank 1 as the image of

$$SV_{1,1} : \mathbb{P} V_1^* \times \mathbb{P} V_2^* \to \mathbb{P}(V_1^* \otimes V_2^*).$$

More generally, $\sigma_k(X)$ is the collection of matrices of rank at most k, which are defined by the vanishing of their $(k + 1)$–minors.

If $n = 3$, $\dim(V_i) = 3$, the ambient space consists of $3 \times 3 \times 3$ tensors $T = (x_{ijk})$, which we can flatten by thinking of $V_1^* \otimes V_2^*$ as a single factor:

$$V_1^* \otimes V_2^* \otimes V_3^* = (V_1^* \otimes V_2^*) \otimes V_3^*.$$

The tensor T flattens to a 3×9 matrix

$$
\begin{bmatrix}
 x_{11,1} & x_{12,1} & x_{13,1} & x_{21,1} & x_{22,1} & x_{23,1} & x_{31,1} & x_{32,1} & x_{33,1} \\
 x_{11,2} & x_{12,2} & x_{13,2} & x_{21,2} & x_{22,2} & x_{23,2} & x_{31,2} & x_{32,2} & x_{33,2} \\
 x_{11,3} & x_{12,3} & x_{13,3} & x_{21,3} & x_{22,3} & x_{23,3} & x_{31,3} & x_{32,3} & x_{33,3}
\end{bmatrix}
$$
A conjecture about flattenings

1. $\sigma_1(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 2–minors of flattenings. (Kostant)
A conjecture about flattenings

1. \(\sigma_1(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2) \): 2–minors of flattenings. (Kostant)
2. \(\sigma_2(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2) \): 3–minors of flattenings. (Landsberg–Manivel)
A conjecture about flattenings

1. $\sigma_1(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 2–minors of flattenings. (Kostant)
2. $\sigma_2(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 3–minors of flattenings. (Landsberg–Manivel)
3. $\sigma_3(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 4–minors of flattenings
A conjecture about flattenings

1. $\sigma_1(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 2–minors of flattenings. (Kostant)
2. $\sigma_2(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 3–minors of flattenings. (Landsberg–Manivel)
3. $\sigma_3(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 4–minors of flattenings give nothing. Instead, use Strassen’s commutation conditions. (Landsberg–Weyman)
A conjecture about flattenings

1. $\sigma_1(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 2–minors of flattenings. (Kostant)
2. $\sigma_2(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 3–minors of flattenings. (Landsberg–Manivel)
3. $\sigma_3(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 4–minors of flattenings give nothing. Instead, use Strassen’s commutation conditions. (Landsberg–Weyman)

Conjecture (Garcia–Stillman–Sturmfels, Pachter–Sturmfels)

The 3–minors of flattenings generate the ideal of $\sigma_2(X)$ when X is a Segre variety.
A conjecture about flattenings

1. $\sigma_1(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 2–minors of flattenings. (Kostant)
2. $\sigma_2(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 3–minors of flattenings. (Landsberg–Manivel)
3. $\sigma_3(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 4–minors of flattenings give nothing. Instead, use Strassen’s commutation conditions. (Landsberg–Weyman)

Conjecture (Garcia–Stillman–Sturmfels, Pachter–Sturmfels)

The 3–minors of flattenings generate the ideal of $\sigma_2(X)$ when X is a Segre variety.

Known cases:

1. 2 factors (classical)
A conjecture about flattenings

1. $\sigma_1(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 2–minors of flattenings. (Kostant)
2. $\sigma_2(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 3–minors of flattenings. (Landsberg–Manivel)
3. $\sigma_3(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 4–minors of flattenings give nothing. Instead, use Strassen’s commutation conditions. (Landsberg–Weyman)

Conjecture (Garcia–Stillman–Sturmfels, Pachter–Sturmfels)

The 3–minors of flattenings generate the ideal of $\sigma_2(X)$ when X is a Segre variety.

Known cases:

1. 2 factors (classical)
2. 3 factors, and the set–theoretic version for any number of factors (Landsberg and Manivel)
A conjecture about flattenings

1. $\sigma_1(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 2–minors of flattenings. (Kostant)
2. $\sigma_2(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 3–minors of flattenings. (Landsberg–Manivel)
3. $\sigma_3(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 4–minors of flattenings give nothing. Instead, use Strassen’s commutation conditions. (Landsberg–Weyman)

Conjecture (Garcia–Stillman–Sturmfels, Pachter–Sturmfels)

The 3–minors of flattenings generate the ideal of $\sigma_2(X)$ when X is a Segre variety.

