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Abstract

The focal points of a curve traced by a planar linkage capture essential information
about the curve. Knowledge of the singular foci can be helpful in the design of
path-generating linkages and is essential to the determination of path cognates.
This paper shows how to determine the singular foci of planar linkages built with
rotational links. The method makes use of a general formulation of the tracing curve
based on the Dixon determinant of loop equations written in isotropic coordinates.
In simple cases, the singular foci can be read off directly from the diagonal of
the Dixon matrix, while the worst case requires only the solution of an eigenvalue
problem. The method is demonstrated for one inversion each of the Stephenson-3
six-bar and the Watt-1 six-bar.

Key words: Focal points, singular focus, Foci: singular, Linkages: planar, isotropic
coordinates, Dixon determinant

1 Introduction

Singular foci play a central role in the kinematics of four-bar coupler curves.
For example, in 1875, Roberts [7] proved that every four-bar curve is triply
generated, that is, traced by three distinct four-bar linkages. This proof was
nonconstructive, but Cayley [2] soon followed with a concrete construction
that, given one four-bar, derives the other two cognates. These are now known
as Roberts cognates [1, pp. 339-341] [4]. Roberts’ Theorem hinged on the de-
termination that a four-bar coupler curve has three singular foci. These three
foci, two of which are simply the fixed pivots of the linkage, define the “focal
triangle,” a triangle that is geometrically similar to the coupler triangle.
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Despite the passing of over a century of active kinematic research, it seems
that the foci of multiloop planar linkages have never been determined. This
paper presents a method of finding the singular foci of any curve traced out
by a planar linkage built with rotational joints. The approach uses the ex-
pression for the tracing curve from [11], based on the Dixon determinant and
isotropic coordinates . This leads to an algorithm for numerically determining
the singular foci, which either appear directly on the diagonal of the Dixon
matrix, or in worst case, are given by eigenvalues of a matrix extracted from
the Dixon matrix. In the case that a singular focus appears with multiplicity
greater than one, a method is given for determining its correct multiplicity.

One reason that the singular foci of multiloop linkages have not been stud-
ied is that the polynomial describing the tracing curve is quite complicated.
Although derivations had been found for each of the six-bar linkages [9], un-
til recently, there did not exist a method for deriving these polynomials for
general linkages. This limitation is overcome by the general formulations in
[6,10,11] for solving input/output problems: each of these can be adapted to
produce tracing curve polynomials. The last of these, [11], gives the tracing
curve equation in a particularly convenient form for studying the singular foci.
The elegance of this approach is marred by the inclusion in some cases of an
extraneous factor. A by-product of the current study is the determination of
this factor, so that it can be cancelled out.

As in Roberts’ work, one of the main applications of focal points is the deter-
mination of path cognates, linkages that generate the same curve. In [8], Roth
gave geometric constructions for deriving path cognates of certain linkages.
These constructions demonstrate existence of path cognates, but do not by
themselves prove that all cognates have been found. For completeness results,
Roth turned to an algebraic analysis of the coefficients of the tracing curve
and obtained completeness results for several geared five-bar linkages. In this
paper, we will show that matching the singular foci is equivalent to matching
the coefficients of the terms of highest bidegree, as defined herein.

Constructions for path cognates of all of the six-bar linkages are known [4].
(Cognates for body guidance and for function generation are also given in [4],
but we do not discuss these in this article.) As in Roth’s work, these construc-
tions, which make no overt use of the singular foci, show the existence of path
cognates but do not establish completeness. The new understanding of singu-
lar foci brought out in this paper will be key to the complete determination
of path cognates in future work.

The paper proceeds as follows. First, in §2 we review some basic facts about
the geometry of the plane, and in particular the isotropic points of the plane.
Then, §3 presents the definition of singular foci of a curve and shows that these
are determined by the terms of highest bidegree in the curve’s equation. This
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observation leads in §4 to a determination of the singular foci from the Dixon
determinant form of tracing curve equations. Section 5 briefly discusses how
the methodology can be extended to treat mechanisms that include prismatic
joints. A final section, §6, gives numerical results for a Stephenson-3 six-bar
and a Watt-1 six-bar.

2 Background

In this section, some basic facts concerning isotropic points and one- and
two-homogeneous treatments of the plane are reviewed. Related expository
material can be found in [12]. An algebraic concept, called a support poly-
nomial, is also introduced. All of these concepts are useful in working with
singular foci, as we will see in the §3.

2.1 One-homogenization of the plane

The most common method of accounting for how plane curves “meet infinity”
is to consider a one-homogenization of the plane. When classical texts in ge-
ometry or kinematics speak of “the line at infinity” and related concepts, they
often assume this model of infinity without stating so. We first review this
concept for Cartesian coordinates and isotropic coordinates, and then look at
the isotropic points at infinity.

