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ABSTRACT
This paper provides examples of a new method used to

analyze the motion characteristics of single-degree-of-freedom,
closed-loop linkages with a designated input angle and one or
two design parameters. The method involves the construction
of a singularity trace, which is a plot that reveals changes in the
number of geometric inversions, singularities, and changes in the
number of branches as a design parameter is varied. This paper
applies the method to Watt II, Stephenson III and double butter-
fly linkages. For the latter two linkages, instances where the in-
put angle is able to rotate more than one revolution between sin-
gularities have been identified. This characteristic demonstrates
a net-zero, singularity free, activation sequence that places the
mechanism into a different geometric inversion. Additional ob-
servations from the examples are given. Instances where the sin-
gularity trace for Watt II linkages includes multiple coincident
projections of the singularity curve. Cases are shown where sub-
tle changes to two design parameters of a Stephenson III linkage
drastically alters the motion. Additionally, isolated critical points
are found to exist for the double butterfly, where the linkage be-
comes a structure and looses the freedom to move.

∗Address all correspondence to this author.

1 Introduction
Myszka et al. [1] developed a general method to produce a

singularity trace for a planar, single degree-of-freedom (DOF),
closed-loop linkage with a designated input angle and a design
parameter. The singularity trace can be a convenient tool to clas-
sify the general motion characteristics of a linkage with respect to
changes in the design parameter. The motion characteristics in-
clude the number of geometric inversions, singularities, circuits
and critical points, and are described as follows.

When the design parameter is considered fixed, forward
kinematic position analysis determines values of the linkage joint
parameters for a given position of the input link [2]. Since the
governing kinematic constraint equations of a closed-loop link-
age are non-linear, multiple solutions are obtained for a single
position of the input link. Erdman et al., [3] refer to each so-
lution as a geometric inversion (GI) and is associated with an
alternate configuration of the linkage at the specific input. The
set of position equations is represented by a motion curve which
exhibits the relationship between the joint variables.

Chase and Mirth [4] define a circuit of a mechanism as the
set of all possible orientations without disconnecting any of the
joints. Each distinct segment on the trace of the motion curve
represents a different circuit. When a GI is found to lie on a
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segment of the motion curve at a specific input link position, any
movement of the input link move the GI along that motion curve
segment.

For a single-DOF linkage with a fixed design parameter, sin-
gularity points exist when the driving link is no longer able to
move the mechanism. At the singularity points, also called dead
points, the mechanism becomes locked and the mechanical ad-
vantage reduces to zero [5,6]. Singularities appear on the motion
curve as turning points with respect to the input parameter. As
the design parameter changes, these singularity points sweep out
a curve called the singularity trace.

Regions on a circuit between singularity points are defined
as branches [4]. For single-DOF linkages, singularity points are
the input limits for that branch. If a GI resides on a motion curve
segment (i.e., circuit) that has no singularities, it can be driven
with a fully rotatable crank. As the design parameter changes,
the number of branches and their connections, in short the topol-
ogy of the motion curve, may change at certain critical points.
Critical points are identified on the singularity trace as turning
points with respect to the design parameter. Murray et al. [7]
identified relationships of link lengths that defines a transition
linkage as the border between topology. Myszka et al. [8] ob-
served that critical points appearing as smooth extrema on the
singularity trace are transition linkages. It was also observed that
the Stephenson III linkage has the property that the input angle
is able to rotate more than one revolution between singularities
and this property is associated with critical points that appear as
cusps on the singularity trace.

This paper illustrates the general analysis methodology for
Watt II, Stephenson III and double butterfly linkages. The re-
mainder of the paper is organized as follows. Section 2 applies
the general method and develops governing equations for the
Watt II linkage are developed. A singularity trace and associ-
ated observations for the Stephenson III is presented in Section
3. Section 4 develops the governing equations for the double but-
terfly linkage and provides observations from the resulting singu-
larity trace.