Known cases:

1. 2 factors (classical)
2. 3 factors, and the set–theoretic version for any number of factors (Landsberg and Manivel)
3. 4 factors (Landsberg and Weyman)
A conjecture about flattenings

1. $\sigma_1(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 2–minors of flattenings. (Kostant)
2. $\sigma_2(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 3–minors of flattenings. (Landsberg–Manivel)
3. $\sigma_3(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2)$: 4–minors of flattenings give nothing. Instead, use Strassen’s commutation conditions. (Landsberg–Weyman)

Conjecture (Garcia–Stillman–Sturmfels, Pachter–Sturmfels)

The 3–minors of flattenings generate the ideal of $\sigma_2(X)$ when X is a Segre variety.

Known cases:

1. 2 factors (classical)
2. 3 factors, and the set–theoretic version for any number of factors (Landsberg and Manivel)
3. 4 factors (Landsberg and Weyman)
4. 5 factors (Allman and Rhodes)
Example: Veronese embeddings of \mathbb{P}^1

When $n = 1$, write $V = V_1$, $d = d_1$. If $\dim(V) = 2$ (with basis \{x, y\} of V^*), X is a rational normal curve of degree d, embedded by

$$[x : y] \mapsto [x^d : x^{d-1} \cdot y : \cdots : x \cdot y^{d-1} : y^d].$$

Write $z_i \in \text{Sym}^d V$ for the coordinate function of the ambient projective space $\mathbb{P}(\text{Sym}^d V^*)$ corresponding to $x^{d-i} \cdot y^i$.
Example: Veronese embeddings of \mathbb{P}^1

When $n = 1$, write $V = V_1$, $d = d_1$. If $\dim(V) = 2$ (with basis $\{x, y\}$ of V^*), X is a rational normal curve of degree d, embedded by

$$[x : y] \longrightarrow [x^d : x^{d-1} \cdot y : \cdots : x \cdot y^{d-1} : y^d].$$

Write $z_i \in \text{Sym}^d V$ for the coordinate function of the ambient projective space $\mathbb{P}(\text{Sym}^d V^*)$ corresponding to $x^{d-i} \cdot y^i$. We obtain symmetric flattenings (or catalecticant matrices $\text{Cat}(a, b)$) by writing the multiplication table of $\text{Sym}^a V \otimes \text{Sym}^b V \rightarrow \text{Sym}^d V$.
Example: Veronese embeddings of \mathbb{P}^1
When $n = 1$, write $V = V_1$, $d = d_1$. If $\dim(V) = 2$ (with basis $\{x, y\}$ of V^*), X is a rational normal curve of degree d, embedded by

$$[x : y] \mapsto [x^d : x^{d-1} \cdot y : \cdots : x \cdot y^{d-1} : y^d].$$

Write $z_i \in \text{Sym}^d V$ for the coordinate function of the ambient projective space $\mathbb{P}(\text{Sym}^d V^*)$ corresponding to $x^{d-i} \cdot y^i$. We obtain symmetric flattenings (or catalecticant matrices $\text{Cat}(a, b)$) by writing the multiplication table of $\text{Sym}^a V \otimes \text{Sym}^b V \to \text{Sym}^d V$. For $d = 6$, we get

\[
\begin{array}{c|ccccc}
 & x^3 & x^2 \cdot y & x \cdot y^2 & y^3 \\
--- & --- & --- & --- & --- \\
x^3 & z_0 & z_1 & z_2 & z_3 \\
x^2 \cdot y & z_1 & z_2 & z_3 & z_4 \\
x \cdot y^2 & z_2 & z_3 & z_4 & z_5 \\
y^3 & z_3 & z_4 & z_5 & z_6 \\
\end{array}
\]
Example: Veronese embeddings of \mathbb{P}^1