2.1.1 Cartesian coordinates

Let the Cartesian coordinates of the plane be (x, y). Many results in geom-
etry and kinematics become simpler if one extends the plane to include a
line at infinity, having one point for each direction in the plane. The new
space is represented by homogeneous coordinates [X,Y,W ], where the brack-
ets signify that only the ratios of the coordinates matter. (We do not allow
all three coordinates to be zero simultaneously.) For finite points, W 6= 0, the
correspondence between the two is (x, y) = (X/W, Y/W ). In addition to the
finite points, the new space has points at infinity, defined by W = 0. Since
this is a linear equation, these points collectively form the line at infinity.
Considering all of the coordinates to take on complex number values, math-
ematicians call (x, y) ∈ C2 the two-dimensional complex Cartesian space and
call [X, Y, W ] ∈ P2 the two-dimensional complex projective space.

The correspondence between finite points of the two spaces can be used to
derive from a polynomial f(x, y), its one-homogenization F (X,Y,W ). To do
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so, make the substitution (x, y) = (X/W, Y/W ) and clear denominators by
multiplying by W d, where d is the degree of f . For finite points, the solutions
to f = 0 and F = 0 are identical, but F−1(0) additionally contains solutions
at infinity.

2.1.2 Isotropic coordinates

For most derivations, it turns out that a linear change of coordinates to
(p, p̄) = (x + iy, x − iy) is very convenient. For real (x, y), this just replaces
the Cartesian plane with the complex plane, considering the x and y axes as
the real and imaginary directions, respectively. The pair of coordinates (p, p̄)
are known as the isotropic coordinates of the plane. It is tempting to consider
p̄ as the complex conjugate of p, as it plays this role whenever x and y are
real. However, just as we allow Cartesian coordinates x and y to take on com-
plex values, we correspondingly must consider points where p and p̄ are not
complex conjugates 1 .

The one-homogeneous completion of the plane in isotropic coordinates, which
we write as [P, P̄ ,W ] ∈ P2, follows similarly to the Cartesian case, using the
correspondence (p, p̄) = (P/W, P̄/W ).

2.1.3 Isotropic points I and J

In any treatment of rigid-body motion, the concept of distance is fundamental.
In Cartesian coordinates, the squared distance between points (x, y) and (a, b)
is d((x, y), (a, b)) = (x− a)2 + (y − b)2.

Two real points are zero distance apart only if they are the same point. This
is not true over the complexes; for example, d((1, i), (0, 0)) = 12 + i2 = 0. In
fact, the squared distance factors as

d((x, y), (a, b)) = [(x− a) + i(y − b)][(x− a)− i(y − b)],

from which one sees that there are two lines of points that are zero distance
away from (a, b), namely,

(x− a) + i(y − b) = 0 and (x− a)− i(y − b) = 0.

In a one-homogenization of these equations, one finds that these zero-distance
lines, (X − aW ) + i(Y − bW ) = 0 and (X − aW )− i(Y − bW ) = 0, meet the

1 Note that x and y are real if, and only if, the corresponding p and p̄ are complex
conjugates. Thus, if p∗ = p̄, where ∗ denotes complex conjugation, we call (p, p̄) a
real point even though p and p̄ may be complex.
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line at infinity, W = 0, at one point each. These are the so-called isotropic
points

I = [1,−i, 0] and J = [1, i, 0].

Due to their kinship to distance, the isotropic points have a special relationship
to most of the curves studied in planar kinematics. Of particular note is the fact
that every circle passes through the isotropic points. To see this, consider that
the circle centered on (a, b) of radius r has the equation d((x, y), (a, b))−r2 = 0.
When one-homogenized and intersected with W = 0, the radius becomes
irrelevant, and we have the same situation as in the previous paragraph.

In isotropic coordinates, the squared distance between points (p, p̄) and (q, q̄)
is

d((p, p̄), (q, q̄)) = (p− q)(p̄− q̄),

which reflects the fact that a complex vector times its own conjugate gives
its squared magnitude. The factorization is apparent and one sees that in
isotropic coordinates, the isotropic points are

I = [1, 0, 0] and J = [0, 1, 0].

Thus, the isotropic coordinates are seen to result from choosing coordinate
axes that align with the isotropic points. The simple form of the distance
function and the isotropic points is the reason that isotropic coordinates often
lead to simpler derivations than Cartesian coordinates. The remainder of this
paper will use isotropic coordinates exclusively.