2 Watt II Linkage

The Watt II linkage shown in Fig. 1 provides the first exam-
ple. In the general analysis methodolgy, the linkage input vari-
able is designated as x ∈ C and the design variable is p ∈ C.
All the remaining passive joint variables are y ∈ CN . For the
Watt II linkage, the input angle is x = θ1 and the design pa-
rameter is p = a1. The remaining passive joint variables are
y = {θ2,θ3,θ6,θ7}. The physical parameters are θ1, θ4, α35, and
a2, . . . ,a8.
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Figure 1: Watt II linkage position vector loop.

2.1 Loop Closure
The loop closure equations are specified as

f (p,x,y) = 0, f : C×C×CN → CN . (1)

For a fixed value of p, the mechanism has a single DOF motion
represented by a motion curve Cp ⊂ CN+1, dim(Cp) = 1.

To facilitate solution of loop closure equations, as presented
in Wampler [9, 10], an isotropic form of loop closure equa-
tions are used. In isotropic form, each joint angle is repre-
sented by T j = eiθ j = cosθ j + isinθ j. The complex conju-
gate is T j = e−iθ j = cosθ j− isinθ j, and the identity is T jT j =(
eiθ j
)(

e−iθ j
)
= 1. For the two loops in the Watt II linkage, the

isotropic form of the closure condition along with the conjugate
identities are

g1 := a1T1 +a2T2 +a3T3 +a4T4 = 0

ḡ1 := a1T1 +a2T2 +a3T3 +a4T4 = 0
g2 := b5T3 +a6T6 +a7T7 +a8T8 = 0

ḡ2 := b′5T3 +a6T6 +a7T7 +a8T8 = 0

h j := T jT j−1 = 0, j = 2,3,6,7

(2)

All of the a j are real link lengths, but b5 is a complex
stretch rotation to properly model the ternary link. That is,
b5 = a5 (cosα35 + isinα35), and b′5 is the complex conjugate
of b5. Note that T4,T4 and T8,T8 model the ground link and
are known. For a fixed design variable, the system of four
equations describes a curve in the four dimensional space of
{T2,T6,T2,T6}. In the numerical examples that follow, the val-
ues used for the physical parameters are: a2 = 4.5, a3 = 5.0,
a4 = 6.0, a5 = 4.5, a6 = 2.5, a7 = 2.0, a8 = 5.5, θ4 = 3.1416,
θ8 = 3.9270, α35 = 0.5236.
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2.2 Forward Kinematics
Since the loop equations, g1,g2, and the conjugate loop

equations, ḡ1, ḡ1 are all linear, Eq. 2 can be rewritten to elimi-
nate variables. To this end, two variables per loop are eliminated
by defining,

R2 :=−a2T2 = a1T1 +a3T3 +a4T4,

R2 :=−a2T2 = a1T1 +a3T3 +a4T4,

R7 :=−a7T7 = b5T3 +a6T6 +a8T8,

R7 :=−a7T7 = b′5T3 +a6T6 +a8T8.

(3)

With ai 6= 0, i = 2,7, a2
i hi = 0 is formed to achieve

H2 = R2R2−a2
2 = 0, (4)

H7 = R7R7−a2
7 = 0. (5)

The identities corresponding to the remaining joint variables are

h1 = T1T1−1 = 0, (6)
h3 = T3T3−1 = 0, (7)
h6 = T6T6−1 = 0, (8)

(9)

For forward kinematics, the input angle θ1 is given, and
therefore T1 and T1 are known and Eq. 6 is not used. The for-
ward kinematics solutions are the roots of Eqs. (4),(5),(7),(8), a
system of four bilinear equations in the two-homogeneous vari-
able groups {T3,T6},{T3,T6}. Solution of the polynomial sys-
tems can be readily accomplished by numerical polynomial con-
tinuation [11] using the Bertini software package [12]. “Real”
solutions are those for which |T3| = |T6| = 1. At any point on
the curve, the remaining angles can be solved by using

T2 =−R2/a2, T7 =−R7/a7. (10)

2.3 Singularity Points
Given a linkage with a fixed design parameter, it is desirable

to find all branches of the motion with respect to the designated
input parameter. As described in [4], the branches meet at the
singularity points of the curve, where the mechanism moves dif-
ferentially without any motion at the input. The mechanism is
locked at a singularity point, but can be driven smoothly from
the input along each motion branch. The singularity points occur
when ∆y 6= 0 with ∆x = 0, which implies that the Jacobian of the
loop equations with respect to the passive joint variables loses
rank

