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Tangential and Secant Varieties
For a non-singular projective variety X ⊂ Pm, dim(X ) = n, we define its
tangential variety as

Tan(X ) = union of tangent lines,

and its secant variety as

Sec(X ) = union of secant lines.

We have

dim(Tan(X )) ≤ 2n, dim(Sec(X )) ≤ 2n + 1.

Theorem (Fulton–Hansen ’79)
Precisely one of the following holds:
(i) dim(Tan(X )) = 2n and dim(Sec(X )) = 2n + 1; (typical)
(ii) Tan(X ) = Sec(X ). (degenerate)
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Example 1: rank one matrices

Consider vector spaces V1,V2, dim(Vi) = ni , and the Segre variety

X = Im
(
PV1 × PV2

O(1,1)−→ P(V1 ⊗ V2)

)
,

which we can think of as the set of indecomposable bilinear forms
f1 ⊗ f2 ∈ V ∗1 ⊗ V ∗2 , or as the space of rank one n1 × n2 matrices.

Typical elements of the secant and tangential varieties of X look like:

Sec(X ) : f1 ⊗ f2 + g1 ⊗ g2;

Tan(X ) : lim
t→0

(f1 + tg1)⊗ (f2 + tg2)− f1 ⊗ f2
t

= f1 ⊗ g2 + g1 ⊗ f2.

It follows that X is degenerate. Furthermore, Sec(X ) = Tan(X ) has
dimension 2 · (n1 + n2 − 2)− 1, and is defined by the vanishing of the
3× 3 minors of the generic n1 × n2 matrix.
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Example 2: rank one symmetric matrices
Consider a vector space V , dim(V ) = n, and the quadratic Veronese
variety

X = Im
(
PV

O(2)−→ P(Sym2 V )

)
,

which we can think of as the set of squares of linear forms
f 2 ∈ Sym2 V ∗, or as the space of rank one n × n symmetric matrices.

Typical elements of the secant and tangential varieties of X look like:

Sec(X ) : f 2 + g2 = (f + i · g) · (f − i · g);

Tan(X ) : lim
t→0

(f + tg)2 − f 2

t
= 2 · f · g.

In both cases we get the Chow variety of quadratic forms that
decompose into a product of linear factors, so X is again degenerate.
Furthermore, Sec(X ) = Tan(X ) has dimension 2 · (n − 1), and is
defined by the vanishing of the 3× 3 minors of the generic n × n
symmetric matrix.
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Abo–Brambilla Theorem

Consider vector spaces Vi , i = 1, · · · ,n, and positive integers
d1, · · · ,dn. We let

X = PV1 × · · · × PVn

and think of it as a subvariety in projective space via the embedding
determined by the line bundle OX (d1, · · · ,dn). X is the image of

SVd1,··· ,dn : PV1 × · · · × PVn → P(Symd1 V1 ⊗ · · · ⊗ Symdn Vn),

([e1], · · · , [en]) 7→ [ed1
1 ⊗ · · · ⊗ edn

n ].

We call X a Segre–Veronese variety.

Theorem (Abo–Brambilla ’09)
If X is a Segre–Veronese variety, then X is degenerate if and only if X
is as in Examples 1 and 2.
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Example 3: the twisted cubic

Consider the twisted cubic

X = {f 3 : f linear form in x , y} ⊂ P3 = {ax3 + bx2y + cxy2 + dy3}.

It follows that
Tan(X ) = {f 2g : f ,g linear forms},

i.e. the tangential variety is given by the cubics with a double root. It is
thus a quartic surface, defined by the vanishing of the discriminant

b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd .

One can check that
Sec(X ) = P3,

so the twisted cubic is typical.



Example 3: the twisted cubic

Consider the twisted cubic

X = {f 3 : f linear form in x , y} ⊂ P3 = {ax3 + bx2y + cxy2 + dy3}.

It follows that
Tan(X ) = {f 2g : f ,g linear forms},

i.e. the tangential variety is given by the cubics with a double root. It is
thus a quartic surface, defined by the vanishing of the discriminant

b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd .

One can check that
Sec(X ) = P3,

so the twisted cubic is typical.



Example 3: the twisted cubic

Consider the twisted cubic

X = {f 3 : f linear form in x , y} ⊂ P3 = {ax3 + bx2y + cxy2 + dy3}.

It follows that
Tan(X ) = {f 2g : f ,g linear forms},

i.e. the tangential variety is given by the cubics with a double root. It is
thus a quartic surface, defined by the vanishing of the discriminant

b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd .

One can check that
Sec(X ) = P3,

so the twisted cubic is typical.



Two conjectures regarding Segre varieties

Conjecture (Garcia–Stillman–Sturmfels ’05)
If X is a Segre variety, then I(Sec(X )) is generated by the 3× 3 minors
of certain matrices of linear forms (called flattenings).

Proved set–theoretically, and ideal theoretically for n ≤ 5 factors:
Landsberg–Manivel ’04, Landsberg–Weyman ’07, Allman–Rhodes ’08.

Conjecture (Landsberg–Weyman ’07)
If X is a Segre variety, then I(Tan(X )) is generated in degree at most 4
(moreover, explicit generators are predicted).