2.2 Two-homogenization of the plane

There is another way to compactify the plane: we may introduce a separate
homogeneous coordinate for each of p and p̄. The new coordinates are writ-
ten as ([P,W ], [P̄ , W̄ ]), where at least one coordinate in each of [P, W ] and
[P̄ , W̄ ] must be nonzero. For all finite points, we have the correspondence
(p, p̄) = (P/W, P̄ /W̄ ). The two-homogenization F (P, W, P̄ , W̄ ) of a func-
tion f(p, p̄) is derived by making this substitution and clearing denominators.
Mathematicians call [P, W ] ∈ P1 a one-dimensional complex projective space,
and ([P, W ], [P̄ , W̄ ]) ∈ P1 × P1 is the cross product of two such spaces. Note
that the two-homogenization has singled out the coordinate axes as special
directions. Accordingly, it is not generally useful to two-homogenize Cartesian
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coordinates, but it turns out to be very useful to two-homogenize the isotropic
coordinates.

The two-homogenization of the plane, P1 × P1, has no effect on the geometry
of finite points, but it radically alters the picture at infinity. There are now
two lines at infinity: W = 0 and W̄ = 0. A line p − q = 0, parallel to the
p̄-axis, two-homogenizes to P − qW = 0. It does not meet W = 0, but hits
W̄ = 0 in the point ([q, 1], [1, 0]). Similarly, a line p̄ − q̄ = 0 meets infinity in
the point ([1, 0], [q̄, 1]). All lines not parallel to a coordinate axis meet infinity
in the same point: ([1, 0], [1, 0]). If we try to associate points at infinity in the
one-homogeneous treatment of the plane with those of the two-homogeneous
isotropic treatment of the plane, we find that isotropic point I has been re-
placed by the line W = 0, isotropic point J has been replaced by line W̄ = 0,
and all other points on the one-homogeneous line at infinity have collapsed to
the single point ([1, 0], [1, 0]). A nice illustration of this “blow up/blow down”
process, which is one of the basic constructions in algebraic geometry, can be
found in [5, ex.7.22].

An important consequence of the transformation into P1 × P1 is that two
general circles no longer meet at infinity. (In P2, they always meet at the
isotropic points.) Instead, the two-homogenization of a circle with center (q, q̄)
and radius r,

(P − qW )(P̄ − q̄W̄ )− r2WW̄ = 0, (1)

hits the line W = 0 at ([1, 0], [q̄, 1]) and hits W̄ = 0 at ([q, 1], [1, 0]). This
shows that only concentric circles meet at infinity, which reflects the fact that
they do not have finite points of intersection.

2.3 Support polynomials

Suppose that we have a polynomial

g(p, p̄) =
∑

(j,k)∈I
αjkp

j p̄k,

where I is just the index set of all the terms appearing in the polynomial.
Further, let Iuv denote the subset of indicies in I that maximize ju + kv,
let duv = maxI(ju + kv) and let guv(p, p̄) =

∑
(j,k)∈Iuv

αjkp
j p̄k. The latter

is called the support polynomial of g for direction (u, v). In particular, g11

consists of the terms of maximal degree d = d11, g10 consists of the terms of
maximal bidegree d10 in p, and g01 comprises the terms of maximal bidegree
d01 in p̄. (Bidegree means the degree in one of the variables, treating the other
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Fig. 1. Monomials (plotted by their degrees) of a curve with degree d = 7, bidegree
b = 5, and circularity c = 2. The support polynomials g11, g10, and g01 are indicated.

variable as a constant.) These support polynomials are indicated in a plot of
the monomials for a particular degree 7 polynomial in Fig.1.

For kinematics, we are interested in real curves. In Cartesian coordinates, these
are polynomials f(x, y) that have real coefficients, and hence f gives a real
value whenever x and y are both real. Accordingly, the transformation of f to
isotropic coordinates,

g(p, p̄) = f((p + p̄)/2, (p− p̄)/(2i)),

has real values whenever p and p̄ are complex conjugates. This implies that
the coefficients in g(p, p̄) obey the relation ajk = a∗kj, that is, terms appear in
complex conjugate pairs. Consequently, d10 = d01, so we may call b = d10 = d01

simply the bidegree of the curve. The terms may be shown in a plot of their
exponents as illustrated in Fig 1. Clearly, d ≥ b, and we call c = d − b ≥ 0
the circularity of the curve. Curves with nonzero circularity are common in
planar kinematics.

Support polynomials determine the behavior of the curve at infinity. The one-
homogenization G(P, P̄ ,W ) = 0 of curve g(p, p̄) = 0 meets infinity at the roots
of G(P, P̄ , 0). Setting the homogeneous coordinate W to zero annihilates all
but the terms of highest degree, hence

G(P, P̄ , 0) = G11(P, P̄ , 0) = g11(P, P̄ ).

