Tangential Varieties of Segre-Veronese Varieties

Luke Oeding and Claudiu Raicu*

Fort Collins, August 2013

Tangential and Secant Varieties

For a non-singular projective variety $X \subset \mathbb{P}^{m}, \operatorname{dim}(X)=n$, we define its tangential variety as

$$
\operatorname{Tan}(X)=\text { union of tangent lines }
$$

Tangential and Secant Varieties

For a non-singular projective variety $X \subset \mathbb{P}^{m}, \operatorname{dim}(X)=n$, we define its tangential variety as

$$
\operatorname{Tan}(X)=\text { union of tangent lines }
$$ and its secant variety as

$$
\operatorname{Sec}(X)=\overline{\text { union of secant lines }}
$$

Tangential and Secant Varieties

For a non-singular projective variety $X \subset \mathbb{P}^{m}, \operatorname{dim}(X)=n$, we define its tangential variety as

$$
\operatorname{Tan}(X)=\text { union of tangent lines }
$$

and its secant variety as

$$
\operatorname{Sec}(X)=\overline{\text { union of secant lines }}
$$

We have

$$
\operatorname{dim}(\operatorname{Tan}(X)) \leq 2 n, \quad \operatorname{dim}(\operatorname{Sec}(X)) \leq 2 n+1
$$

Tangential and Secant Varieties

For a non-singular projective variety $X \subset \mathbb{P}^{m}, \operatorname{dim}(X)=n$, we define its tangential variety as

$$
\operatorname{Tan}(X)=\text { union of tangent lines },
$$

and its secant variety as

$$
\operatorname{Sec}(X)=\overline{\text { union of secant lines }}
$$

We have
$\operatorname{dim}(\operatorname{Tan}(X)) \leq 2 n, \quad \operatorname{dim}(\operatorname{Sec}(X)) \leq 2 n+1$.

Theorem (Fulton-Hansen '79)
Precisely one of the following holds:
(i) $\operatorname{dim}(\operatorname{Tan}(X))=2 n$ and $\operatorname{dim}(\operatorname{Sec}(X))=2 n+1$; (typical)
(ii) $\operatorname{Tan}(X)=\operatorname{Sec}(X)$. (degenerate)

Example 1: rank one matrices

Consider vector spaces $V_{1}, V_{2}, \operatorname{dim}\left(V_{i}\right)=n_{i}$, and the Segre variety

$$
X=\operatorname{Im}\left(\mathbb{P} V_{1} \times \mathbb{P} V_{2} \xrightarrow{\mathcal{O}(1,1)} \mathbb{P}\left(V_{1} \otimes V_{2}\right)\right),
$$

which we can think of as the set of indecomposable bilinear forms $f_{1} \otimes f_{2} \in V_{1}^{*} \otimes V_{2}^{*}$, or as the space of rank one $n_{1} \times n_{2}$ matrices.

Example 1: rank one matrices

Consider vector spaces $V_{1}, V_{2}, \operatorname{dim}\left(V_{i}\right)=n_{i}$, and the Segre variety

$$
X=\operatorname{Im}\left(\mathbb{P} V_{1} \times \mathbb{P} V_{2} \xrightarrow{\mathcal{O}(1,1)} \mathbb{P}\left(V_{1} \otimes V_{2}\right)\right),
$$

which we can think of as the set of indecomposable bilinear forms $f_{1} \otimes f_{2} \in V_{1}^{*} \otimes V_{2}^{*}$, or as the space of rank one $n_{1} \times n_{2}$ matrices.
Typical elements of the secant and tangential varieties of X look like:

$$
\begin{aligned}
& \operatorname{Sec}(X): f_{1} \otimes f_{2}+g_{1} \otimes g_{2} ; \\
& \operatorname{Tan}(X): \lim _{t \rightarrow 0} \frac{\left(f_{1}+\operatorname{tg}_{1}\right) \otimes\left(f_{2}+\operatorname{tg}_{2}\right)-f_{1} \otimes f_{2}}{t}=f_{1} \otimes g_{2}+g_{1} \otimes f_{2} .
\end{aligned}
$$