D(p,x,y) := det
∂ f
∂y

= 0. (11)

Accordingly, the singularity points are given by a system of
equations consisting of the five loop closure conditions Eqs. (6)–
(8) along with one additional condition,

D := det

[
∂H2
∂θ3

∂H2
∂θ6

∂H7
∂θ3

∂H7
∂θ6

]
. (12)

It is noted that ∂H2
∂θ6

= 0 since T6 does not appear in R2. This
system of six equations in the six unknowns, separated into two-
homogeneous variable groups {T1,T2,T6},{T1,T2,T6}. Solv-
ing the system using Bertini [12], at most 8 turning points are
found in a general example. When a1 = 2.0, 2 of 16 singularity
points are real. When a1 = 6.0 and a1 = 12.0, 4 of 16 singularity
points are real. When a1 = 9.0, 6 of 16 singularity points are
real.

2.4 Motion Curve
A trace of a motion curve with a1 = 2.0 is projected onto the

θ1 - θ6 plane and shown in Fig. 2. Note that the linkage has one
circuit and two singularity points at θ1 =−0.2061, 2.0652. Zero
GIs exist for θ1 < −0.2061 and θ1 > 2.0652. Two GIs exist for
−0.2061 < θ1 < 2.0652.

Figure 2: Trace of the motion curve for the Watt II linkage, with
a1 = 2.0, projected onto the θ1−θ6 plane.

A second trace of a motion curve with a1 = 9.0 is projected
onto the θ1 - θ6 plane and shown in Fig. 3. Note the motion curve
has two circuits and six of singularity points at θ1 = −0.2427,
0.6019, 0.6314, 1.2277, 1.3205, 1.3205. Notice that two singu-
latiries occur at the same value of θ1. This is associated with
singularity within the first four-bar loop, for which two inver-
sions of the second four-bar loop exist. The linkage has zero GIs
for θ1 <−0.2427, 0.6019 < θ1 < 0.6314 and θ1 > 1.3205. Two
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GIs exist for−0.2427 < θ1 < 0.6019 and 0.6314 < θ1 < 1.2277.
Four GIs exist for all values of 1.2277 < θ1 < 1.3205.

Figure 3: Trace of the motion curve for the Watt II linkage, with
a1 = 9.0, projected onto the θ1−θ6 plane.

2.5 Critical Points
The process of determining the critical points proceeds anal-

ogously to finding singularity points, replacing x by p, y by (x,y),
and f by ( f ,D). The critical points occur when (∆x,∆y) 6= 0 with
∆p = 0, which implies,

E := det

[
∂ f
∂x

∂ f
∂y

∂D
∂x

∂D
∂y

]
= 0. (13)

Considering a1 as a variable, the critical points for the Watt
II are determined by the solution of Eq. (6)–(5),(12) along with,

E := det


∂H2
∂θ1

∂H2
∂θ3

∂H2
∂θ6

∂H7
∂θ1

∂H7
∂θ3

∂H7
∂θ6

∂D
∂θ1

∂D
∂θ3

∂D
∂θ6

= 0. (14)

It is noted that ∂H2
∂θ6

= 0, since T6 does not appear in R2, and
∂H7
∂θ1

= 0, since T1 does not appear in R7. This system of seven
equations in the seven unknowns a1,{T1,T2,T6},{T1,T2,T6}.
Using Bertini to solve, critical points appear in pairs, existing at
a1 = 0.4614, 5.7107, 6.2872, 6.4642, 7.5578, 9.4614, 15.2132,
15.2872.

2.6 Singularity Trace
The singularity trace is shown in Fig. 4. The critical points

signify local extrema of the singularity curve. Cricital points that

Figure 4: Projection of the Watt II singularity trace. Red circles
mark the critical points. Regions of equal GIs and circuits are
identified.

appear on the singularity trace as smooth extrema represent tran-
sition linkages, where there is a change in the number of circuits.

