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ABSTRACT

It is commonly recognized that a convenient formulation for

problems in planar kinematics is obtained by considering links
to be vectors in the complex plane. However, scant attention

has been paid to the natural interpretation of complex vectors as

isotropic coordinates. These coordinates, often considered a spe-
cial trick for analyzing four-bar motion, are in fact uniquely suited

to two new techniques for analyzing polynomial systems: the BKK

bound and the product-decomposition bound. From this synergis-
tic viewpoint, a fundamental formulation of planar kinematics is

developed and used to prove several new results, mostly concerning

the degree and circularity of the motion of planar linkages. Useful
for both analysis and synthesis of mechanisms, the approach both

simpli�es theoretical proofs and facilitates the numerical solution

of mechanism problems.

1 INTRODUCTION

In formulating kinematic equations for a planar mech-
anism, one may use the fact that a point (x; y) in Cartesian
coordinates can be equivalently considered to be a point
x + iy in the complex plane, where i2 = �1. By the rules
of complex arithmetic, it is seen that translation by (dx; dy)
and rotation by angle � in the plane are given equivalently
as

(dx + x cos � � y sin �; dy + x sin � + y cos �)

, (dx + idy) + ei�(x+ iy): (1)
1

Moreover, de�ning a complex number z and its conjugate �z
as

z = x+ iy; �z = x� iy; (2)

one has that the squared length of z is z�z = x2+y2. Because
kinematics is primarily concerned with length-preserving
(rigid-body) motions, a formulation in the complex plane
is often convenient, and kinematicians frequently use this
approach to model linkages. However, it is not uncommon
to convert complex expressions into Cartesian coordinates,
whereupon each complex vector equation yields two scalar
equations (real and imaginary parts) and each length ex-
pression yields one scalar equation (the imaginary part of z�z
is identically zero). This article will show that, for reasons
related to the phenomenon of circularity, a formulation in
complex variables retains a simpler form and submits more
readily to analysis than a Cartesian formulation.

Instead of considering z and �z to be a complex variable
and its conjugate, it is just as valid to treat (z; �z) as a linear
change of coordinates from (x; y). The transformation is
nonsingular, and in fact, its inverse has the simple form

x = (z + �z)=2; y = (z � �z)=(2i): (3)

The term \isotropic coordinates" seems to have been �rst
applied to the pair (z; �z) by Bricard (1927), but in fact the
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concept is older. Roberts (1875) brie
y used isotropic co-
ordinates in his proof of the triple generation of four-bar
coupler curves. Darboux (1879) �rst formulated the four-
bar closure conditions as two complex-conjugate equations,
an approach which Morley (1921) adopted and developed
further. Bricard's term and notation were used in further
work on the four-bar by Haarbleicher (1933) and Groenman
(1950). Isotropic coordinates have also been used to study
six-bar and geared �ve-bar motion (Primrose and Freuden-
stein 1963, Primrose et al. 1967). Smith (1975) used a re-
lated formulation to evaluate velocities and accelerations of
linkages.

When kinematic equations are studied in isotropic form,
their structure is often more apparent than in Cartesian co-
ordinates. This is especially true when applying several
methods for counting the number of roots of a polynomial
system, namely, the multi-homogeneous Bezout number,
the BKK bound, and the product-decomposition bound.
After presenting a general formulation for the kinematics of
planar linkages in isotropic coordinates, this paper reviews
root-counting techniques and examines circularity from this
perspective. These developments are then used to prove
several new results concerning the degree and circularity of
the motion of planar linkages. The ideas are also pro�tably
applied to problems of mechanism synthesis. In addition to
theoretical proofs, the methods lead to practical numerical
computations, particularly via polynomial continuation.

2 ISOTROPIC FORMULATION

In this section, a derivation of kinematic equations in
isotropic coordinates for any planar linkage having rota-
tional and/or prismatic joints is given. The methodology is
then extended to planar linkages that include gear pairs.

2.1 Basic formulation

An unconstrained body moving in the plane has 3 de-
grees of freedom: two translations and one rotation. Ac-
cordingly, for each of the n�1 moving links of an n-bar link-
age, there are three motion variables: for k = 1; : : : ; n� 1,
let two variables, zk and �zk, be isotropic coordinates for the
translation, and let �k be the angle of rotation. Rotation in
the complex plane involves the quantity ei�k , which is tran-
scendental, so to keep the formulation algebraic, introduce
a pair of new variables, �k, ��k, de�ned as

�k = ei�k ; ��k = e�i�k ; k = 1; : : : ; n� 1;

with the additional equation

�k��k = 1; k = 1; : : : ; n� 1: (4)
2
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Figure 1. Isotropic formulation for rotational (a) and prismatic (b)

joints.

Thus, for each moving link k, there are four variables
zk; �zk; �k; ��k and one polynomial relation, Eq.(4). For the
�xed (ground) link, one may assume without loss of gener-
ality that z0 = �z0 = 0 and �0 = ��0 = 1.

2.1.1 Rotational joints. A planar rotational joint cen-
tered on point A of one link and on point B of another
link is modeled by setting the coordinates of A equal to
the coordinates of B. Suppose that when link k is in its
reference position, point A of the link has isotropic coor-
dinates (a; �a). By Eq.(1), when the link is displaced, the
new isotropic coordinates of A are (zk + �ka; �zk + ��k�a), and
similarly for B. Accordingly, as illustrated in Fig. 1(a), the
pin joint between A and B gives the pair of equations:

zk + �ka = zj + �j b; �zk + ��k�a = �zj + ��j�b: (5)

There are two such equations for each rotational joint in the
linkage.