For bidegree b and circularity c, assuming that the coefficients αb,c = α∗c,b 6= 0,
G11 contains the factor P cP̄ c, so we have that the curve passes through each
of the isotropic points c times.

In a two-homogeneous formulation, the same curve g(p, p̄) = 0 hits infinity
in the p direction at the roots of G10 and in the p̄ direction at the roots of
G01, each of which is a degree c polynomial. The c appearances of each of
the isotropic points in the one-homogeneous formulation have each become c
(generally distinct) points at infinity in the two-homogeneous treatment. There
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is one point on the line W = 0 at infinity in P1 × P1 for each line through
the isotropic point I = [1, 0, 0] in P2, and a similar correspondence holds
between points on W̄ = 0 and lines through J = [0, 1, 0]. A curve in P2 that
passes through I along c different tangent directions will, after transformation
into P1 × P1, hit the line W = 0 in c distinct points. This separation of the
tangent lines through I and J is precisely what makes the two-homogeneous
formulation convenient for studying foci.

3 Foci and Singular Foci

We begin this section with the traditional definitions of a focal point and a sin-
gular focal point. These definitions may seem at the outset a bit abstruse, but
reconsidering them using isotropic coordinates, we will see that the definitions
become quite simple.

The traditional definition of a focal point assumes a one-homogeneous treat-
ment of infinity, so that we may speak of the isotropic points I and J . Given an
algebraic curve and a point, there will be a finite number of lines through the
point that are also tangent to the curve. This fact also applies when the point
in question is an isotropic point, which is crucial to the following definitions
[3].

Definition 1 A focal point of an algebraic curve in the plane is defined as
the point of intersection of a tangent through isotropic point I with a tangent
through isotropic point J .

Definition 2 A singular focal point 2 of an algebraic curve in the plane is
the intersection of a tangent at isotropic point I with a tangent at isotropic
point J .

Notice that a curve can have a singular focus only if it passes through the
isotropic points; that is, it must have positive circularity.

The name “singular focus” is appropriate because such a point represents
the coalescence of several foci for nearby curves having the same degree but
smaller circularity. Suppose a curve of degree greater than one passes near
but not through a point P . Locally, the curve looks like its osculating circle,
and there are two nearly parallel tangents passing through P . As the curve
deforms continuously to pass through P , these two tangents coalesce into a
double tangent line. In the case that P is one of the isotropic points, the foci
on the the two tangents coalesce as well. It is also possible for a curve to pass

2 Bottema and Roth [1] note that singular foci are also sometimes called special,
principal, or Laguerre foci.
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through an isotropic point with zero curvature, which implies a multiple root
of order greater than two.

It is helpful to translate these geometric definitions into algebraic equations.
Suppose that the curve is given by the equation f(p, p̄) = 0. Let (q, q̄) be a
point on the curve, hence

f(q, q̄) = 0. (2)

The line tangent to the curve at (q, q̄) is

fp(q, q̄)(p− q) + fp̄(q, q̄)(p̄− q̄) = 0, (3)

where fp and fp̄ denote the partial derivatives of f with respect to p and p̄,
respectively. Given (p, p̄), a simultaneous solution of Eqs.(2,3) for (q, q̄) deter-
mines the point of tangency for a tangent through (p, p̄). Accordingly, we may
find the foci of the curve by homogenizing these equations and substituting
the isotropic points for (p, p̄). The homogenized tangent equation is

fp(q, q̄)(P −Wq) + fp̄(q, q̄)(P̄ −Wq̄) = 0. (4)

For isotropic point I = [1, 0, 0], this becomes simply

fp(q, q̄) = 0. (5)

Let (qI , q̄I) be one of the solutions to the pair of equations (2,5). When sub-
stituted back into Eq.3, this gives the equation for the tangent line as p̄ = q̄I .
Similarly, points of tangency for the tangents through J are the solutions of
Eq.2 with fp̄(q, q̄) = 0. Denoting one such point as (qJ , q̄J), the corresponding
tangent line is p = qJ , and hence point (qJ , q̄I) is a focal point. If f(q, q̄) = 0 is
a real curve, then we can obtain the real foci by pairing up each qJ with a q̄I

that is its complex conjugate. Due to this complex-conjugate relationship, one
only needs to find the tangents through one of the isotropic points to obtain
both sets of tangents.

Example 1 Foci of an ellipse. An ellipse centered at the origin and aligned
with the coordinate axes has the equation x2/a2 + y2/b2 − 1 = 0. In isotropic
coordinates, this becomes

f(p, p̄) = (p + p̄)2/a2 − (p− p̄)2/b2 − 4 = 0.