Proved set–theoretically: Oeding ’11.
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Main results

Theorem (– ’12)
If X is a Segre–Veronese variety, then all the minimal generators of
I(Sec(X )) have degree 3 (they are 3× 3 minors of flattenings).

Theorem (O– ’13)
If X is a Segre–Veronese variety, then I(Tan(X )) is generated in
degree at most 4. Moreover,

minimal generators of degree 4 occur if and only if {d1, · · · ,dn}
contains one of {3}, {2,1}, or {1,1,1}.
minimal generators of degree 2 occur if and only if

∑n
i=1 di ≥ 4.

I(Tan(X )) is generated by quadrics if and only if
X = SVd ,1(P1 × Pr ) for d ≥ 5.



Main results

Theorem (– ’12)
If X is a Segre–Veronese variety, then all the minimal generators of
I(Sec(X )) have degree 3 (they are 3× 3 minors of flattenings).

Theorem (O– ’13)
If X is a Segre–Veronese variety, then I(Tan(X )) is generated in
degree at most 4.

Moreover,
minimal generators of degree 4 occur if and only if {d1, · · · ,dn}
contains one of {3}, {2,1}, or {1,1,1}.
minimal generators of degree 2 occur if and only if

∑n
i=1 di ≥ 4.

I(Tan(X )) is generated by quadrics if and only if
X = SVd ,1(P1 × Pr ) for d ≥ 5.



Main results

Theorem (– ’12)
If X is a Segre–Veronese variety, then all the minimal generators of
I(Sec(X )) have degree 3 (they are 3× 3 minors of flattenings).

Theorem (O– ’13)
If X is a Segre–Veronese variety, then I(Tan(X )) is generated in
degree at most 4. Moreover,

minimal generators of degree 4 occur if and only if {d1, · · · ,dn}
contains one of {3}, {2,1}, or {1,1,1}.

minimal generators of degree 2 occur if and only if
∑n

i=1 di ≥ 4.
I(Tan(X )) is generated by quadrics if and only if
X = SVd ,1(P1 × Pr ) for d ≥ 5.



Main results

Theorem (– ’12)
If X is a Segre–Veronese variety, then all the minimal generators of
I(Sec(X )) have degree 3 (they are 3× 3 minors of flattenings).

Theorem (O– ’13)
If X is a Segre–Veronese variety, then I(Tan(X )) is generated in
degree at most 4. Moreover,

minimal generators of degree 4 occur if and only if {d1, · · · ,dn}
contains one of {3}, {2,1}, or {1,1,1}.
minimal generators of degree 2 occur if and only if

∑n
i=1 di ≥ 4.

I(Tan(X )) is generated by quadrics if and only if
X = SVd ,1(P1 × Pr ) for d ≥ 5.



Main results

Theorem (– ’12)
If X is a Segre–Veronese variety, then all the minimal generators of
I(Sec(X )) have degree 3 (they are 3× 3 minors of flattenings).

Theorem (O– ’13)
If X is a Segre–Veronese variety, then I(Tan(X )) is generated in
degree at most 4. Moreover,

minimal generators of degree 4 occur if and only if {d1, · · · ,dn}
contains one of {3}, {2,1}, or {1,1,1}.
minimal generators of degree 2 occur if and only if

∑n
i=1 di ≥ 4.

I(Tan(X )) is generated by quadrics if and only if
X = SVd ,1(P1 × Pr ) for d ≥ 5.



Proof of Abo–Brambilla

By Fulton–Hansen, we need to understand when Sec(X ) = Tan(X ).

We know:

I(Sec(X )) has only minimal generators of degree 3.

I(Tan(X )) has minimal generators of degree

{
2 if

∑
di ≥ 4;

4 if
∑

di = 3.

It follows that if Sec(X ) = Tan(X ) then
∑

di = 2, i.e. we are in the
situation of Example 1 or 2.
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Tangential of a Veronese variety

Theorem (O– ’13)
Let d ≥ 2, and let X = SVd(PV ) be a Veronese variety. The module of
minimal generators of I(Tan(X )) of degree q decomposes as⊕

λ(SλV )⊕mλ , where mλ ∈ {0,1}, with mλ = 1 precisely in the
following cases:

1 q = 2: λ = (2d − k , k) for 4 ≤ k ≤ d, k even:

2 q = 3: λ = (3d − 4,2,2) for d ≥ 2, λ = (4,4,1) when d = 3, resp.
λ = (6,6) when d = 4.

, , resp.

3 q = 4: λ = (6,6) when d = 3:
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The coordinate ring of the tangential

Theorem (O– ’13)
Let X = SVd1,··· ,dn(PV1 × · · · × PVn) be a Segre–Veronese variety. The
degree r part of the homogeneous coordinate ring of Tan(X )
decomposes as

K[Tan(X )]r =
⊕

λ=(λ1,··· ,λn)

λj`rdj

(Sλ1V1 ⊗ · · · ⊗ SλnVn)
⊕mλ ,

where mλ is either 0 or 1, obtained as follows. Set

fλ = max
j=1,··· ,n

⌈
λj

2
dj

⌉
, eλ = λ1

2 + · · ·+ λn
2.

If some λj has more than two parts, or eλ < 2fλ, or eλ > r , then
mλ = 0, else mλ = 1.