2.1.2 Prismatic joints. To model a prismatic joint,
one must equate a line in link k with a line in link j, (see
Fig. 1(b)). For this purpose, let (u; �u) be the isotropic co-
ordinates for a unit vector in link k, when the link is in its
reference position. Then, after displacement of the link, the
new isotropic coordinates of the unit vector are (�ku; ��k�u).
If unit vectors (u; �u) of link k and (v; �v) of link j are each
parallel to the line of action of a prismatic joint between
those links, then

�ku = �jv; ��k�u = ��j�v: (6)

Since u and v are unit vectors, u�u = 1 and v�v = 1, and
so �k��k = (v=u)�j (�v=�u)��j = �j ��j: Hence, one of Eqs.(4) is
super
uous and can be dropped. Eq.(6) ensures that the
line in link k is parallel to the line in link j, but they are
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also coincident. Accordingly, if point A of link k and point
B of link j lie on the respective lines de�ning the joint, then
the line segment AB must be a scalar multiple, sk 2 R, of
the unit vector along the joint:

(zk + �ka)� (zj + �jb) = sk�ku;

(�zk + ��k�a)� (�zj + ��j�b) = sk��k�u;

where the fact that the conjugate of a scalar is the scalar
itself, �sk = sk, has been used. The distance sk is the joint
variable for the prismatic joint. If the joint is the input for
the mechanism, sk is known, otherwise it may be eliminated
to get

��k�u[(zk+ �ka)� (zj + �jb)]� �ku[(�zk+ ��k�a)� (�zj + ��j�b)] = 0:
(7)

With the addition of the three equations (6,7) and the elim-
ination of one of Eqs.(4), each prismatic joint contributes a
net increase of two equations.

2.1.3 Gear pairs. Finally, consider the case of a gear
pair. Suppose links m and n are a gear pair pinned to
link k, having gear ratio p=q, where p and q are relatively
prime. Accordingly, in the frame of link k, link m rotates
q times while link n rotates p times. (For a negative gear
ratio, one of p or q is taken as negative.) In addition, links
m and n may have initial rotations of � and 	 before the
gear mesh is engaged. The total rotation of each gear is the
sum of the initial o�set, the rotation of the carrier link, and
the internal rotation of the gear set. By introducing a new
angle � associated with the gear mesh, one may express the
rotation of link m as �m = � + �k + q� and the rotation
of link n as �n = 	 + �k + p�. Consequently, with the
notations �m = ei�m , � = ei�, �n = ei�n ,  = ei	, 
 = ei�,
and their conjugates, the rotations are given in isotropic
coordinates by

�m = ��k

q; ��m = ����k�


q;

�n =  �k

p; ��n = � ��k�


p;
(8)

where 
 and �
 are new variables which obey the relation


�
 = 1: (9)

From these, Eqs.(4) are automatically satis�ed for links m
and n, hence the gear pair has introduced two new vari-
ables (
; �
) and contributed a net increase of 3 equations.
Accordingly, the gear mesh removes one degree of freedom,
as it should.
3

2.1.4 Mobility. Through the use of Eqs.(4{9), the
kinematics of any planar linkage with rotational, prismatic,
and gear pair joints can be modeled in terms of isotropic
polynomial equations. For an n-bar linkage with r rota-
tional joints, p prismatic joints and g gear meshes, there
are (n� 1) + 2r + 2p+ 3g equations in 4(n � 1) + 2g vari-
ables, which gives the familiar mobility relation

M = 3(n� 1) � 2r � 2p� g: (10)

2.1.5 Reduction. For a given linkage, it is easy to re-
duce the system of equations, mainly due to the simple,
linear form of Eqs.(5,6). Furthermore, as is shown below in
x5.3, for an RR binary1 link, one can often avoid introducing
the associated link variables.

2.1.6 Example. As an illustration of this isotropic for-
mulation, consider the inverted geared �ve-bar shown in
Fig. 2. Links 1 and 3 are a gear pair, pinned to link 2
at points A and B, resp. An extension of link 1 is pinned
to ground (link 5) at point O, and a line of link 3 rides
in a slot on link 4, which is in turn pinned to ground at
point E. The origins of links 1 to 4 are taken as points O,
A, B, and E, resp., and the origin for the ground link is also
taken as O. Vectors a; b; c; d; e give the location of points
A;B;C;D;E in the reference frame of links 1,2,3,4,5, resp.
Vectors v and u are unit vectors along the two members of
the prismatic joint, when links 3 and 4 are in their reference
position. The ratio of the number of teeth on gear 1 to the
number on gear 3 is p : q, reduced to lowest terms. At ini-
tial assembly, links 1 and 2 are in reference orientation but
link 3 is given a rotation of 	 before engaging the gears.

From the foregoing description of the parts, the equa-
tions describing the kinematics of the assembled mechanism
are easily written out using the isotropic formulation as fol-
lows. Per Eq. (4), there are the unit vector equations:

�k��k = 1; k = 1; 2; 3; 4:

By Eq. (5), rotational joints at O;A;B;E give:

z1 = 0;
z2 = �1a;

z3 = z2 + �2b;

z4 = e;

�z1 = 0;
�z2 = ��1�a;
�z3 = �z2 + ��2�b;
�z4 = �e:

1A binary link connects to two adjacent links, a tertiary link connects

to three adjacent links, and so on for quaternary links and higher.
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Figure 2. A geared �ve-bar mechanism.