When $n = 1$, write $V = V_1$, $d = d_1$. If $\dim(V) = 2$ (with basis $\{x, y\}$ of V^*), X is a rational normal curve of degree d, embedded by

$$[x : y] \mapsto [x^d : x^{d-1} \cdot y : \cdots : x \cdot y^{d-1} : y^d].$$

Write $z_i \in \text{Sym}^d V$ for the coordinate function of the ambient projective space $\mathbb{P}(\text{Sym}^d V^*)$ corresponding to $x^{d-i} \cdot y^i$. We obtain symmetric flattenings (or catalecticant matrices $\text{Cat}(a, b)$) by writing the multiplication table of $\text{Sym}^a V \otimes \text{Sym}^b V \to \text{Sym}^d V$. For $d = 6$, we get

\[
\begin{array}{c|cccc}
 & x^3 & x^2 \cdot y & x \cdot y^2 & y^3 \\
\hline
x^3 & z_0 & z_1 & z_2 & z_3 \\
x^2 \cdot y & z_1 & z_2 & z_3 & z_4 \\
x \cdot y^2 & z_2 & z_3 & z_4 & z_5 \\
y^3 & z_3 & z_4 & z_5 & z_6 \\
\end{array}
\]

\[
\text{Cat}(3, 3):
\[
\begin{bmatrix}
z_0 & z_1 & z_2 & z_3 & z_4 \\
z_1 & z_2 & z_3 & z_4 & z_5 \\
z_2 & z_3 & z_4 & z_5 & z_6 \\
\end{bmatrix}
\]

\[
\text{Cat}(2, 4):
\[
\begin{bmatrix}
z_0 & z_1 & z_2 & z_3 & z_4 \\
z_1 & z_2 & z_3 & z_4 & z_5 \\
z_2 & z_3 & z_4 & z_5 & z_6 \\
\end{bmatrix}
\]
Example: Veronese embeddings of \mathbb{P}^1

When $n = 1$, write $V = V_1$, $d = d_1$. If $\dim(V) = 2$ (with basis $\{x, y\}$ of V^*), X is a rational normal curve of degree d, embedded by

$$[x : y] \mapsto [x^d : x^{d-1} \cdot y : \cdots : x \cdot y^{d-1} : y^d].$$

Write $z_i \in \text{Sym}^d V$ for the coordinate function of the ambient projective space $\mathbb{P}(\text{Sym}^d V^*)$ corresponding to $x^{d-i} \cdot y^i$. We obtain symmetric flattenings (or catalecticant matrices $\text{Cat}(a, b)$) by writing the multiplication table of $\text{Sym}^a V \otimes \text{Sym}^b V \to \text{Sym}^d V$. For $d = 6$, we get

Cat(3, 3):

<table>
<thead>
<tr>
<th>x^3</th>
<th>$x^2 \cdot y$</th>
<th>$x \cdot y^2$</th>
<th>y^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^3</td>
<td>z_0</td>
<td>z_1</td>
<td>z_2</td>
</tr>
<tr>
<td>$x^2 \cdot y$</td>
<td>z_1</td>
<td>z_2</td>
<td>z_3</td>
</tr>
<tr>
<td>$x \cdot y^2$</td>
<td>z_2</td>
<td>z_3</td>
<td>z_4</td>
</tr>
<tr>
<td>y^3</td>
<td>z_3</td>
<td>z_4</td>
<td>z_5</td>
</tr>
</tbody>
</table>

Cat(5, 1):

<table>
<thead>
<tr>
<th>z_0</th>
<th>z_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_1</td>
<td>z_2</td>
</tr>
<tr>
<td>z_2</td>
<td>z_3</td>
</tr>
<tr>
<td>z_3</td>
<td>z_4</td>
</tr>
<tr>
<td>z_4</td>
<td>z_5</td>
</tr>
<tr>
<td>z_5</td>
<td>z_6</td>
</tr>
</tbody>
</table>
Veronese varieties

Theorem (Gruson–Peskine, Eisenbud, Conca)

If \(X \) is a rational normal curve of degree \(d \), then \(I(\sigma_k(X)) \) is generated by the \((k + 1)\)–minors of any \(\text{Cat}(a, b) \), where \(a, b \geq k \), \(a + b = d \).
Veronese varieties

Theorem (Gruson–Peskine, Eisenbud, Conca)

If X is a rational normal curve of degree d, then $I(\sigma_k(X))$ is generated by the $(k + 1)$–minors of any $Cat(a, b)$, where $a, b \geq k, a + b = d$.

Now assume that $\dim(V)$ is arbitrary. We can still talk about catalecticant matrices $Cat(a, b)$ whenever $a + b = d$.

Veronese varieties

Theorem (Gruson–Peskine, Eisenbud, Conca)

If X is a rational normal curve of degree d, then $I(\sigma_k(X))$ is generated by the $(k + 1)$–minors of any $\text{Cat}(a, b)$, where $a, b \geq k$, $a + b = d$.