Example 1: rank one matrices

Consider vector spaces $V_{1}, V_{2}, \operatorname{dim}\left(V_{i}\right)=n_{i}$, and the Segre variety

$$
X=\operatorname{Im}\left(\mathbb{P} V_{1} \times \mathbb{P} V_{2} \xrightarrow{\mathcal{O}(1,1)} \mathbb{P}\left(V_{1} \otimes V_{2}\right)\right),
$$

which we can think of as the set of indecomposable bilinear forms $f_{1} \otimes f_{2} \in V_{1}^{*} \otimes V_{2}^{*}$, or as the space of rank one $n_{1} \times n_{2}$ matrices.
Typical elements of the secant and tangential varieties of X look like:

$$
\begin{aligned}
& \operatorname{Sec}(X): f_{1} \otimes f_{2}+g_{1} \otimes g_{2} ; \\
& \operatorname{Tan}(X): \lim _{t \rightarrow 0} \frac{\left(f_{1}+\operatorname{tg}_{1}\right) \otimes\left(f_{2}+\operatorname{tg}_{2}\right)-f_{1} \otimes f_{2}}{t}=f_{1} \otimes g_{2}+g_{1} \otimes f_{2} .
\end{aligned}
$$

It follows that X is degenerate. Furthermore, $\operatorname{Sec}(X)=\operatorname{Tan}(X)$ has dimension $2 \cdot\left(n_{1}+n_{2}-2\right)-1$, and is defined by the vanishing of the 3×3 minors of the generic $n_{1} \times n_{2}$ matrix.

Example 2: rank one symmetric matrices

Consider a vector space V, $\operatorname{dim}(V)=n$, and the quadratic Veronese variety

$$
X=\operatorname{Im}\left(\mathbb{P} V \xrightarrow{\mathcal{O}(2)} \mathbb{P}\left(\mathrm{Sym}^{2} V\right)\right),
$$

which we can think of as the set of squares of linear forms
$f^{2} \in \operatorname{Sym}^{2} V^{*}$, or as the space of rank one $n \times n$ symmetric matrices.

Example 2: rank one symmetric matrices

Consider a vector space V, $\operatorname{dim}(V)=n$, and the quadratic Veronese variety

$$
X=\operatorname{Im}\left(\mathbb{P} V \xrightarrow{\mathcal{O}(2)} \mathbb{P}\left(\mathrm{Sym}^{2} V\right)\right),
$$

which we can think of as the set of squares of linear forms $f^{2} \in \operatorname{Sym}^{2} V^{*}$, or as the space of rank one $n \times n$ symmetric matrices. Typical elements of the secant and tangential varieties of X look like:

$$
\begin{aligned}
& \operatorname{Sec}(X): f^{2}+g^{2}=(f+i \cdot g) \cdot(f-i \cdot g) ; \\
& \operatorname{Tan}(X): \lim _{t \rightarrow 0} \frac{(f+t g)^{2}-f^{2}}{t}=2 \cdot f \cdot g .
\end{aligned}
$$

Example 2: rank one symmetric matrices

Consider a vector space $V, \operatorname{dim}(V)=n$, and the quadratic Veronese variety

$$
X=\operatorname{Im}\left(\mathbb{P} V \xrightarrow{\mathcal{O}(2)} \mathbb{P}\left(\mathrm{Sym}^{2} V\right)\right),
$$

which we can think of as the set of squares of linear forms $f^{2} \in \operatorname{Sym}^{2} V^{*}$, or as the space of rank one $n \times n$ symmetric matrices. Typical elements of the secant and tangential varieties of X look like:

$$
\begin{aligned}
& \operatorname{Sec}(X): f^{2}+g^{2}=(f+i \cdot g) \cdot(f-i \cdot g) ; \\
& \operatorname{Tan}(X): \lim _{t \rightarrow 0} \frac{(f+t g)^{2}-f^{2}}{t}=2 \cdot f \cdot g .
\end{aligned}
$$

In both cases we get the Chow variety of quadratic forms that decompose into a product of linear factors, so X is again degenerate. Furthermore, $\operatorname{Sec}(X)=\operatorname{Tan}(X)$ has dimension $2 \cdot(n-1)$, and is defined by the vanishing of the 3×3 minors of the generic $n \times n$ symmetric matrix.