The prismatic joint gives, by Eqs. (6,7),

�3v = �4u; ��3�v = ��4�u;

��4�u[(z4 + �4d)� (z3 + �3c)]

� �4u[(�z4 + �4 �d)� (�z3 + ��3�c)] = 0:

Finally, the gear pair introduces the following:

�1 = �2

q;

�3 =  �2

�p;

��1 = ��2�

q;

��3 = � ��2�

�p;


�
 = 1;

where the negative exponents re
ect the fact that the gears
rotate in opposition. Of the unit vector equations, only
�2��2 = 1 is independent, because the others are implied by
the joint equations and the assumption that v�v = u�u = 1.
Due to the simple form of the basic equations, it is straight-
forward to make substitutions into the prismatic joint equa-
tion and obtain a single equation in two variables �2; 
:

� �v��12 
p[(e+ (v=u) �2

�pd)� (�2


qa+ �2b +  �2

�pc)]

�  v�2

�p[(�e+ (�v=�u) � ��12 
p �d)

� (��12 
�q�a+ ��12
�b+ � ��12 
p�c)] = 0:

Given a value of 
, this equation becomes a quadratic in �2.
After solving for �2, the positions and orientations of all the
links are easily found. With one sweep of 
 around the unit
circle, the entire motion of the linkage can be computed.
On the other hand, if �2 is taken as given, the equation is a
polynomial of degree 2(p+ q) in 
.
4

3 BEZOUT NUMBERS

While isotropic coordinates are convenient for deriva-
tions of the sort demonstrated in x2.1.6, the biggest advan-
tage in using this formulation is its compatibility with mod-
ern methods of counting the number of solutions of polyno-
mial equations. This section brie
y reviews the theory used
in this paper.

Kinematicians are familiar with the idea that \general"
examples from a family of polynomial systems have a con-
stant number of solutions in complex numbers. Hence, one
may say that the inverse kinematic problem of a general
six-revolute serial-link robot has 16 solutions. At the same
time, it is well-known that such problems have special cases
where the number of solutions may change; for example, if
three successive joint axes of the robot arm intersect in a
point, then the inverse kinematic problem has only 8 solu-
tions.

These ideas are made precise by the de�nition of a Be-
zout number. Suppose we have a system of n functions
P (q; x) that are polynomial in n complex variables x 2 Cn

and analytic in m complex parameters q 2 C
m. Then,

for almost all q 2 Cm, the system of polynomial equations
P (q; x) = 0 has a constant number, N , of nonsingular solu-
tions, although it may have a smaller number for parameters
satisfying extra analytic equations. The existence of 16 so-
lutions for the general 6R robot problem and the reduction
to 8 solutions when the problem is restricted to intersect-
ing wrist axes are examples of this phenomenon. Let N
be called the Bezout number of P (q; x), sometimes written
N (P ). In addition to restricting the parameter space, one
may also ban solutions that satisfy some additional alge-
braic equations, in which case the Bezout number may de-
crease. In any case, the Bezout number for a system is an
upper bound on the number of nonsingular solutions of any
special case of that system. (For more details, see Morgan
and Sommese 1989.)

A well-known example of a Bezout number is provided
by Bezout's Theorem, stating that a system of n poly-
nomial equations of degree d1; : : : ; dn in n variables has at
most

Qn
j=1 dj nonsingular solutions on C

n. Here, the param-
eters q are just the coe�cients of the general polynomials
of degree d1; : : : ; dn.

3.1 Product decomposition

A technique called product decomposition (Morgan, et
al 1995) can be used to determine Bezout numbers for sys-
tems described using the following notation. For polyno-
mials u1; : : : ; uj, let hu1; : : : ; uji represent the vector space
of all linear combinations of u1; : : : ; uj. Also, de�ne the
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product of two such spaces as follows:

hu1; : : : ; ujihv1; : : : ; vki =

hu1v1; : : : ; u1vk; : : : ; ujv1; : : : ; ujvki;

where the right-hand side is meant to include all possible
pairs of elements from the two groups on the left.

The product-decomposition bound does not directly
give a Bezout number, but rather gives an upper bound on
one Bezout number in terms of another. Suppose that in
the system f(x) = (f1(x); : : : ; fn(x)) = 0, the �rst polyno-
mial has the structure f1 2 hu1; : : : ; ujihv1; : : : ; vki. Then,
according to Morgan, et al. (1995),

N (f) � N ([(q1u1 + � � �+ qjuj)(qj+1v1 + � � �+ qj+kvj);

f2; : : : ; fn]) (11)

� N ([q1u1 + � � �+ qjuj; f2; : : : ; fn])

+ N ([qj+1v1 + � � �+ qj+kvk; f2; : : : ; fn]): (12)

where q1; : : : ; qj+k are generic coe�cients. The same result
can be applied several times to break f1 into more than two
products, and by permuting the order of the polynomials,
f2; : : : ; fn can be decomposed as well. The usefulness of
the product decomposition is that one can get an upper
bound on N (f) by �nding the Bezout number of the simpler
subsystems displayed in (12). Moreover, the system on the
right-hand side of (11) can be used as a start system in the
solution of f = 0 by polynomial continuation.

3.2 Multihomogeneous Bezout number

The multi-homogeneous Bezout number is a conse-
quence of results described in (Shafarevich 1977), and was
stated formally in (Morgan and Sommese 1987), where it
was also �rst shown relevant to kinematics. It can also
be derived using the product-decomposition formula just
described. Suppose that a system of polynomials f =
(f1; : : : ; fn) has the structure

fi 2 h1; x11; : : : ; x1k1i
di1 � � � h1; xm1; : : : ; xmkmi

dim ;

where the partitioning of the variables is the same across all
fi, but the degrees may vary. By the product decomposition
theorem, a bound on the Bezout number of system f can
be found as the sum of the Bezout numbers for a collection
of linear systems. Most of these will be overdetermined and
have no solution, leaving N (f) to be the number of well-
posed linear systems. This can be seen to be the coe�cient
of �k11 � � ��

km
m in the combinatorial product

Qn
i=1(di1�1+� � �+

dim�m). The 1-homogeneous Bezout number is the same as
that given by Bezout's Theorem.
5