Solving this simultaneously with fp(p, p̄) = 0 gives p̄I = ±√a2 − b2. Similarly,
the tangents through J give pJ = ±√a2 − b2. These combine to give four
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foci. In Cartesian coordinates, these are (x, y) = (±√a2 − b2, 0) and (x, y) =
(0,±i

√
a2 − b2). If a > b, the first of these gives a pair of real foci on the

x-axis, whereas for a < b, the second formula gives the real foci on the y-axis.

To determine the singular foci, we examine the tangency conditions as the
point of tangency approaches an isotropic point. For the tangents at isotropic
point I, the leading terms in q dominate in Eq.5, hence the q̄I coordinates of
the singular foci are the roots of

(fp)10(1, q̄I) = 0. (6)

But (fp)10(1, q̄I) = (f10)p(1, q̄I) = bf10(1, q̄I), since differentiation with respect
to p does not change which terms have the highest degree in p. Therefore, the
singular foci (qJ , q̄I) are the solutions to

f10(1, q̄I) = 0, f01(qJ , 1) = 0. (7)

Recall from the previous section that these roots are associated with the roots
at infinity in a two homogenization of the curve. This leads us to the following
theorem.

Theorem 1 Let F (P, W, P̄ , W̄ ) be the two homogenization of a polynomial
f(p, p̄). The singular focal points of f(p, p̄) = 0 are the points (p, p̄) = (qJ , q̄I),
where qJ is any root of F of the form ([qJ , 1], [1, 0]), and q̄I is any root of F
of the form ([1, 0], [q̄I , 1]).

Example 2 Singular foci of a circle. At Eq.(1), we determined that the points
at infinity of the two-homogenization of a circle with center (q, q̄) are

([q, 1], [1, 0]) and ([1, 0], [q̄, 1]).

Thus, the circle has its center as its only singular focus. Note that in light of
Example 1, considering the circle as a special ellipse, the center point is seen
to be the coalescence of four regular foci as the semi-major and semi-minor
axes, a and b, become equal.

4 Dixon Determinant

In [11], a general formulation is derived, using the Dixon determinant, for
the polynomial curve traced by any planar linkage with rotational joints. The
method begins by writing the loop closure equations, using complex numbers
to represent vectors in the plane. In these equations, let position vector p close
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a loop around the tracing point. Then, for a one-degree-of-freedom mechanism
having N = 2n links, there are n independent loop equations. These may be
written, for k = 1, . . . , n as

ck0 +
N−1∑

i=1

ckiθi + ckNp = 0, (8)

where cki is the vector of link i that appears in loop k, θi is the rotation for
link i. (Note: cki = 0 if link i is not in loop k.) We also have the conjugate set
of equations, for k = 1, . . . , n,

c∗k0 +
N−1∑

i=1

c∗kiθ
−1
i + c∗kN p̄ = 0. (9)

We wish to eliminate all of the θi to obtain a single polynomial tracing curve
equation in (p, p̄). The main result in [11] is written for input/output polyno-
mials, but when applied to tracing curves, it reads as follows.

Theorem 2 [11]. The Dixon determinant for Eqs.(8,9), which is a necessary
condition for them to have a common solution, can be written as

f(p, p̄) = det
(

D1p + D2 AT

A σ(D∗
1p̄ + D∗

2)

)
= 0, (10)

where σ = (−1)n−1, D1 and D2 are diagonal and the elements of A obey the
relation aij = σa∗ji. Matrices D1, D2, and A are all size m×m for some m ≤(

2n−1
n

)
and each is a homogeneous polynomial function of the link parameters

cki, c
∗
ki.

The dependence of D1, D2, and A on the link parameters may be determined
using the procedure described in [11].

Since this is just a necessary condition, it is possible that f(p, p̄) contains an
extraneous factor. But, if f = gh for polynomials f , g and h, then fuv = guvhuv;
that is, the support polynomial for f in the (u, v) direction is the product of
those for its factors. This implies that the singular foci of f are the union of
those for its factors g and h. Thus, we may find all of the singular foci of the
tracing curve by finding those of f and casting out any extraneous ones.

By Eq.7, to find the singular foci, we solve the support polynomial f01(qJ , 1) =
0 consisting of the terms of f having maximal degree in p̄. Since a determinant
is multilinear in its columns, we may find f01(p, p̄) by retaining in each col-
umn only the terms of maximal degree in p̄. Each nonzero entry in D∗

1 stands
alone in its column, but in any column where D∗

1 has a zero, the whole column
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is constant and is therefore retained. For notational convenience, assume the
columns and rows are ordered so as to place the nonzero entries into subma-
trix D11 of D1 (and similarly for D∗

1), and partition the matrices D2 and A
accordingly, to express f01(qJ , 1) = 0 as

det




D11qJ + D21 0 0 AT
12

0 D22 0 AT
22

A11 A12 σD∗
11 0

A21 A22 0 σD∗
22


 = 0 (11)

Only one block in the third column is nonzero, so this may be reduced to

det(σD∗
11) det




D11qJ + D21 0 AT
12

0 D22 AT
22

A21 A22 σD∗
22


 = 0. (12)

Numerical values for the singular foci can be obtained from this equation using
eigenvalue algorithms. Symbolic expressions can be obtained this way as well.