Abo-Brambilla Theorem

Consider vector spaces $V_{i}, i=1, \cdots, n$, and positive integers d_{1}, \cdots, d_{n}. We let

$$
X=\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}
$$

and think of it as a subvariety in projective space via the embedding determined by the line bundle $\mathcal{O}_{X}\left(d_{1}, \cdots, d_{n}\right) . X$ is the image of

$$
\begin{gathered}
S V_{d_{1}, \cdots, d_{n}}: \mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n} \rightarrow \mathbb{P}\left(\operatorname{Sym}^{d_{1}} V_{1} \otimes \cdots \otimes \operatorname{Sym}^{d_{n}} V_{n}\right), \\
\left(\left[e_{1}\right], \cdots,\left[e_{n}\right]\right) \mapsto\left[e_{1}^{d_{1}} \otimes \cdots \otimes e_{n}^{d_{n}}\right] .
\end{gathered}
$$

We call X a Segre-Veronese variety.

Abo-Brambilla Theorem

Consider vector spaces $V_{i}, i=1, \cdots, n$, and positive integers d_{1}, \cdots, d_{n}. We let

$$
X=\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}
$$

and think of it as a subvariety in projective space via the embedding determined by the line bundle $\mathcal{O}_{X}\left(d_{1}, \cdots, d_{n}\right) . X$ is the image of

$$
\begin{gathered}
S V_{d_{1}, \cdots, d_{n}}: \mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n} \rightarrow \mathbb{P}\left(\operatorname{Sym}^{d_{1}} V_{1} \otimes \cdots \otimes \operatorname{Sym}^{d_{n}} V_{n}\right), \\
\left(\left[e_{1}\right], \cdots,\left[e_{n}\right]\right) \mapsto\left[e_{1}^{d_{1}} \otimes \cdots \otimes e_{n}^{d_{n}}\right] .
\end{gathered}
$$

We call X a Segre-Veronese variety.
Theorem (Abo-Brambilla '09)
If X is a Segre-Veronese variety, then X is degenerate if and only if X is as in Examples 1 and 2.

Example 3: the twisted cubic

Consider the twisted cubic

$$
X=\left\{f^{3}: f \text { linear form in } x, y\right\} \subset \mathbb{P}^{3}=\left\{a x^{3}+b x^{2} y+c x y^{2}+d y^{3}\right\}
$$

Example 3: the twisted cubic

Consider the twisted cubic

$$
X=\left\{f^{3}: f \text { linear form in } x, y\right\} \subset \mathbb{P}^{3}=\left\{a x^{3}+b x^{2} y+c x y^{2}+d y^{3}\right\}
$$

It follows that

$$
\operatorname{Tan}(X)=\left\{f^{2} g: f, g \text { linear forms }\right\}
$$

i.e. the tangential variety is given by the cubics with a double root. It is thus a quartic surface, defined by the vanishing of the discriminant

$$
b^{2} c^{2}-4 a c^{3}-4 b^{3} d-27 a^{2} d^{2}+18 a b c d
$$

Example 3: the twisted cubic

Consider the twisted cubic

$$
X=\left\{f^{3}: f \text { linear form in } x, y\right\} \subset \mathbb{P}^{3}=\left\{a x^{3}+b x^{2} y+c x y^{2}+d y^{3}\right\}
$$

It follows that

$$
\operatorname{Tan}(X)=\left\{f^{2} g: f, g \text { linear forms }\right\}
$$

i.e. the tangential variety is given by the cubics with a double root. It is thus a quartic surface, defined by the vanishing of the discriminant

$$
b^{2} c^{2}-4 a c^{3}-4 b^{3} d-27 a^{2} d^{2}+18 a b c d
$$

One can check that

$$
\operatorname{Sec}(X)=\mathbb{P}^{3}
$$

so the twisted cubic is typical.

Two conjectures regarding Segre varieties

Conjecture (Garcia-Stillman-Sturmfels '05)

If X is a Segre variety, then $I(\operatorname{Sec}(X))$ is generated by the 3×3 minors of certain matrices of linear forms (called flattenings).

Two conjectures regarding Segre varieties

Conjecture (Garcia-Stillman-Sturmfels '05)

If X is a Segre variety, then I(Sec $(X))$ is generated by the 3×3 minors of certain matrices of linear forms (called flattenings).

Proved set-theoretically, and ideal theoretically for $n \leq 5$ factors: Landsberg-Manivel '04, Landsberg-Weyman '07, Allman-Rhodes '08.

Two conjectures regarding Segre varieties

Conjecture (Garcia-Stillman-Sturmfels '05)

If X is a Segre variety, then I(Sec $(X))$ is generated by the 3×3 minors of certain matrices of linear forms (called flattenings).