3.3 BKK Bezout number

Another useful Bezout number is the BKK bound
(Bernshtein 1975), in which each polynomial is summarized
by a list of its monomials, for example, f1 = hm1; : : : ;mki,
for monomials m1;m2; : : : ;mk. The exponents appearing
in these monomials determine polytopes in n-dimensional
space. With the parameters q as the coe�cients of the
mononomials and the solution space as x 2 (C�f0g)n (that
is, any solution for which one or more of the variables is zero
does not count), the BKK bound gives the Bezout number
as a geometric function of the polytopes, called the mixed

volume. The mixed volume can be calculated by hand only
for the simplest cases, but computer algorithms are avail-
able (Verschelde et al. 1994, Huber and Sturmfels 1995).
These references also give homotopies for solving polyno-
mial systems numerically by continuation, with the number
of solution paths equal to the BKK bound.

4 CIRCULARITY

Because Bezout's Theorem is merely an upper bound,
the number of intersections between two planar curves is
often less than the product of their degrees. This is espe-
cially true of the curves studied in kinematics, which often
possess a property called circularity. We �rst look at the
phenomenon in the simplest case, the intersection of two
circles, and then proceed to the general case. The issue of
accounting for circularity is greatly facilitated by the use of
isotropic coordinates.

4.1 Intersection of two circles

By Bezout's theorem, two quadratic curves in the plane
have at most 2 � 2 = 4 points of intersection, yet it is an ele-
mentary fact that two circles, regardless of their size or po-
sition, can have at most two nonsingular points in common.
The classical approach to account for this discrepancy is as
follows. The equation for a circle centered at c = cx + icy
of radius r is

(z � c)(�z � �c) = r2:

To homogenize the equation, let z = Z=W and �z = �Z=W ,
and clear denominators to get

(Z � cW )( �Z � �cW ) = r2W 2:

One sees that every circle contains two points at in�nity:
(Z; �Z;W ) = (1; 0; 0) and (0; 1; 0). Since these points are
common to all circles, they are called \isotropic points".
(As a point of reference, note that in homogenized Cartesian
Copyright c
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coordinates, the isotropic points are given by (X;Y;W ) =
(1;�i; 0), which are the two roots of X2+Y 2 = 0.) Because
of these two roots at in�nity, the intersection of two circles
contains at most 4� 2 = 2 �nite roots.

Isotropic coordinates allow us to use alternatives to
Bezout's theorem that exclude the isotropic points when
counting intersections. Since each circle has the product
structure hz; 1ih�z; 1i, the 2-homogeneous Bezout number for
the intersection of two circles is the coe�cient of �1�2 in
(�1 + �2)

2, which is 2. In a 2-homogenization of the circle
equations,

(Z � cW )( �Z � �c �W ) = r2W �W;

the isotropic solutions no longer exist, because the inde-
terminates (Z;W ) = (0; 0) and ( �Z; �W ) = (0; 0) are not
allowed. Notice that to get a sharp 2-homogeneous Be-
zout number, it is essential to use isotropic coordinates: in
Cartesian coordinates, the 2-homogeneous Bezout number
is 8.

4.2 Curves with circularity

If the isotropic points only arose in connection with
circle intersections, they would not warrant much atten-
tion, but it happens that most curves generated by pla-
nar linkages pass through the isotropic points one or more
times. Thus, in counting the number of intersections of
such curves, the isotropic points �gure prominently. In a 1-
homogeneous treatment, the multiplicity of the intersection
of a curve with the isotropic points is called the circularity

of the curve. The standard formula for the circularity of
a real2 polynomial f(x; y) in Cartesian coordinates as fol-
lows. For k = 0; : : : ; d, where d is the degree of f , let ck be
the largest integer such that the terms of degree k in f are
members of hx2 + y2ickhx; yik�2ck . Then, the circularity c of
f is

c = min
0�k�d

(d� k + ck):

The sense behind this de�nition is clearer in isotropic
coordinates. Let g(z; �z) = f((z + �z)=2; (z � �z)=(2i)) be the
same curve represented in isotropic coordinates. Since the
coe�cients in f are real, the complex conjugate of f for
real (x; y) is equal to f , and hence the same is true for
g. This implies that any term �zp�zq must be matched by
a conjugate term ��zq�zp so that the sum �zp�zq + ��zq�zp is
invariant under conjugation. Accordingly, the degree of g

2For complex coe�cients, the two isotropic points may have unequal

multiplicities, but this is not of interest for mechanism work.
6
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with respect to z is equal to the degree of g with respect to
�z, and we will call this number the isotropic bidegree b of g.
The kth-degree term of g is of the form zck �zckhz; �zik�2ck , so
the bidegree is

b = max
0�k�d

(k � ck) = d� c: (13)

Alternatively, one may simply note that g has the product-
decomposition form:

g 2 hz; 1ich�z; 1ichz; �z; 1i`;

where c is the circularity and ` is a new quantity that we
will call the linearity. The degree and bidegree of g are
d = 2c+ ` and b = c+ `, respectively.

The relationships between circularity, linearity, degree

and bidegree can be visualized by plotting the polytope as-
sociated to the monomials in g, as shown in Fig. 3. In
isotropic coordinates, the circularity of a curve is deter-
mined by the shape of its polytope, whereas in Cartesian
coordinates, it is determined by relationships between coef-
�cients (e.g., x2+y2 has equal coe�cients on the monomials
x2 and y2). This is why isotropic coordinates and the BKK
bound work so well together.