An important special case is when all entries on the diagonal of D1 are nonzero,
so that only the upper left block of the above condition appears, the other
entries being empty. Thus the condition reduces to det(D1qJ +D2) = 0, which
implies that the singular foci are simply

qJ = −diag(D−1
1 D2), (13)

where diag() extracts the diagonal of a matrix. Even when D1 has some zeros
on the diagonal, causing A21 to be present in Eq.12, a condition similar to
Eq.13 applies to the subset of columns where A21 has all zero entries. Since A
is sparse, this condition comes into play often.

Since we are only concerned with real curves, the conjugate conditions give
q̄I = q∗J . So we need only solve either Eq.12 or Eq.13, as appropriate, to get
qJ and find q̄I by conjugation.

Example 3 Singular foci of a four-bar.

Consider the four-bar linkage A0ADBB0, which is a sub-mechanism of the
six-bar in Fig.2. Letting p = ~OD, the loop equations are

a0 + a1θ1 + a2θ2 − p = 0

b0 + b2θ2 + b3θ3 − p = 0
(14)
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Fig. 2. Four-bar (point D) and Stephenson-3 six-bar (point E) path-generating
linkages

Applying the Dixon determinant and dividing common factors from each col-
umn, we obtain the polynomial for the curve traced by coupler point D, ex-
pressed in terms of isotropic coordinates (p, p̄) as the following determinant
set to zero:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p− b0 0 0 0 ā2b̄3 −ā2

0 d 0 −b̄3 0 −ā1

0 0 p− a0 −b̄2 −ā1b̄2 0

0 a2b3 −a2 p̄− b̄0 0 0

−b3 0 −a1 0 d̄ 0

−b2 −a1b2 0 0 0 p̄− ā0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (15)

where

d = (p− a0)b2 − (p− b0)a2, d̄ = (p̄− ā0)b̄2 − (p̄− b̄0)ā2.

Equation 13 applies, so the foci are

qJ = {b0, (a0b2 − b0a2)/(b2 − a2), a0}.

Two of these are the two fixed pivots A0 and B0, and the third is the vertex of
a triangle similar to the coupler triangle built on the fixed pivots. This is, of
course, a well-known result.
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Example 4 Singular foci of the Stephenson-3 six bar. Consider the six-bar
linkage shown in Fig.2, formed by adding a dyad, links 4 and 5, to the four-bar
linkage of the previous example. Letting p = ~OE, the loop equations are

(a0 − b0) + a1θ1 + (a2 − b2)θ2 − b3θ3 = 0

(a0 − c0) + a1θ1 + a2θ2 + a4θ4 − a5θ5 = 0

c0 + b4θ4 + a5θ5 − p = 0

(16)

Applying the Dixon determinant, one obtains an 18× 18 matrix with the fol-
lowing sparsity pattern, in which a closed circle denotes an entry containing p
or p̄, and an open circle denotes a constant entry:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

• ◦ ◦• ◦ ◦• ◦ ◦• ◦ ◦◦• ◦ ◦ ◦• ◦ ◦◦• ◦ ◦◦• ◦ ◦ ◦•◦ ◦◦◦ ◦•◦ ◦ •◦ ◦ •◦ ◦◦ •◦ ◦ ◦ •◦ ◦◦ •◦ ◦◦ •◦ ◦ ◦ •◦ ◦◦ •

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

Hence, Eq.13 applies and gives 9 focal points. Three of these are the focal
triangle of the base four-bar, as elucidated above, three are repetitions of the
other ground pivot, (c0, c̄0), and the final three are a stretch-rotation of the
focal triangle about (c0, c̄0). Further discussion of this example appears in §6.