Sampling the motion curve between critical points deter-
mines the number of circuits. As identified in [8], the singu-
larity trace separates the plot into zones having the same number
of GIs. Solving the forward kinematic problem for one sam-
ple point within each zone determines the number in GIs in the
zone, as indicated in Fig. 4. It commonly occurs that the num-
ber of GIs in adjacent regions differ by two. With the symmetry
in the Watt II motion curves, some of the arcs observed on the
singularity trace are actually two coincident arcs. As mentioned,
this is associated with a singularity within the first four-bar loop,
for which two GIs of the second four-bar loop exist for the same
input angle. In these cases, the number of GIs in adjacent re-
gions differ by four, as is seen in the upper right portion of this
singularity trace.

3 Stephenson III Linkage
For the Stephenson III shown in Fig. 5, x = θ1 is consid-

ered the input angle and the design parameter is designated as
p = a1. The remaining joint variables are y = {θ2,θ3,θ6,θ7}.
The physical parameters are θ1, θ4, α35, and a2, . . . ,a8. In the
numerical examples that follow, the values used for the physical
parameters are: a2 = 4.0, a3 = 3.5, a4 = 4.1, a5 = 8.0, a6 = 8.0,
a7 = 8.0, a8 = 5.0, θ5 = 1.5708, θ6 = 5.8832, and α38 = 0.7752.
The governing loop, singularity and critical point equations were
developed in [1], so only the resulting equations are presented
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here. The loop closure equations are

R2 := a2T2 =−(a1T1 +a3T3 +a4T4 +a5T5),

R2 := a2T2 =−(a1T1 +a3T3 +a4T4 +a5T5),

R7 := a7T7 =−(b3T3 +a4T4 +a6T6),

R7 := a7T7 =−(b′3T3 +a4T4 +a6T6),

(15)

Using (15), the closure conditions become

h1 = T1T1−1 = 0, (16)
H2 = R2R2−a2

2 = 0, (17)
h3 = T3T3−1 = 0, (18)
h4 = T4T4−1 = 0, (19)
H7 = R7R7−a2

7 = 0. (20)

The singularity condition is

D := det

[
∂H2
∂θ3

∂H2
∂θ4

∂H7
∂θ3

∂H7
∂θ4

]
= 0. (21)

Lastly, the condition for critical points is

E := det


∂H2
∂θ1

∂H2
∂θ3

∂H2
∂θ4

0 ∂H7
∂θ3

∂H7
∂θ4

∂D
∂θ1

∂D
∂θ3

∂D
∂θ4

= 0. (22)

3.1 Critical Points
The system of equations for determination of critical points

consists of Eqs. (16)–(20),(21),(22). Considering a1 as a
variable design paramater, this system of seven equations in
the seven unknowns grouped into the homogenous system
a1,{T1,T3,T4},{T1,T3,T4}. Using Bertini to solve, critical
points exist at a1 = 1.1114, 2.0471, 2.0551, 5.9129, 5.9529,
5.9728, 7.4384, 7.5190, 8.7611, 8.8284, 10.0551, 10.9436,
13.7642, 13.9129, 17.4641, 18.9436.

3.2 Singularity trace
The singularity trace with a1 as a variable is shown in Fig. 6.

Unlike the Watt II linkage, some critical points appear as cusps
on the singularity trace. Solving the forward kinematic problem
for one sample point within each region bounded by the singu-
larity curve determines the number of GIs in that entire region.
The number of GIs are noted in Fig. 6. Additionally, the number
of circuits changes by one at each non-cusp, extrema and are also
noted in Fig. 6.
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Figure 5: Stephenson III linkage position vector loop.

Figure 6: Projection of the Stephenson III singularity trace with
respect to a1. Red circles mark the critical points. Regions of
equal GIs and circuits are identified.
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3.3 Motion Curves
A trace of the motion curve with a1 = 1.1 is projected onto

the θ1- θ3 plane and shown in Fig. 7. This value of a1 is slightly
less than the smallest critial point value (1.1114). Note that this
lowest cricital point appears as a cusp in Fig. 6. This linkage
has two GIs for all values of θ1, two separate circuits and no sin-
gularities. Thus, two linkage configurations have continuously
rotating cranks with a1 < 1.1114.