4.2.1 1-Homogeneous viewpoint. Generalizing the ar-
gument used by Bricard (1927) in analyzing the four-bar
coupler curve, the multiplicity of the isotropic points can
be found as follows. The intersection of g with a linear
equation in �z, i.e., with f = 0 where f 2 h�z; 1i, is a curve of
degree c+ ` in z, and so there are only c+ ` �nite roots in-
stead of d = 2c+`. Hence, in a 1-homogeneous formulation,
Copyright c
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the point at in�nity along the z-axis must be a root of mul-
tiplicity c, and similarly for the other isotropic point along
the �z-axis. Thus, in the intersection between two curves of
degree d1 and d2 and circularity c1 and c2, respectively, the
isotropic points each appear with multiplicity c1c2, so the
number of nonsingular �nite intersections is at most

N = d1d2 � 2c1c2: (14)

4.2.2 2-Homogeneous viewpoint. From
a 2-homogeneous viewpoint, the result is the same, but
the interpretation is di�erent. The 2-homogeneous Bezout
number for the intersection between a curve with bidegrees
(b1; b1) and a curve with bidegrees (b2; b2) is the coe�cient
of �1�2 in (�b11 + �b12 )(�

b2
1 + �b22 ), which is 2b1b2. But upon

2-homogenizing the equations, one �nds that there is a root
at in�nity f(Z;W ); ( �Z; �W )g = f(1; 0); (1; 0)g of multiplicity
`1`2, Hence, the number of �nite intersections is

N = 2b1b2 � `1`2: (15)

4.2.3 Product decomposition. Considering the prob-
lem once more using the product-decomposition theorem,
one has the polynomials g1 2 hz; 1ic1h�z; 1ic1hz; �z; 1i`1 and
g2 2 hz; 1ic2h�z; 1ic2hz; �z; 1i`2 . For the purpose of counting
roots, the intersection of g1 = 0 with g2 = 0 can be bro-
ken into 9 subsystems according to the product structure.
Among these, the subsystem fhz; 1ic1 = 0; hz; 1ic2 = 0g has
no roots and neither does fh�z; 1ic1 = 0; h�z; 1ic2 = 0g, but
the remaining subsystems all contribute roots totaling to

N = 2(c1c2 + c1`2 + c2`1) + `1`2: (16)

The BKK bound will also yield this result.

4.2.4 Equivalence. Although Eqs.(14,15,16) do not
look the same, one can use the relations dk = 2ck + `k and
bk = ck + `k, (k = 1; 2), to show that they are all in exact
agreement. The combination of isotropic coordinates with
the product-decomposition theorem or the BKK bound give
a sharp Bezout number without a separate accounting for
isotropic roots at in�nity.

5 KINEMATIC ANALYSIS OF LINKAGES

The scope of the remainder of this paper will be nar-
rowed according to the following de�nitions.

De�nition 1. A planar linkage is a mechanism with only ro-

tational and prismatic joints.
7

De�nition 2. An exactly-constrained linkage is one whose

number of degrees of freedom of motion is equal to its mo-

bility as calculated from Eq. (10).

In particular, this de�nition excludes over-constrained link-
ages, whose degrees of freedom of motion exceed their mo-
bility. By Eq. (10), a mobility-1 exactly-constrained linkage
(M = 1, g = 0) has r + p = (3n � 4)=2 rotational and pris-
matic joints, and since the number of joints is an integer, n
must be even.

By \kinematic analysis" of a linkage, we mean the
problem of characterizing motion in terms of either an in-
put/output relationship or a curve traced by the linkage:

� Input/output analysis of a linkage answers the following
question: for a given value of �j , what values can �k

take? The number of such values, herein referred to
as the input/output degree, depends on the topology
of the linkage and generally varies depending on which
links j and k are designated as input and output. The
input link is herein assumed to be connected to the
ground link.

� Tracing curve3 analysis seeks to delineate the geometric
properties of the locus traced by a selected point on
one of the links. Chief among these properties are the
degree and circularity of the curve, which are important
in determining the number of intersections the curve
may have with other plane curves.

In the section to follow, these two problems are seen to be
interrelated and in fact, correspond to questions concerning
the assembly modes of certain immobile structures. From

this uni�ed perspective, we proceed in the succeeding sec-

tions to apply the isotropic formulation to answer questions

concerning degree and circularity.

5.1 Structures, robots and linkages

Before proceeding with the analysis of 1-degree-of-

freedom linkages, it will be useful to note certain correspon-

dences between questions regarding the motion of linkages

and questions regarding the assembly of structures. These

questions are also closely related to the forward kinematic

problem for planar in-parallel robots. For this discussion,

the following de�nition is used.

De�nition 3. A structure4 is an exactly-constrained linkage
having mobility M = 0.

Accordingly, all structures must have an odd number of

links. The main question in analyzing a structure is to �nd

3Tracing curves are sometimes called coupler curves by other kinemati-

cians (e.g., Primrose et al. 1967).
4A more precise term would be be \statically determinate structure."
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Figure 4. An eight-bar linkage and related nine-bar structures.

all assembly con�gurations, given the link dimensions and

their interconnections. For example, three binary links of

prescribed length can be assembled into a planar triangle

in two ways, one a mirror image of the other.

Structures are closely related to the main problems in

linkage analysis. In the case of input/output relations, one

sees that for each value of the input angle, the input link

and ground link can be temporarily viewed as a single link.

The number of assembly modes of the resulting (2k � 1)-

bar structure is seen to be the same as the degree of the

input/output relation for the original 2k-bar linkage.

The analysis of tracing curves is related to structures

as illustrated in Fig. 4. An eight-bar linkage is shown in

Fig. 4(a), along with a portion of the tracing curve associ-

ated to point P . The degree of the tracing curve is equal to

the number of times it intersects an arbitrary line (Eq.14).