Now assume that $\dim(V)$ is arbitrary. We can still talk about catalecticant matrices $\text{Cat}(a, b)$ whenever $a + b = d$.

1. $(k + 1)$–minors of catalecticants vanish on $\sigma_k(X)$.
Veronese varieties

Theorem (Gruson–Peskine, Eisenbud, Conca)

If X is a rational normal curve of degree d, then $I(\sigma_k(X))$ is generated by the $(k + 1)$–minors of any $\text{Cat}(a, b)$, where $a, b \geq k$, $a + b = d$.

Now assume that $\dim(V)$ is arbitrary. We can still talk about catalecticant matrices $\text{Cat}(a, b)$ whenever $a + b = d$.

1. $(k + 1)$–minors of catalecticants vanish on $\sigma_k(X)$.
2. $X = \sigma_1(X)$ is defined by the 2–minors of any $\text{Cat}(a, b)$. (Pucci)
Veronese varieties

Theorem (Gruson–Peskine, Eisenbud, Conca)

If X is a rational normal curve of degree d, then $I(\sigma_k(X))$ is generated by the $(k+1)$–minors of any $Cat(a, b)$, where $a, b \geq k$, $a + b = d$.

Now assume that $\dim(V)$ is arbitrary. We can still talk about catalecticant matrices $Cat(a, b)$ whenever $a + b = d$.

1. $(k+1)$–minors of catalecticants vanish on $\sigma_k(X)$.
2. $X = \sigma_1(X)$ is defined by the 2–minors of any $Cat(a, b)$. (Pucci)
3. $\sigma_2(X)$ is defined by the 3–minors of $Cat(1, d – 1)$ and $Cat(2, d – 2)$. (Kanev)
Veronese varieties

Theorem (Gruson–Peskine, Eisenbud, Conca)

If X is a rational normal curve of degree d, then $I(\sigma_k(X))$ is generated by the $(k + 1)$–minors of any $\text{Cat}(a, b)$, where $a, b \geq k$, $a + b = d$.

Now assume that $\dim(V)$ is arbitrary. We can still talk about catalecticant matrices $\text{Cat}(a, b)$ whenever $a + b = d$.

1. $(k + 1)$–minors of catalecticants vanish on $\sigma_k(X)$.
2. $X = \sigma_1(X)$ is defined by the 2–minors of any $\text{Cat}(a, b)$. (Pucci)
3. $\sigma_2(X)$ is defined by the 3–minors of $\text{Cat}(1, d − 1)$ and $\text{Cat}(2, d − 2)$. (Kanev)
4. $\sigma_k(X)$ is NOT defined by $(k + 1)$–minors of catalecticants in general. (Buczyńska–Buczyński)
Veronese varieties

Theorem (Gruson–Peskine, Eisenbud, Conca)

If X is a rational normal curve of degree d, then $I(\sigma_k(X))$ is generated by the $(k + 1)$–minors of any $\text{Cat}(a, b)$, where $a, b \geq k$, $a + b = d$.

Now assume that $\dim(V)$ is arbitrary. We can still talk about catalecticant matrices $\text{Cat}(a, b)$ whenever $a + b = d$.

1. $(k + 1)$–minors of catalecticants vanish on $\sigma_k(X)$.
2. $X = \sigma_1(X)$ is defined by the 2–minors of any $\text{Cat}(a, b)$. (Pucci)
3. $\sigma_2(X)$ is defined by the 3–minors of $\text{Cat}(1, d - 1)$ and $\text{Cat}(2, d - 2)$. (Kanev)
4. $\sigma_k(X)$ is NOT defined by $(k + 1)$–minors of catalecticants in general. (Buczyńska–Buczyński)

Conjecture (Geramita)

*The ideals of 3–minors of $\text{Cat}(a, b)$ are all equal for $a, b \geq 2$.***
Main Results

Theorem (–)

Geramita conjecture holds, as well as its generalization to 4–minors.
Main Results

Theorem (−)
Geramita conjecture holds, as well as its generalization to 4–minors.

Question
Are the ideals of k–minors of $\text{Cat}(a, b)$ all equal for $a, b \geq k - 1$?
Main Results

Theorem (—)
Geramita conjecture holds, as well as its generalization to 4–minors.

Question
Are the ideals of k–minors of Cat(a, b) all equal for a, b \geq k – 1?