Proved set-theoretically, and ideal theoretically for $n \leq 5$ factors: Landsberg-Manivel '04, Landsberg-Weyman '07, Allman-Rhodes '08.

Conjecture (Landsberg-Weyman '07)

If X is a Segre variety, then I($\operatorname{Tan}(X))$ is generated in degree at most 4 (moreover, explicit generators are predicted).

Two conjectures regarding Segre varieties

Conjecture (Garcia-Stillman-Sturmfels '05)

If X is a Segre variety, then I(Sec $(X))$ is generated by the 3×3 minors of certain matrices of linear forms (called flattenings).

Proved set-theoretically, and ideal theoretically for $n \leq 5$ factors: Landsberg-Manivel '04, Landsberg-Weyman '07, Allman-Rhodes '08.

Conjecture (Landsberg-Weyman '07)

If X is a Segre variety, then $I(\operatorname{Tan}(X))$ is generated in degree at most 4 (moreover, explicit generators are predicted).

Proved set-theoretically: Oeding '11.

Main results

Theorem (- '12)

If X is a Segre-Veronese variety, then all the minimal generators of $I(\operatorname{Sec}(X))$ have degree 3 (they are 3×3 minors of flattenings).

Main results

```
Theorem (- '12)
If }X\mathrm{ is a Segre-Veronese variety, then all the minimal generators of \(I(\operatorname{Sec}(X))\) have degree 3 (they are \(3 \times 3\) minors of flattenings).
```


Theorem (O- '13)

If X is a Segre-Veronese variety, then $I(\operatorname{Tan}(X))$ is generated in degree at most 4 .

Main results

Theorem (- '12)

If X is a Segre-Veronese variety, then all the minimal generators of $I(\operatorname{Sec}(X))$ have degree 3 (they are 3×3 minors of flattenings).

Theorem (O- '13)

If X is a Segre-Veronese variety, then I($\operatorname{Tan}(X))$ is generated in degree at most 4. Moreover,

- minimal generators of degree 4 occur if and only if $\left\{d_{1}, \cdots, d_{n}\right\}$ contains one of $\{3\}$, $\{2,1\}$, or $\{1,1,1\}$.

Main results

Theorem (- '12)

If X is a Segre-Veronese variety, then all the minimal generators of $I(\operatorname{Sec}(X))$ have degree 3 (they are 3×3 minors of flattenings).

Theorem (O- '13)

If X is a Segre-Veronese variety, then $I(\operatorname{Tan}(X))$ is generated in degree at most 4. Moreover,

- minimal generators of degree 4 occur if and only if $\left\{d_{1}, \cdots, d_{n}\right\}$ contains one of $\{3\}$, $\{2,1\}$, or $\{1,1,1\}$.
- minimal generators of degree 2 occur if and only if $\sum_{i=1}^{n} d_{i} \geq 4$.

Main results

Theorem (- '12)

If X is a Segre-Veronese variety, then all the minimal generators of $I(\operatorname{Sec}(X))$ have degree 3 (they are 3×3 minors of flattenings).

Theorem (0- '13)

If X is a Segre-Veronese variety, then $I(\operatorname{Tan}(X))$ is generated in degree at most 4. Moreover,

- minimal generators of degree 4 occur if and only if $\left\{d_{1}, \cdots, d_{n}\right\}$ contains one of $\{3\}$, $\{2,1\}$, or $\{1,1,1\}$.
- minimal generators of degree 2 occur if and only if $\sum_{i=1}^{n} d_{i} \geq 4$.
- I($\operatorname{Tan}(X))$ is generated by quadrics if and only if

$$
X=S V_{d, 1}\left(\mathbb{P}^{1} \times \mathbb{P}^{r}\right) \text { for } d \geq 5 .
$$

Proof of Abo-Brambilla

By Fulton-Hansen, we need to understand when $\operatorname{Sec}(X)=\operatorname{Tan}(X)$.

Proof of Abo-Brambilla

By Fulton-Hansen, we need to understand when $\operatorname{Sec}(X)=\operatorname{Tan}(X)$. We know:

- $I(\operatorname{Sec}(X))$ has only minimal generators of degree 3 .