This corresponds to the number of assemblies of the struc-

ture obtained by adding an RP binary link between P and

ground, as shown in Fig. 4(b). Similarly, the bidegree of

the tracing curve is equal to one-half the number of times

it intersects an arbitrary circle (Eq.15), which corresponds

to adding an RR binary link between P and ground, such

as link PQ in Fig. 4(c). Fig. 4(d) is a re-arrangement of

Fig. 4(c), emphasizing the quaternary nature of the ground

link AKLQ. The straightforward generalization of these

constructions shows that the analysis of tracing curves for
8

(a) (b) (c)

A B

F

E

C
D

Figure 5. Two in-parallel planar manipulators (a,b) whose forward

kinematics reduce to the pentad structure (c). Arrows indicate ac-

tuated joints.

a 2k-bar linkage is related to the modes of assembly of cer-

tain (2k+ 1)-bar structures. The speci�c example of Fig. 4

will be examined further in x5.3.

Putting together the observations of the last two para-

graphs, one sees that the analysis of a tracing curve for a

2k-bar linkage determines the number of assemblies of cer-

tain (2k + 1)-bar structures, which in turn determines the

input/output degree of several (2k + 2)-bar linkages.

Structures are also related to robot kinematics. A pla-

nar robot is, typically, a mobility-3 exactly-constrained link-

age, with three actuated joints. When the actuated joints

are held constant, the device becomes a structure, with the

end-e�ector held in a �xed location. (See Fig. 5.) Accord-

ingly, the forward kinematic problem of determining the

location of the end-e�ector given the input joint values is

a question of �nding the assembly modes of the associated

structure.

5.2 General linkages

In this section, we establish bounds on the basic prob-

lems of kinematic analysis considering only the number of

links in the mechanism. The main result depends on the

following lemma.

Lemma 1. The 2-homogeneous Bezout number for k+l poly-
nomials that are bi-linear in x1 2 C

k and x2 2 C
l is

�
k+l
k

�
.

Proof. By the multi-homogeneous Bezout formula given

in x3, the Bezout number is the coe�cient of �
k

1�
l

2 in

(�1 + �2)
k+l. From this, the lemma is a consequence of

the binomial theorem. 2

The following theorem places bounds on the degree and

bidegree of a curve traced by a planar linkage. As illustrated

in Fig. 3, the degree and bidegree de�ne a polygon inside of

which the monomials of the polynomial equation describ-

ing the curve must lie. Remember that the degree d and

bidegree b determine the circularity as c = d� b (Eq.13).
Copyright c
 1996 by ASME



Theorem 1. A (2k + 1)-bar structure can be assembled at
most

�
2k
k

�
ways.

Corollary 1. The curve traced by any point of a mobility-1
exactly-constrained 2k-bar planar linkage has degree d ��
2k
k

�
and bidegree b � 1

2

�
2k
k

�
.

Corollary 2. The input/output relation of a mobility-1
exactly-constrained 2k-bar linkage has degree d �

�
2k�2
k�1

�
.

Proof. For the isotropic formulation of x2, it is natural to
adopt a 2-homogeneous formulation wherein the primary

variables fzl; �lg (l = 1; : : : ; 2k) are placed in one sub-

set, and the conjugate variables f�zl; ��lg (l = 1; : : : ; 2k) are

placed in the other. There are 2k unit vector equations of

the form of Eq.(4) (one link is �xed). In addition, in the case

that all joints are rotational, there are 6k linear equations

of the form Eq.(5). Of these, 3k involve only the primary

variables and 3k involve the conjugate variables. The situ-

ation does not change when prismatic joints are present, as

each prismatic joint also introduces two linear equations (6)

and replaces one of the unit vector equations with a bilinear

equation of the form (7). The linear equations can be used

to reduce the system to 2k equations, each bilinear with re-

spect to k primary and k conjugate variables. By Lemma 1,

the system of equations has at most
�
2k
k

�
solutions, hence

Theorem 1 is proven. As discussed in x5.1, the degree and
bidegree of a tracing curve can be determined by consider-

ing the (2k+1)-bar structures obtained by adding either an

RP binary link or RR binary link connecting the tracing

point to ground. By Eqs.(14,15), this number is equal to

the degree and equal to twice the bidegree of the tracing

curve, hence Corollary 1 follows. Corollary 2 is a conse-

quence of the correspondence of the input/output problem

to the assembly of a structure with one less link. 2

Examples. Corollary 1 implies that a four-bar linkage has a
coupler curve of degree less than or equal to 6 with bidegree

no greater than 3. It is well-known that a general RRRR

four-bar coupler curve is in fact a tri-circular sextic, which

means it attains both limits. All other four-bars, having one

or more prismatic joints, fall inside the limits. For example,

a slider-crank (RRRP) four-bar has a quartic coupler curve

with bidegree 3 (Hunt 1978 p. 213{214), and a PRRP ellip-

tic trammel (Cardan mechanism) has degree 2, bidegree 2.

Theorem 1 implies that a tracing curve of a six-bar linkage

has at most degree 20 and bidegree 10. As shown in (Prim-

rose et al. 1967), the highest degree of any six-bar tracing

curve is 18 (with bidegree 9), so the theorem is not sharp

for k � 3.
9

5.3 An eight-bar linkage

Theorem 1 takes nothing into consideration beyond the

number of links, so the bounds it predicts are not sharp.

However, when applied to a particular linkage, the method-

ology often gives sharp results. To see this, consider the

eight-bar linkage with tracing point P shown in Figure 4(a).