Theorem (—)
For X a Segre–Veronese variety, the ideal of \(\sigma_2(X) \) is generated by 3–minors of flattenings. Moreover, one has an explicit description of the multiplicities of the irreducible representations that occur in the decomposition of the homogeneous coordinate ring of \(\sigma_2(X) \).
Suppose \(n = 2, \, d_1 = 2, \, d_2 = 1 \), and focus on the equations of degree 4 of \(\sigma_2(X) \). We look for the kernel of

\[
\sigma^* : \text{Sym}^4(\text{Sym}^2 \, V_1 \otimes V_2) \rightarrow \bigoplus_{a+b=4} (\text{Sym}^{2a} \, V_1 \otimes \text{Sym}^a \, V_2) \otimes (\text{Sym}^{2b} \, V_1 \otimes \text{Sym}^b \, V_2).
\]
Suppose $n = 2$, $d_1 = 2$, $d_2 = 1$, and focus on the equations of degree 4 of $\sigma_2(X)$. We look for the kernel of

$$s^\# : \text{Sym}^4(\text{Sym}^2 V_1 \otimes V_2) \rightarrow \bigoplus_{a+b=4} (\text{Sym}^{2a} V_1 \otimes \text{Sym}^{a} V_2) \otimes (\text{Sym}^{2b} V_1 \otimes \text{Sym}^{b} V_2).$$

“Representation theory yoga” \Rightarrow free to choose $m_i = \text{dim}(V_i)$ arbitrarily, as long as $m_i \geq 2$.
Polarization and Specialization

Suppose $n = 2$, $d_1 = 2$, $d_2 = 1$, and focus on the equations of degree 4 of $\sigma_2(X)$. We look for the kernel of

$$s^\#: \text{Sym}^4(\text{Sym}^2 V_1 \otimes V_2) \longrightarrow \bigoplus_{a+b=4} (\text{Sym}^{2a} V_1 \otimes \text{Sym}^a V_2) \otimes (\text{Sym}^{2b} V_1 \otimes \text{Sym}^b V_2).$$

“Representation theory yoga” \implies free to choose $m_i = \dim(V_i)$ arbitrarily, as long as $m_i \geq 2$. Take $m_1 = 8$, $m_2 = 4$.
Polarization and Specialization

Suppose $n = 2$, $d_1 = 2$, $d_2 = 1$, and focus on the equations of degree 4 of $\sigma_2(X)$. We look for the kernel of

$$s^\# : \text{Sym}^4(\text{Sym}^2 V_1 \otimes V_2) \longrightarrow \bigoplus_{a+b=4} (\text{Sym}^{2a} V_1 \otimes \text{Sym}^a V_2) \otimes (\text{Sym}^{2b} V_1 \otimes \text{Sym}^b V_2).$$

“Representation theory yoga” \Rightarrow free to choose $m_i = \dim(V_i)$ arbitrarily, as long as $m_i \geq 2$. Take $m_1 = 8$, $m_2 = 4$. The (SL-) zero–weight spaces S and T of the source and target of $s^\#$ are representations of the Weyl group $S_8 \times S_4$. Enough to analyze

$$s_0^\# : S \longrightarrow T.$$
Suppose \(n = 2, d_1 = 2, d_2 = 1 \), and focus on the equations of degree 4 of \(\sigma_2(X) \). We look for the kernel of

\[
\begin{align*}
\sigma^\# : \text{Sym}^4(\text{Sym}^2 V_1 \otimes V_2) & \longrightarrow \\
\bigoplus_{a + b = 4} (\text{Sym}^{2a} V_1 \otimes \text{Sym}^a V_2) \otimes (\text{Sym}^{2b} V_1 \otimes \text{Sym}^b V_2).
\end{align*}
\]

"Representation theory yoga" \(\Rightarrow \) free to choose \(m_i = \dim(V_i) \) arbitrarily, as long as \(m_i \geq 2 \). Take \(m_1 = 8, m_2 = 4 \). The (SL-) zero–weight spaces \(S \) and \(T \) of the source and target of \(\sigma^\# \) are representations of the Weyl group \(S_8 \times S_4 \). Enough to analyze

\[
s_0^\# : S \longrightarrow T.
\]

To do that, use the representation theory of (products of) symmetric groups, and the combinatorics that comes with it.
Polarization and Specialization

A typical monomial in S looks like

$$(x_1 x_2 \otimes y_2) \cdot (x_3 x_6 \otimes y_1) \cdot (x_4 x_7 \otimes y_4) \cdot (x_5 x_8 \otimes y_3),$$