A second trace of the motion curve with a1 = 2.0 is pro-
jected onto the θ1- θ3 plane and shown in Fig. 8. This value of a1
is slightly greater than the smallest critial point value (1.1114).
This linkage has two GIs for θ1 < −1.6902 and θ1 > −1.4259,
four GIs for−1.6902 < θ1 <−1.4259, two separate circuits and
two singularities. The change of a1 from 1.1 to 2.0 passes over
a cusp in Fig. 6 and two singularities are introduced without ad-
ditional circuit. Thus, the motion curve bends over itself as seen
in Fig. 8. This results in a linkage that is able to rotate greater
than one full revolution between singularities. As observed in [1]
and witnessed again here, this net-zero, singularity-free actuation
that places the linkage into a different GI is associated with cusps
on the singularity trace.

The following analysis considers changes in two design pa-
rameters. The motion curve shown in Fig. 8 was generated with
a1 = 2.00 and a4 = 4.10 and exhibited two circuits, one having a
fully rotating crank and the other containing a greater than 360◦

branch. Figure 9 shows a pair of singulatiry traces with a4 con-
sidered variable. The solid trace is with a1 = 2.00 and the dashed
trace is with a1 = 2.09. Adjusting a1 from 2.00 to 2.09 crosses
a critical point in Fig. 6. Additionally, adjusting a4 from 4.10
to 4.15 crosses the critical point on both traces in Fig. 9. The
motion curve shown in Fig. 10 was generated with a1 = 2.09
and a4 = 4.15. After making both subtle adjustments, the two
circuits in Fig. 8 have been merged and no GI is fillu able to ro-
tate. Moreover, an additional circuit with two branches has been
formed. Thus, subtle adjustments to two link lengths, each cross-
ing a corresponding critical point, results in drastically different
motion characterisitcs.

4 Double Butterfly Linkage
This section applies the general analysis methodology to

the double butterfly linkage, as shown in Fig. 11. For this
case, the input angle is x = θ1 and the design parameter is
designated as p = a1. The remaining joint variables are y =
{θ2,θ3,θ4,θ7,θ8,θ11}. The physical parameters are θ1, θ5, θ12,
α2, α4, α7, and a2, . . . ,a12.

4.1 Loop Closure
The double butterfly linkage has three loops. The isotropic

form of the loop closure conditions for the double butterfly link-

Figure 7: Stephenson III Linkage motion curve with respect to
θ1,θ3 at a1 = 1.1.

Figure 8: Stephenson III Linkage motion curve with respect to
θ1,θ3 at a1 = 2.0.

Figure 9: Stephenson III singularity trace with respect to a4.
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Figure 10: Stephenson III singularity trace with respect to a1 =
2.09,a4 = 4.15.
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Figure 11: Double butterfly linkage position vector loop.

age can be written as

g1 := a1T1 +a2T2 +a3T3 +a4T4 +a5T5 = 0,

ḡ1 := a1T1 +a2T2 +a3T3 +a4T4 +a5T5 = 0,
g2 := a1T1 +b6T2 +a7T7 +a8T8 +b9T4 +a5T5 = 0,

ḡ2 := a1T1 +b′6T2 +a7T7 +a8T8 +b′9T4 +a5T5 = 0,
g3 := a1T1 +b6T2 +b10T7 +a11T11 +a12T12 = 0,

ḡ3 := a1T1 +b′6T2 +b′10T7 +a11T11 +a12T12 = 0,

h j := T jT j−1 = 0, j = 2,3,4,7,8,11.

(23)

As before, all of the a j are real link lengths, but b6, b9, b10 are
the complex stretch rotations to properly model the ternary links.
That is, b6 = a6 (cosα2 + isinα2), b9 = a9 (cosα4 + isinα4),
b10 = a10 (cosα7 + isinα7), and b′6,b

′
9,b
′
10 are the complex

conjugates of b6,b9,b10. The system of twelve equations in
Eqs. 23 describes a curve in the twelve-dimensional space of
{T2,T3,T4,T7,T8,T11,T2,T3,T4,T7,T8,T11}. In the numeri-
cal examples that follow, the values used for the physical pa-
rameters are: a2 = 5.0, a3 = 2.0, a4 = 2.0, a5 = 4.0, a6 = 7.0,
a7 = 5.0, a8 = 2.0,a9 = 2.0, a10 = 9.0, a11 = 7.0, a12 = 7.0,
θ5 = 3.9168, θ12 = 3.1416, α4 = 1.0472, α2 = 0.3803 and
α7 = 0.4510.