We wish to determine the degree and circularity of the trac-

ing curve. The degree is equal to the number of assemblies

of the structure shown in Fig. 4(b) and the bidegree is one-

half the number of assemblies of the structure in Fig. 4(c),

because these will be the number of intersections of the

coupler curve with a line and a circle, resp. By �nding

the number of assemblies of these structures, one also �nds

the degrees of the input/output relations for various ten-

bar linkages, in the manner discussed in x5.1. Also, one

�nds the bidegree of other eight-bar linkages obtained from

Fig. 4(d) by removing a binary link and declaring one of

the adjacent links to be the ground link. For example, if

link BD is removed and link DFG is held stationary, point

B will trace a coupler curve whose bidegree is the same as

that of point P in Fig. 4(a).

Numbering the links as shown in Fig. 4(d) and treating

triangle CPE as the �xed link, one may write the kinematic

equations as 4 unit vector equations

�1
��1 = 1; �2

��2 = 1; �3
��3 = 1; �4

��4 = 1;

and 4 length equations

L
2
1 = (c + �1a + �2k � e� �3g � �4f)

� (�c+ ��1�a + ��2�k � �e� ��3�g � ��4 �f );

L
2
2 = (c + �1b� e � �3g � �4d)(�c+ ��1�b� �e � ��3�g � ��4 �d);

L
2
3 = (c + �1a + �2(q + `) � e � �3h)

� (�c+ ��1�a + ��2(�q + �̀) � �e � ��3�h);

L
2
4 = (c + �1a + �2q)(�c + ��1�a+ ��2�q):

This system of polynomials has the following product-

decomposition form:

f1 2 h�1; 1ih��1; 1i

f2 2 h�2; 1ih��2; 1i

f3 2 h�3; 1ih��3; 1i

f4 2 h�4; 1ih��4; 1i

f5 2 h�1; �2; �3; �4; 1ih��1; ��2; ��3; ��4; 1i

f6 2 h�1; �3; �4; 1ih��1; ��3; ��4; 1i

f7 2 h�1; �2; �3; 1ih��1; ��2; ��3; 1i

f8 2 h�1; �2; 1ih��1; ��2; 1i
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Of the 28 = 256 possible subsystems, there are
�
8
4

�
= 70

ways of picking four factors for each of the two isotropic

subsets. This 2-homogeneous Bezout number for the sys-

tem is consistent with Theorem 1. However, some of these

subsystems have no solutions. For example, the �rst fac-

tors from f1, f2, f3 and f7 cannot be chosen simultaneously

as they give four general linear factors in only three un-

knowns. Altogether, there are 18 such ill-posed subsystems,

leaving a maximum of 52 �nite roots for the system. Con-

sequently, the tracing curve for point P in Fig. 4(a) has

bidegree b � 26 and degree d � 52. When considering the

linkage of Fig. 4(b), f8 is replaced by f
0
8 2 h�1; �2; ��1; ��2; 1i,

which also leads to d � 52.

The inversion of the linkage to treat triangle CPE

as the �xed link was necessary to make the product-

decomposition bound tight. If the same approach is at-

tempted for the equations that derive naturally from the

original non-inverted presentation, a bound of 54 is obtained

instead of 52. In contrast, the BKK bound yields 52 in both

cases. Because the BKK bound is completely automated,

it may be the preferred methodology, especially for more

complicated linkages. However, since a proof by hand is,

in this case, more illuminating than a \black box" compu-

tation, the demonstration using product-decomposition has

been presented.

To test if these bounds are tight, the system was solved

with random link dimensions using 2-homogeneous polyno-

mial continuation. This con�rmed that both of the prob-

lems in question had 52 nonsingular �nite roots. The ana-

lyst who is not interested in purist notions of mathematical

proof could accept the numerical result as establishing the

bound by itself, without the preceeding analytical treat-

ment.

6 SYNTHESIS OF LINKAGES

Synthesis problems concern �nding linkages whose mo-

tion will satisfy certain prespeci�ed conditions, usually cat-

egorized as either function generation, curve generation, or

body guidance problems. Since one may specify a variety of

positional and/or rotational displacements of the links dur-

ing the motion as well as giving various dimensions of the

linkage, a complete catalog of synthesis problems would be

too voluminous to be of much use. It is preferable to develop

a uni�ed approach to formulating and solving such prob-

lems. A formulation in isotropic coordinates, with the use

of either product-decomposition or BKK theory to bound

the number of roots, and the application of polynomial con-

tinuation to numerically solve for those roots, appears to

be a promising approach. This contention is supported by

the following two examples of synthesizing four-bar coupler

curves.
10
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Figure 6. Five-point coupler-curve synthesis with prescribed pivots.

In the isotropic formulation of x2, the link dimensions

appear in isotropic coordinates as well as the motion vari-

ables. These dimensions become variables in a synthesis

problem, so isotropic coordinates will once again be an aid

in eliminating certain kinds of roots at in�nity that relate

to circularity.

6.1 A �ve-point problem

Consider the problem from Morgan and Wampler

(1990) of constructing a four-bar linkage whose coupler

point passes through 5 given points P0; : : : ; P4 and whose

�xed pivots A;B are given (Fig. 6). Let x and y be com-

plex vectors from P0 to the moving pivots in the initial

position of the linkage, and for positions j = 1; 2; 3; 4, let

�j;
��j be isotropic coordinates for the rotation of the coupler

link relative to its initial position. For each of j = 1; 2; 3; 4,

there is one unit vector equation and one equation for each

binary link, expressing the fact that its length is constant:

�j
��j = 1;

(pj + �jx� a)(�pj + ��j �x� �a) = (p0 + x� a)(�p0 + �x� �a);

(pj + �jy � b)(�pj + ��j �y � �b) = (p0 + y � b)(�p0 + �y � �b);

where (pj; �pj) are the isotropic coordinates for Pj, and simi-

larly for A and B. The monomials appearing in these equa-

tions are

h�j ��j; 1i; (17)

h�jx; ��j�x; x; �x; 1i; (18)

h�jy; ��j �y; y; �y; 1i: (19)

Since (18,19) are linear in �j;
��j , such equations can be

solved by Cramer's rule. When the results are substituted

into (17), one obtains quartics

fj 2 hx�y; �x�y; �xy; �x; �yihxy; x�y; �xy; x; yi; j = 1; 2; 3; 4:

(20)
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(If we treat x; �x; y; �y as constants and pj; �pj as variables,

each of these is a four-bar coupler curve equation of degree

6, bidegree 3.)

