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Abstract

The common zero locus of a set of multivariate polynomials (with com-
plex coefficients) determines an algebraic set. Any algebraic set can be
decomposed into a union of irreducible components. Given a one dimen-
sional irreducible component, i.e. a curve, it is useful to understand its
invariants. The most important invariants of a curve are the degree, the
arithmetic genus and the geometric genus (where the geometric genus
denotes the genus of a desingularization of the projective closure of the
curve). This article presents a numerical algorithm to compute the geo-
metric genus of any one-dimensional irreducible component of an algebraic
set.
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1 Introduction

Let

f(x) :=




f1(x1, . . . , xN )
...

fn(x1, . . . , xN )


 = 0 (1)
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denote a system of n polynomials belonging to C[x1, . . . , xN ]. Let V (f) denote
the affine algebraic set

V (f) :=
{
x ∈ CN | f(x) = 0

}
.

In this article we present a numerical method to compute the geometric genus
of any irreducible one-dimensional component C of V (f), i.e., the genus g of a
desingularization of the closure C of C in PN . By essentially the same method-
ology, we may also compute the Euler characteristic of C. The method is
built around the numerical irreducible decomposition algorithm described in
[5, 6, 7, 9]. The advantage of this particular numerical approach is that the
procedure can be carried out on each irreducible curve component of a non-
equidimensional algebraic set in situations where the components may have
complicated self-intersection and may intersect other components. The algo-
rithm bypasses the (computationally intensive) algorithms involved in symbolic
primary decomposition, radical determination and desingularization. This al-
lows the applicability of the approach to settings that are beyond the capabilities
of present day symbolic algorithms on present day computational machinery.
For instance, if the algebraic set defined by a set of polynomials has many ir-
reducible components which self intersect and/or intersect other components
then a symbolic approach can become very involved and may not terminate in a
timely manner. The numerical approach outlined in this paper will compute the
geometric genus of each irreducible curve component of an algebraic set without
carrying out a primary decomposition or a desingularization. It is important to
note that there are settings where a symbolic approach to the computation of
the geometric genus is preferred. Indeed, there are occasions where a symbolic
approach can yield results that are beyond the reach of any known numerical
algorithm. As a consequence, the procedure presented in this paper comple-
ments (and eventually should be partnered with) available symbolic algorithms.
In the next several paragraphs, we introduce the fundamentals of our approach,
postponing a more rigorous discussion to § 2.

Let us discuss first the Euler characteristic of C, denoted E(C). Recall that
the Euler characteristic of any irreducible complex curve is V − E + F , where
V, E, F are the number of vertices, edges, and faces, resp., in a triangulation
of the (two real dimensional) complex curve. We may find e(C) by considering
the map π : C → P1 obtained by restricting, to C, a generic linear projection
from PN → P1. The degree of this map is d := deg C, i.e., on a Zariski-open
subset of P1, the fibers of π consist of d isolated points. The points of C where
the differential dπ of π is zero are called branchpoints, denoted B, and their
images, π(B) are called ramification points, of which there are a finite number,
say M . The fiber above a ramification point may contain fewer than d isolated
points: let the number over the i-th ramification point be νi. Suppose T is a
triangulation of P1 having V vertices, E edges, and F faces, such that T includes
the ramification points among its vertices. Then π−1(T ) will be a triangulation
of C having de edges and df faces, but only dV −∑M

i=1(d− νi) vertices. Since
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e(P1) = V − E + F = 2, we have

e(C) = (dV −
M∑

i=1

(d− νi))− dE + dF = 2d−
M∑

i=1

(d− νi). (2)

Thus, we may compute e(C) by finding the ramification points and determining
the number of points in the fiber over each of these.

The geometric genus of the desingularization of C can be found in a similar
fashion. The desingularization of C is a smooth algebraic curve Ĉ with a proper,
generically one-to-one, algebraic map φ : Ĉ → C. Let us denote by q : Ĉ → P1

the composition π ◦ φ, where π is a generic linear projection as in the previous
paragraph. Then, exactly as above, we have

e(Ĉ) = 2d−
M ′∑

i=1

(d− γi), (3)

where now the sum is over the ramification points of q and γi is the cardinal-
ity of the fiber over the i-th point. If B̂ is the set of branchpoints for q and
B the branchpoints for π, we have φ(B̂) ⊆ B. At the common ramification
points, γi and νi may differ. The difference is that over the neighborhood of a
ramification point, C is a union of punctured disks plus the νi points over the
ramification point, whereas for Ĉ the disks have been separated, so γi ≥ νi. The
geometric genus, g, i.e., the number of topological holes, is related to the Euler
characteristic, e, as 2− 2g = e, so using (3) and solving for g, one obtains

g(Ĉ) = 1− d +
1
2

M∑

i=1

(d− γi). (4)

From these considerations, one sees that the two main computational tasks
to obtain the genus are: (1) find the ramification points of q, and (2) determine
the number of disks, γi, above each. We wish to do this knowing the curve
C only from evaluations of f and its derivatives. At first sight, the following
facts appear troublesome: C is often singular; C might have multiplicity greater
than one; and C has special nonreduced points where other components of V (f)
meet C. Fortunately, as we shall show, numerical methods can be structured
to compute a finite set of points that includes the ramification points and to
determine the number of disks γ above each. In this regard, it is inconsequential
if we include in the analysis a finite number of points that are not ramification
points, as such points will have d disks and therefore contribute nothing to the
genus.

The remainder of this paper is organized as follows. In § 2, we give a more
rigorous treatment of genus and Euler characteristic. Then, in § 3, we give a pre-
scription for a numerical algorithm for computing the genus, using techniques
from numerical algebraic geometry. In § 4, we give the results of our numer-
ical method on an example in which the curve in question is traced out by a
mechanism.
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2 The Hurwitz formula

Throughout this article, we work over the complex numbers, e.g., when we say
a set is an algebraic curve, we mean a complex algebraic curve. Recall that
an algebraic curve is a quasiprojective algebraic set with all components having
dimension one.