4.2 Forward Kinematics
The forward kinematic problem considers p = a1 fixed, the

passive joint variables are determined for a given input θ1. Some
variables can be eliminated from Eqs. (23) to facilitate solution,

R3 :=−a3T3 = a1T1 +a2T2 +a4T4 +a5T5,

R3 :=−a3T3 = a1T1 +a2T2 +a4T4 +a5T5,

R8 :=−a8T8 = a1T1 +b6T2 +a7T7 +b9T4 +a5T5,

R8 :=−a8T8 = a1T1 +b′6T2 +a7T7 +b9T4 +a5T5,

R11 :=−a11T11 = a1T1 +b6T2 +b10T7 +a12T12,

R11 :=−a11T11 = a1T1 +b′6T2 +b′10T7 +a12T12.

(24)

Accordingly, for ai 6= 0, i= 3,8,11, a2
i hi = 0 is formed to achieve

H3 := R3R3−a2
3 = 0, (25)

H8 := R8R8−a2
8 = 0, (26)

H11 := R11R11−a2
11 = 0. (27)

The identities corresponding to the remaining the joint valuables
are

h2 := T2T2−1 = 0, (28)
h4 := T4T4−1 = 0, (29)
h7 := T7T7−1 = 0, (30)

For a given design, the solution of this system of six
Eqs. (25)-(30) in the six unknowns, separated into two-
homogeneous variable groups {T2,T4,T7},{T2,T4,T7} is the
motion curve of the linkage. As before, “real” solutions are those
for which |T2|= |T4|= |T7|= 1. At any point on the curve, the
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Figure 12: Trace of the motion curve for the double butterfly
linkage, with a1 = 0.198, projected onto the θ1−θ2 plane.

remaining angles can be solved by using

T3 = R3/a3, (31)
T8 = R8/a8, (32)

T11 = R11/a11. (33)

4.3 Singularity Points
The singularity condition for double butterfly linkage is

D := det


∂H3
∂θ2

∂H3
∂θ4

∂H3
∂θ7

∂H8
∂θ2

∂H8
∂θ4

∂H8
∂θ7

∂H11
∂θ2

∂H11
∂θ4

∂H11
∂θ7

= 0. (34)

Note that ∂H3
∂θ7

= 0 since T7 does not appear in R3, and ∂H11
∂θ4

= 0
since T4 does not appear in R8 . The singularity points for double
butterfly linkage are given by a system of equations consisting of
the loop closure conditions Eq. (28)–(27) along with Eq. 34, To
find singularity points at a given value of a1, the system involves
the following variable groups {T1,T2,T4,T7},{T1,T2,T4,T7}.

4.4 Motion Curve
A trace of the motion curve with a1 = 0.198 is projected

onto the θ1-θ2 plane and shown in Fig. 12. This linkage has six
circuits, with no singularities and six GIs for all values of θ1.
That is, the linkage can be assemvbled into six different config-
urations all having continuously rotating cranks. A trace of the
motion curve with a slightly longer a1 = 0.40 is projected onto
the θ1-θ2 plane and shown in Fig. 13. This linkage has seven

Figure 13: Trace of the motion curve for the double butterfly
linkage, with a1 = 0.40, projected onto the θ1−θ2 plane.

circuits, six of which have continously rotating cranks. Addi-
tionally, the seventh circuit exhibits two singularity points. Thus,
eight GIs exist for−1.5768< θ1 < 0.3707. A trace of the motion
curve with a longer a1 = 2.50 is projected onto the θ1-θ2 plane
and shown in Fig. 14. This linkage has six circuits, one of which
has a continously rotating crank. Of particular note is a circuit,
where the linkage is able to rotate greater than one full revolution
between singularities. This feature is seen as the “U” shape ob-
served and noted in the motion trace of Fig. 14. Examples of this
net-zero, singularity-free actuation that places the linkage into
a different GI were identified for Stephenson III linkages in the
previous section and in [1]. Those cases showed an “S” shape in
the motion curve trace.