There are several ways to treat this problem. Morgan

and Wampler (1990), working in Cartesian coordinates, de-

rived a system of 4 quartics equivalent to Eq.(20). Although

the 2-homogeneous Bezout number was 96, upon solving the

problem numerically with polynomial continuation for gen-

eral Pj, A, and B, they observed that 60 roots always fall

on a pair of degenerate hyperplanes. This leaves at most

36 �nite, nonsingular roots. By the method of parameter

continuation (Morgan and Sommese 1989), they were able

to construct a 36-path homotopy for solving subsequent in-

stances of the problem.

While the numerical approach provides compelling ev-

idence that the Bezout number for the problem is 36, it

does not provide proof. An alternative is to compute the

BKK bound of the system, which for any system of the

form Eqs.(17{19) in 12 variables, or Eqs.(20) in 4 variables,

is 36. Accordingly, the approaches discussed in (Verschelde

et al. 1994, Huber and Sturmfels 1995) can be used to solve

the problem via a 36-path homotopy. It is important to

note that the BKK bound for the 4 quartics in Cartesian

coordinates is 80, which shows the value of an isotropic

formulation. This is because in isotropic coordinates, the

degenerate sets are (x; y) = (0; 0) and (�x; �y) = (0; 0). Since

the BKK formula counts roots in (C � f0g)n, these sets are
ignored.

A third alternative is to analyze the problem using the

product decomposition. This approach is not as automated

as the previous two, but it does provide a methodology that

can be carried out by hand to prove the bound of 36. The

system represented by Eq.(20) breaks naturally into 24 sub-

systems. These come in 5 types, according to whether the

�rst factor is chosen 0, 1, 2, 3, or 4 times. Because of the

symmetry in the structure of the two factors, type 0 and

type 4 subsystems will have the same number of roots, and

the same holds for type 1 and type 3 subsystems. Thus,

only 3 subsystems need to be considered to �nd a Bezout

number for the full system. Since four-bars with �x = 0 or

�y = 0 are not of interest, we can divide the equations by

�x2�y2 to obtain polynomials that belong to

hs; 1; t; u; vihst; s; t; su; tvi; (21)

where

s = x=�x; t = y=�y; u = 1=�y; v = 1=�x:

For a given value of (s; t; u; v), there is one value of

(x; y; �x; �y). The (unique) type 4 system, which consists of

4 linear polynomials of the form hs; 1; t; u; vi, has at most 1
solution. A type 3 subsystem consists of 3 linear and one
11
quadratic polynomial, so it has at most 2 nonsingular so-

lutions. A type 2 system has at most 4 solutions, but one

of these is of the form (s; t) = (0; 0), so we do not count it.

Hence, the total number of nonsingular, nonzero roots is at

most

�
4

4

�
1 +

�
4

3

�
2 +

�
4

2

�
3 +

�
4

1

�
2 +

�
4

0

�
1 = 36:

This establishes the desired result. A 36-path homotopy

could be created using this approach.

6.2 The nine-point problem

Since a four-bar coupler curve has nine independent pa-

rameters, one can specify up to nine general points on the

curve. This problem can be formulated exactly as in the

�ve-point problem above, except a; �a; b;�b become variables

and there are nine precision points P0; : : : ; P8. This prob-

lem was formulated by Alt (1923), with the �rst partial

solutions found by Roth and Freudenstein (1963). Their

\bootstrap" technique was a precursor to the methodology

now known as \polynomial continuation," which was used

in conjuction with an isotropic formulation by Wampler et

al. (1992) to �nd complete solutions. The computation of

the BKK bound for this system is reported in Verschelde et

al (1995) and an improved treatment based on the product

decomposition appears in Morgan et al (1995).

7 CONCLUSIONS

The isotropic formulation of kinematic equations fa-

cilitates the solution of problems concerning the analysis

and synthesis of planar mechanisms. It has been shown

that isotropic coordinates are intimately related to issues

of circularity and in fact, the concept of circularity can

be supplanted by isotropic bidegree, which simpli�es many

derivations. An isotropic formulation also submits readily

to treatments utilizing several modern root-counting meth-

ods, namely multi-homogeneous Bezout numbers, the BKK

bound, and the product-decomposition theorem. Using this

synergistic combination of formulation and analytical tools,

upper bounds on the degree and bidegree of the curves

traced by planar linkages have been established. The close

relation between these bounds, the number of assemblies

of structures, and the input/output degree of linkages has

been elucidated. The applicability of the methods has been

demonstrated in the analysis of an eight-bar linkage having

a coupler curve of degree 52 and in the synthesis of four-

bar coupler curves. While this paper has concentrated on

analytical aspects of the problem, all the methods lead di-
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rectly to numerical implementations based on polynomial

continuation.

Many questions have been left open. In particular, the

analysis of tracing curves has been limited to the study

of their degree and circularity. Questions of genus and of

the number of double points, cusps, and real circuits, while

of interest, are not addressed. The analysis of RP- and

PP-type coupler mechanisms also awaits attention. As for

synthesis problems, wide regions of territory remain unex-

plored. Here there will be challenge not just in solving par-

ticular combinations of precision data, but also in identi-

fying which of these might be e�ective tools for practical

linkage design.
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