$((x_i)_i$ and $(y_j)_j$ are bases for V_1, V_2).
Polarization and Specialization

A typical monomial in S looks like

$$(x_1 x_2 \otimes y_2) \cdot (x_3 x_6 \otimes y_1) \cdot (x_4 x_7 \otimes y_4) \cdot (x_5 x_8 \otimes y_3),$$

$$(x_i)_i \text{ and } (y_j)_j \text{ are bases for } V_1, V_2). \text{ It specializes to }$$

$$m = (x_1^2 \otimes y_2) \cdot (x_3 x_6 \otimes y_1) \cdot (x_2 x_3 \otimes y_2) \cdot (x_3^2 \otimes y_2)$$

via the specialization map ϕ that sends

$$\{x_1, x_2\} \to x_1, \{x_4, x_6\} \to x_2, \{x_3, x_5, x_7, x_8\} \to x_3,$$

$$\{y_1\} \to y_1, \{y_2, y_3, y_4\} \to y_2.$$
Polarization and Specialization

A typical monomial in S looks like

$$(x_1 x_2 \otimes y_2) \cdot (x_3 x_6 \otimes y_1) \cdot (x_4 x_7 \otimes y_4) \cdot (x_5 x_8 \otimes y_3),$$

$$(x_i)_i \text{ and } (y_j)_j \text{ are bases for } V_1, V_2). \text{ It specializes to }$

$$m = (x_1^2 \otimes y_2) \cdot (x_3 x_2 \otimes y_1) \cdot (x_2 x_3 \otimes y_2) \cdot (x_3^2 \otimes y_2)$$

via the specialization map ϕ that sends

$$\{x_1, x_2\} \rightarrow x_1, \quad \{x_4, x_6\} \rightarrow x_2, \quad \{x_3, x_5, x_7, x_8\} \rightarrow x_3,$$

$$\{y_1\} \rightarrow y_1, \quad \{y_2, y_3, y_4\} \rightarrow y_2.$$

Any kernel element of $s_0^\#$ specializes to a kernel element of $s^\#$.
Polarization and Specialization

A typical monomial in S looks like

$$(x_1 x_2 \otimes y_2) \cdot (x_3 x_6 \otimes y_1) \cdot (x_4 x_7 \otimes y_4) \cdot (x_5 x_8 \otimes y_3),$$

$((x_i)_i$ and $(y_j)_j$ are bases for V_1, V_2). It specializes to

$$m = (x_1^2 \otimes y_2) \cdot (x_3 x_2 \otimes y_1) \cdot (x_2 x_3 \otimes y_2) \cdot (x_3^2 \otimes y_2)$$

via the specialization map ϕ that sends

$$\{x_1, x_2\} \to x_1, \quad \{x_4, x_6\} \to x_2, \quad \{x_3, x_5, x_7, x_8\} \to x_3,$$

$$\{y_1\} \to y_1, \quad \{y_2, y_3, y_4\} \to y_2.$$

Any kernel element of $s_0^#$ specializes to a kernel element of $s^#$. We can polarize m by

$$m \mapsto \text{average}(m_0 : \phi(m_0) = m).$$
Polarization and Specialization

A typical monomial in S looks like

$$(x_1 x_2 \otimes y_2) \cdot (x_3 x_6 \otimes y_1) \cdot (x_4 x_7 \otimes y_4) \cdot (x_5 x_8 \otimes y_3),$$

$((x_i)_i$ and $(y_j)_j$ are bases for $V_1, V_2)$. It specializes to

$$m = (x_1^2 \otimes y_2) \cdot (x_3 x_2 \otimes y_1) \cdot (x_2 x_3 \otimes y_2) \cdot (x_3^2 \otimes y_2)$$

via the specialization map ϕ that sends

$$\{x_1, x_2\} \rightarrow x_1, \quad \{x_4, x_6\} \rightarrow x_2, \quad \{x_3, x_5, x_7, x_8\} \rightarrow x_3,$$

$$\{y_1\} \rightarrow y_1, \quad \{y_2, y_3, y_4\} \rightarrow y_2.$$

Any kernel element of $s^\#_0$ specializes to a kernel element of $s^\#$. We can polarize m by

$$m \mapsto \text{average}(m_0 : \phi(m_0) = m).$$

Any kernel element of $s^\#$ polarizes to a kernel element of $s^\#_0$.