The final trace of the motion curve of a new double butter-
fly linkage with different parameters is projected onto the θ1-θ2
plane and shown in Fig. 15. This linkage has five circuits, none
of which has a continously rotating crank. Of note is a circuit,
where the linkage is also able to rotate greater than one full rev-
olution between singularities. Again, a net-zero, singularity-free
actuation that places the linkage into a different GI is identified.
However, this appears as a closed curve where the turning points
(singulaties) are separated by more than 360◦.

4.5 Critical Points

The system to solve for the critical points of double butterfly
linkage when a1 considered the variable design parameter con-
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Figure 14: Trace of the motion curve for the double butterfly
linkage, with a1 = 2.50, projected onto the θ1−θ2 plane.

Figure 15: Trace of the motion curve for another double butter-
fly linkage with different parameters, projected onto the θ1−θ2
plane.

sists of Eqs. (28)–(27),(34), and

E := det


∂H3
∂θ1

∂H3
∂θ2

∂H3
∂θ4

∂H3
∂θ7

∂H8
∂θ1

∂H8
∂θ2

∂H8
∂θ4

∂H8
∂θ7

∂H11
∂θ1

∂H11
∂θ2

∂H11
∂θ4

∂H11
∂θ7

∂D
∂θ1

∂D
∂θ2

∂D
∂θ4

∂D
∂θ7

= 0. (35)

Note that ∂H3
∂θ7

= 0 since T7 does not appear in R3, and ∂H11
∂θ4

= 0
since T4 does not appear in R8 .The system involves the fol-

Figure 16: Double butterfly linkage singularity trace with respect
to a1.

lowing variables groups: a1,{T1,T2,T4,T7},{T1,T2,T4,T7}.
However, the 4× 4 matrix in Eq. (35) is very complicated and
its determinant is more difficult to calculate than the examples
presented above. A new approach to simplify the calculation is
to combine the design parameter variable a1 and its angle T1,
T1 by defining X1 = a1T1 and X1 = a1T1. Accordingly, the
equation T1T1−1 = 0 is eliminated from the system. The result-
ing variables groups are {X1,T2,T4,T7},{X1,T2,T4,T7}. Thus,
this method reduces one variable and one equation from system.
The design parameter at critical points is determined as,

a1 =

√
X2

1 +X2
1 (36)

4.6 Singularity Trace
The singularity trace of double butterfly linkage with a vari-

able a1 is extremely convoluted and shown in Fig. 16. As before,
the singularity trace separates the plot into regions having the
same number of GIs. Solving the forward kinematic problem for
one sample point within each zone determines the number in GIs
in that entire zone. Additionally, sampling the motion curve be-
tween critical points that appear as smooth extrema determines
the number of circuits.

There are three isolated critical points P1, P2 and P3 which
do not lie on the singularity curve in Fig. 16. These critical points
identify where a GI of the double butterfly linkage will lose a
degree of freedom and become a fixed structure as indicated in
Fig. 17.

A singularity trace of the double butterfly linkage with a
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Figure 17: Double butterfly isolated critical position at P3.

Figure 18: Double butterfly linkage singularity trace with respect
to a3.

variable a3 is also convoluted and shown in Fig. 18. Similar to
the singularity trace with respect to a1, there are many cusps,
and the cusps are related to a net-zero, singularity free activation
sequence that places mechanism into a different GI.

5 Conclusions
This paper illustrated a general method for computing the

forward kinematics, singularity points, critical points, motion
curve and singularity trace for single-degree-of-freedom, closed-
loop linkages with a designated input angle and one design pa-
rameter in this paper. The method was applied to a Watt II,
Stephenson III and double butterfly linkages. Singularity traces
for each linkage was constructed and analyzed. Several instances
where the input angle is able to rotate more than one revolu-
tion between singularities were illustrated. Instances where pre-
sented where the singularity trace includes multiple coincident
projections of the singularity curve. Additionally, isolated crit-
ical points were identified where the linkage configuration be-

comes a structure and looses the freedom to move.
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