Proof of Abo-Brambilla

By Fulton-Hansen, we need to understand when $\operatorname{Sec}(X)=\operatorname{Tan}(X)$. We know:

- $I(\operatorname{Sec}(X))$ has only minimal generators of degree 3 .
- $I(\operatorname{Tan}(X))$ has minimal generators of degree $\begin{cases}2 & \text { if } \sum d_{i} \geq 4 ; \\ 4 & \text { if } \sum d_{i}=3 .\end{cases}$

Proof of Abo-Brambilla

By Fulton-Hansen, we need to understand when $\operatorname{Sec}(X)=\operatorname{Tan}(X)$. We know:

- $I(\operatorname{Sec}(X))$ has only minimal generators of degree 3 .
- $I(\operatorname{Tan}(X))$ has minimal generators of degree $\begin{cases}2 & \text { if } \sum d_{i} \geq 4 ; \\ 4 & \text { if } \sum d_{i}=3 .\end{cases}$

It follows that if $\operatorname{Sec}(X)=\operatorname{Tan}(X)$ then $\sum d_{i}=2$, i.e. we are in the situation of Example 1 or 2.

Tangential of a Veronese variety

Theorem (0-'13)

Let $d \geq 2$, and let $X=S V_{d}(\mathbb{P} V)$ be a Veronese variety. The module of minimal generators of $I(\operatorname{Tan}(X))$ of degree q decomposes as $\bigoplus_{\lambda}\left(S_{\lambda} V\right)^{\oplus m_{\lambda}}$, where $m_{\lambda} \in\{0,1\}$, with $m_{\lambda}=1$ precisely in the following cases:
(1) $q=2: \lambda=(2 d-k, k)$ for $4 \leq k \leq d, k$ even: \square

Tangential of a Veronese variety

Theorem (0-'13)

Let $d \geq 2$, and let $X=S V_{d}(\mathbb{P} V)$ be a Veronese variety. The module of minimal generators of $I(\operatorname{Tan}(X)$) of degree q decomposes as $\oplus_{\lambda}\left(S_{\lambda} V\right)^{\oplus m_{\lambda}}$, where $m_{\lambda} \in\{0,1\}$, with $m_{\lambda}=1$ precisely in the following cases:
(1) $q=2$: $\lambda=(2 d-k, k)$ for $4 \leq k \leq d$, k even: \square
(2) $q=3$: $\lambda=(3 d-4,2,2)$ for $d \geq 2, \lambda=(4,4,1)$ when $d=3$, resp. $\lambda=(6,6)$ when $d=4$.

Tangential of a Veronese variety

Theorem (0-'13)

Let $d \geq 2$, and let $X=S V_{d}(\mathbb{P} V)$ be a Veronese variety. The module of minimal generators of $I(\operatorname{Tan}(X)$) of degree q decomposes as $\oplus_{\lambda}\left(S_{\lambda} V\right)^{\oplus m_{\lambda}}$, where $m_{\lambda} \in\{0,1\}$, with $m_{\lambda}=1$ precisely in the following cases:
(1) $q=2$: $\lambda=(2 d-k, k)$ for $4 \leq k \leq d$, k even: \square
(2) $q=3$: $\lambda=(3 d-4,2,2)$ for $d \geq 2, \lambda=(4,4,1)$ when $d=3$, resp. $\lambda=(6,6)$ when $d=4$.

(3) $q=4: \lambda=(6,6)$ when $d=3$: \square

The coordinate ring of the tangential

Theorem (O-'13)

Let $X=S V_{d_{1}, \cdots, d_{n}}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}\right)$ be a Segre-Veronese variety. The degree r part of the homogeneous coordinate ring of $\operatorname{Tan}(X)$ decomposes as

$$
\mathbb{K}[\operatorname{Tan}(X)]_{r}=\bigoplus_{\substack{\lambda=\left(\lambda^{1}, \ldots, \lambda^{n}\right) \\ \lambda^{1} \vdash r d_{j}}}\left(S_{\lambda^{1}} V_{1} \otimes \cdots \otimes S_{\lambda^{n}} V_{n}\right)^{\oplus m_{\lambda}},
$$

where m_{λ} is either 0 or 1 , obtained as follows. Set

$$
f_{\lambda}=\max _{j=1, \cdots, n}\left\lceil\frac{\lambda_{2}^{j}}{d_{j}}\right\rceil, \quad e_{\lambda}=\lambda_{2}^{1}+\cdots+\lambda_{2}^{n} .
$$

If some λ^{j} has more than two parts, or $e_{\lambda}<2 f_{\lambda}$, or $e_{\lambda}>r$, then $m_{\lambda}=0$, else $m_{\lambda}=1$.

