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Theorem (Fulton—Hansen ’79)

Precisely one of the following holds:

(i) dim(Tan(X)) = 2n and dim(Sec(X)) = 2n+ 1; (typical)
(i) Tan(X) = Sec(X). (degenerate)
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Example 1: rank one matrices

Consider vector spaces Vi, Vo, dim(V;) = n;, and the Segre variety

X =1Im (pm x PV YD poyy @ v2)> ,

which we can think of as the set of indecomposable bilinear forms
fi ®h e Vi® V3, oras the space of rank one ny x n, matrices.

Typical elements of the secant and tangential varieties of X look like:

SGC(X) b + g1 K go;
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It follows that X is degenerate. Furthermore, Sec(X) = Tan(X) has
dimension 2 - (ny + np — 2) — 1, and is defined by the vanishing of the
3 x 3 minors of the generic ny x n, matrix.
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Example 2: rank one symmetric matrices

Consider a vector space V, dim(V) = n, and the quadratic Veronese
variety

X =Im <IPV @) p(sym? V)> ,

which we can think of as the set of squares of linear forms
f2 € Sym? V*, or as the space of rank one n x n symmetric matrices.

Typical elements of the secant and tangential varieties of X look like:

Sec(X): P+g?=(f+i-9)-(f—i-g);

f+tg)? —f2

Tan(X) : lim
t—0
In both cases we get the Chow variety of quadratic forms that
decompose into a product of linear factors, so X is again degenerate.
Furthermore, Sec(X) = Tan(X) has dimension 2-(n— 1), and is
defined by the vanishing of the 3 x 3 minors of the generic n x n
symmetric matrix.
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X=PV;x---xPV,

and think of it as a subvariety in projective space via the embedding
determined by the line bundle Ox(ds,--- ,dp). X is the image of

SVy,...gy i PVy x - X PV, = P(Sym? V; @ - - - @ Sym V),

(1]~ [en]) = [ @ - @ eff].
We call X a Segre—\Veronese variety.

Theorem (Abo—Brambilla ’09)

If X is a Segre—Veronese variety, then X is degenerate if and only if X
is as in Examples 1 and 2.
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Example 3: the twisted cubic

Consider the twisted cubic

X = {f3: flinear form in x, y} C P® = {ax® + bx2y + cxy? + dy®}.

It follows that
Tan(X) = {f?g : f, g linear forms},

i.e. the tangential variety is given by the cubics with a double root. It is
thus a quartic surface, defined by the vanishing of the discriminant

b2c? — 4ac® — 4b®d — 27a°0? + 18abcd.

One can check that
Sec(X) = P,

so the twisted cubic is typical.



Two conjectures regarding Segre varieties

Conjecture (Garcia—Stillman—Sturmfels "05)

If X is a Segre variety, then I(Sec(X)) is generated by the 3 x 3 minors
of certain matrices of linear forms (called flattenings).




Two conjectures regarding Segre varieties

Conjecture (Garcia—Stillman—Sturmfels "05)

If X is a Segre variety, then I(Sec(X)) is generated by the 3 x 3 minors
of certain matrices of linear forms (called flattenings).

Proved set—theoretically, and ideal theoretically for n < 5 factors:
Landsberg—Manivel '04, Landsberg—Weyman ’07, Allman—Rhodes ’08.



Two conjectures regarding Segre varieties

Conjecture (Garcia—Stillman—Sturmfels "05)

If X is a Segre variety, then I(Sec(X)) is generated by the 3 x 3 minors
of certain matrices of linear forms (called flattenings).

Proved set—theoretically, and ideal theoretically for n < 5 factors:
Landsberg—Manivel '04, Landsberg—Weyman ’07, Allman—Rhodes ’08.

Conjecture (Landsberg—Weyman ’07)

If X is a Segre variety, then I(Tan(X)) is generated in degree at most 4
(moreover, explicit generators are predicted).




Two conjectures regarding Segre varieties

Conjecture (Garcia—Stillman—Sturmfels "05)

If X is a Segre variety, then I(Sec(X)) is generated by the 3 x 3 minors
of certain matrices of linear forms (called flattenings).

Proved set—theoretically, and ideal theoretically for n < 5 factors:
Landsberg—Manivel '04, Landsberg—Weyman ’07, Allman—Rhodes ’08.

Conjecture (Landsberg—Weyman ’07)

If X is a Segre variety, then I(Tan(X)) is generated in degree at most 4
(moreover, explicit generators are predicted).

Proved set—theoretically: Oeding '11.
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Main results

Theorem (—'12)

If X is a Segre—\Veronese variety, then all the minimal generators of
I(Sec(X)) have degree 3 (they are 3 x 3 minors of flattenings).

Theorem (O-"13)

If X is a Segre—Veronese variety, then I(Tan(X)) is generated in
degree at most 4. Moreover,

@ minimal generators of degree 4 occur if and only if {d;,--- ,dn}
contains one of {3}, {2,1}, or {1,1,1}.
@ minimal generators of degree 2 occur if and only if Y7, d; > 4.

@ /(Tan(X)) is generated by quadrics if and only if
X = SVy1(P' x P") ford > 5.




Proof of Abo—Brambilla

By Fulton—Hansen, we need to understand when Sec(X) = Tan(X).



Proof of Abo—Brambilla

By Fulton—Hansen, we need to understand when Sec(X) = Tan(X).
We know:

@ /(Sec(X)) has only minimal generators of degree 3.



Proof of Abo—Brambilla

By Fulton—Hansen, we need to understand when Sec(X) = Tan(X).
We know:

@ /(Sec(X)) has only minimal generators of degree 3.

2 ifyd >4

@ /(Tan(X)) has minimal generators of degree
(Tan(X)) J J {4 > 0 = 3.



Proof of Abo—Brambilla

By Fulton—Hansen, we need to understand when Sec(X) = Tan(X).
We know:

@ /(Sec(X)) has only minimal generators of degree 3.

2 ifY di>4
@ /(Tan(X)) has minimal generators of degree I 2.0 =
4 jf> di=3.

It follows that if Sec(X) = Tan(X) then > d; =2, i.e. we are in the
situation of Example 1 or 2.
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Q@ g=4:\=(6,6) whend = 3:
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The coordinate ring of the tangential

Theorem (O-"13)

Let X = SVy, ... a,(PV4 x --- x PV,) be a Segre—Veronese variety. The
degree r part of the homogeneous coordinate ring of Tan(X)
decomposes as

K[Tan(X)l, = € (SuVi®- ® SulVp)®™,
A=(AT, A7)
NFrdj

where m, is either 0 or 1, obtained as follows. Set
f, = max {w , =M+
[ 7n

If some M has more than two parts, or e\ < 2fy, or e\ > r, then
my =0, else my, = 1.