It was mentioned above that the Dixon determinant may introduce an ex-
traneous factor. This factor’s singular foci may be distinct from those of the
tracing curve or may coincide making the focus appear to have extra mul-
tiplicity. The valid foci and their correct multiplicities can be determined as
follows. Suppose that point (q, q̄) is to be tested as a singular focus. Intersect
the tracing curve with a circle of arbitrary radius, say r, centered at (q, q̄).
Viewed two-homogeneously, if (q, q̄) is a singular focus, the circle and the
tracing curve share a point on each of the two lines at infinity, and hence the
number of finite intersections is reduced by two times the multiplicity of the
focus. These computations can be done by simply substituting

p = q + rφ, p̄ = q̄ + rφ−1

into Eq.10 and solving for φ using a generalized eigenvalue routine. Eigenvalues
of φ = 0 or φ−1 = 0 may occur, but these must be dropped. At each of the
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Fig. 3. Watt-1 path-generating linkage

remaining finite, nonzero solutions, back substitute to find all the joint values
(see [11] for details) and check these in the original loop equations. Let mq be
the number of valid solutions obtained in this way and let m be the number
for an arbitrary test point. 3 Then, (m−mq)/2 is the multiplicity of (q, q̄) as
a singular focus. A multiplicity of zero indicates that (q, q̄) is not a singular
focus. The following example illustrates the use of this technique.

Example 5 Singular foci of a Watt-1 six bar. Consider the Watt six-bar link-
age shown in Fig.3. Denoting p = ~OP , the loop equations are

(a0 − b0) + a1θ1 + a2θ2 + a3θ3 = 0

b2θ2 + b3θ3 + a4θ4 + a5θ5 = 0

b0 − (a3 + b3)θ3 + b5θ5 − p = 0

(17)

Applying the Dixon determinant, one obtains an 18× 18 matrix with the fol-
lowing sparsity pattern, in which a closed circle denotes an entry containing p

3 If either test gives solutions with multiplicity greater than one, a higher-order
analysis may be required to determine m or mq.
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or p̄, and an open circle denotes a constant entry:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

• ◦ ◦• ◦ ◦◦• ◦ ◦ ◦• ◦ ◦• ◦ ◦• ◦ ◦◦• ◦ ◦◦• ◦ ◦ ◦◦◦◦◦◦ ◦•◦ ◦◦ •◦ ◦ ◦ •◦ ◦ •◦ ◦ •◦ ◦◦ •◦ ◦◦ •◦ ◦ ◦ •◦◦◦ ◦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

Because the final entry in D1 is zero, Eq.12 must be used. This results in a
matrix with the following pattern, composed of the original upper left block
above and only the last row and column of the rest:

∣∣∣∣∣∣∣∣∣∣∣∣

• ◦• ◦• ◦•••••◦◦◦◦ ◦

∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

The fourth through eighth diagonal entries give focal equations directly, in the
style of Eq.13, leaving an eigenvalue problem of the form

∣∣∣∣∣
• ◦• ◦•◦◦◦◦◦

∣∣∣∣∣ = 0.

This gives three focal points. Among the combined eight focal points, qJ = b0

(that is, ground pivot B0 in Fig.3) appears four times. However, checking the
intersections of the tracing curve with a circle centered on B0 reveals that B0

is only a triple singular focus. The Dixon determinant is thus seen to include
a bilinear extraneous factor that has a singular focus (b0, b̄0). It turns out that
the extraneous factor is just (p − b0)(p̄ − b̄0), which can be divided out of the
Dixon determinant to get precisely the tracing curve equation. In the final
tally, counting multiplicities, there are seven foci, as is consistent with the
known result that this tracing curve is fully circular of degree 14. Calculations
supporting these statements are presented in §6.
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5 Sliding Joints

The analysis of the previous section assumed all rotational joints. If one or
more joints is a sliding joint, some adjustments must be made, but the overall
procedure will be similar. One can still form the Dixon determinant, and by
Theorem 1, evaluate the singular foci by finding the roots for the terms of
maximal degree in p̄. The Dixon matrix will generally be smaller than that
obtained when the slider joint is replaced by a rotational one, but some of the
entries will now involve both p and p̄, instead of being entirely separated as
in the all-rotational case. The upshot is that the tracing curve is no longer
fully circular, meaning that, similar to Fig. 1, there is more than one term of
maximal degree. So, in addition to the singular foci, the roots of the support
polynomial in the (1,1) direction will be of interest.

6 Numerical Examples

To illustrate the method, we present numerical results for the six-bar linkages
in Figs. 2,3.

For the Stephenson-3 example of Fig. 2, the link parameters are

a0 = −1.0 + 0.8i, b0 = 0.2 + 0.8i,

c0 = 0.95 + 1.0i, a1 = 0.2 + 0.6i,

a2 = 0.9 + 0.3i, b2 = 0.1 + 0.4i,

b3 = −0.2 + 0.5i, a4 = 0.9− 0.3i,

b4 = −0.4 + 0.6i, a5 = 0.05 + 0.4i.

(18)

The resulting nine values of the singular foci are

F =







0.9500 + 1.0000i

0.9500 + 1.0000i

0.9500 + 1.0000i

0.4067 + 1.2300i

0.7353 + 1.5611i







−0.3133 + 1.7900i

0.2000 + 0.8000i

0.2738 + 1.4092i

−1.0000 + 0.8000i







. (19)

We observe that ground pivots A0 = F9, B0 = F7, and C0 = F1 = F2 = F3

are all singular foci, with C0 appearing with multiplicity 3. One may verify
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that F8 is the third singular focus of the four-bar submechanism A0ADBB0,
as derived in Ex.3. Moreover, one may also verify that

(F4, F5, F6) = c0 − b4/a4[(F7, F8, F9)− c0], (20)

that is, the points (F4, F5, F6) are a triangle similar to the focal triangle of
the four-bar sub-mechanism, specifically, a stretch-rotation by factor (−b4/a4)
around point c0.

The relation given in Eq.(20) holds in general, as can be concluded from the
construction given in [8] for path cognates for the Stephenson-3 six-bar. A path
cognate in Roth’s construction contains a four-bar sub-mechanism that is the
same stretch-rotation about point c0. Since the new four-bar in the cognate
plays the same role as the original four-bar sub-mechanism, its singular foci
must also be singular foci of the six-bar.

For the Watt-1 six-bar of Fig. 3, the link parameters are

a0 = −1.0 + 0.8i, b0 = 0.6 + 0.8i,

a1 = 0.2 + 0.6i, a2 = 1.1 + 0.3i,

a3 = 0.3− 0.9i, b2 = −0.5 + 0.6i,

a4 = 0.7 + 0.2i, a5 = 0.2− 0.5i,

b3 = −0.4− 0.3i, b5 = 0.5 + 0.5i.

(21)

Following the procedure given in Ex.5, we obtain from the fourth through
eighth diagonal elements the values

F4,...,8 =




0.6000 + 0.8000i

0.6000 + 0.8000i

−1.2667 + 1.6000i

0.6000 + 0.8000i

1.5676 + 1.8653i




. (22)

We observe that ground pivot B0 appears three times. Now, we must form
an eigenvalue problem from rows 1,2,3,18 and columns 1,2,3,18, to get an
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additional three points

F1,2,3 =




0.6000 + 0.8000i

−0.9495 + 1.0577i

−0.6962 + 1.5576i




. (23)

Notice that B0 appears a fourth time here. We have eight singular foci for the
Dixon determinant, but it is known that the Watt-I linkage only has degree 14,
and hence only 7 singular foci. This implies that the Dixon determinant, which
is just a necessary condition, contains an extraneous factor that contributes
an extra focus. Section 4 describes how to test the multiplicity of a singular
focus. Any of the foci could be the culprit, but since B0 appears multiple
times, we test it first. This is done by setting p = b0 + rφ and p̄ = b∗0 + rφ−1

for a random radius r and solving for φ. Letting r = 0.8273, we obtain eight
finite, nonzero solutions for φ, namely

φ =




0.03909779074084− 0.99923538906465i

−0.27002515994004− 0.96285326659848i

−0.03694001960119 + 0.99931748456227i

−0.52557141900738 + 0.85074948341011i

−0.72119118157503 + 0.69273608222642i

−0.90737931035511− 0.42031272540750i

−0.99998074595015 + 0.00620545961142i

−0.99907549225438 + 0.04299024048165i




. (24)

These all have magnitude |φi| = 1, so they happen to be real. But what is
important is the number of roots. If B0 were an arbitrary point, we would get
14 roots, but instead, we get only 8, which implies that B0 is a singular focus
of multiplicity (14−8)/2 = 3. Hence, one of the four instances of B0 in the list
of singular foci of the Dixon determinant is due to an extraneous factor. The
bottom line is that the mechanism has five distinct singular foci, and one of
them, B0, has multiplicity 3, giving the expected total of 1+1+1+1+3 = 7
singular foci.
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7 Conclusion

This paper gives a method for finding the singular foci of planar linkages, based
on a formulation of the tracing curve equation using the Dixon determinant.
The method is easy to automate as a numerical algorithm to handle any
planar linkage having revolute joints. The approach is extensible to sliding
joints, although that has not been pursued here. In simple cases, the singular
foci can be read off directly from the diagonal of the Dixon matrix, but some
cases require the solution of an eigenvalue problem.

The singular foci represent essential characteristics of the curve traced out
by a planar linkage; in particular, they describe the behavior of the curve at
infinity. Two curves sharing one or more singular foci have a reduced number
of intersection points and two linkages can generate the same tracing curve
only if they have all singular foci in common. These facts can be useful in the
design of path-generating linkages.
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