We start with the classical Hurwitz formula relating the genus of a curve to
the genus of the image of the curve under a finite-to-one algebraic map. Given
an holomorphic map h : ∆ → C from a disk ∆ around the origin in C to C, we
define the local branch order of h at 0 to be the degree of the first nonzero term
in the Taylor series of h at 0.

Now consider an holomorphic map ψ : X → Y from a one-dimensional com-
plex manifold X to a one dimensional complex manifold Y . If ψ is nonconstant
in a neighborhood of a point x ∈ X, we can define the local branch order of ψ
at x by choosing local coordinates at x and ψ(x). We define ρx(ψ), or ρx when
the map ψ is clear from the context, to be one less than the local branch order
of ψ at x. Note that ρx is the order of the zero of the differential dψ at x.

Theorem 1 (Hurwitz Theorem [1]). Let ψ : X → Y denote a generically d-
to-one map from a smooth irreducible compact curve X of genus g(X) onto a
compact curve Y of genus g(Y ). Then

2g(X)− 2 = d(2g(Y )− 2) + ρ,

where ρ =
∑

x∈B
ρx with B equal to the branch points of ψ, i.e., the finite set of

points at which dψ is zero.

Remark 2. There is a simple monodromy interpretation of ρx in the above
theorem. Given x ∈ B, we may choose local coordinates z and w, with z(x) = 0
for a neighborhood of x and w(ψ(x)) = 0 for a neighborhood of ψ(x), such
that w = zρx+1. In particular choose a coordinate zero at ψ(x) with the unit
disk ∆1 an open set around ψ(x) and with π(B) ∩∆2 = ψ(x) for a disk ∆2 of
radius strictly smaller than the radius of ∆1. For any point τ ∈ ∆2 carry out
the monodromy transformation T : ψ−1(τ) → ψ−1(τ) around the circle going
through τ . This breaks up ψ−1(τ) into γ sets, one for each point in the fiber
ψ−1(τ). We define

ρψ(x) :=
∑

y∈ψ−1(τ)∩B
ρy =

∑

y∈ψ−1(τ)

ρy = d− γ.

That is, we define the contribution ρψ(x) for a ramification point ψ(x) as the
sum of the contributions for all the branchpoints in its fiber. Then, since the
contribution of a regular point is zero, this is the sum of the contributions of all
points in its fiber, which comes to d− γ.

We need the extension of the Hurwitz formula for maps from a singular curve
onto a smooth curve. To do this we need the classical uniformization theorem,
e.g., [9, Corollary A.3.3].
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Theorem 3 (Uniformization). Let X denote an algebraic curve. Given x ∈ X ,
there exist a finite number, κ, of holomorphic maps {φi : ∆1 → X|i = 1, . . . , κ}
of the unit disk ∆1 to X such that:

1. φi(0) = x for all i and φi(∆1) ∩ φj(∆1) = x for i 6= j;

2. φi gives a biholomorphism from ∆1 \ {0} to its image in X ;

3.
⋃κ

i=1 φi(∆1) is a neighborhood of x ∈ X .

In short, a small enough punctured neighborhood of x is a union of disjoint
punctured disks.

One consequence of this is that X has a well defined number of irreducible
components locally, i.e., in the notation of Theorem 3, this number is κ for the
point x ∈ X . We use the notation κx(X ) (or simply κx when X is clear from
the context) for this integer. To see how this number comes into calculations,
here is a simple lemma. We let e(W ) denote the Euler characteristic of a space.

Lemma 4. Let p : X → X be a desingularization map from a smooth projective
curve onto a compact curve X , i.e., X is smooth and projective and the map
from X \ p−1(Sing(X )) → X \Sing(X ) induced by p is a biholomorphism. Then
e(X) = e(X ) +

∑

x∈Sing(X )

(κx − 1).

To deal with local contributions to the ramification, we first define it for a
map between punctured disks and then use the local uniformization theorem to
define the local ramification.

Let ψ : X → Y denote a finite-to-one algebraic map from an irreducible
compact algebraic curve X onto a smooth algebraic curve Y . Let x ∈ X with
y := ψ(x) ∈ Y . By the one-dimensional uniformization theorem, Theorem 3,
there exist a finite number of maps φi : ∆1 → X satisfying the properties of the
Theorem. Consider the map qi : ∆1 → Y obtained by composing φi with ψ.
We see that there is a well-defined local contribution to the ramification ρx(qi).

We define ρx(ψ) to be the sum
κx∑

i=1

ρx(qi).

Let ψ : X → Y denote a nonconstant holomorphic map from an irreducible
germ at x of a complex curve to a germ of a smooth complex curve at y = ψ(x).
The map ψ gives rise to a map between the desingularization of X and Y . We
define ρx as the corresponding local ρ for the map between the desingulariza-
tions. Since the singularities of curves are isolated, computing the monodromy
breakup of a ψ fiber as in Remark 2 by going around the boundary of a disk
in Y containing the images of no branchpoints but x, we can compute ρx. Let
φ : X̂ → X be the desingularization of X and let q := φ ◦ ψ be the composed
map. Note that the degree of q and ψ is the same and that ρx(ψ) is exactly the
sum of the numbers ρy(q) over the points y ∈ X that map to x. Thus with the
geometric genus g(X) of X equal to g(X̂) we have the following.
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Theorem 5. Let ψ : X → Y denote a generically d-to-one map from a compact
irreducible compact curve X of genus g(X) onto a smooth compact curve Y of
genus g(Y ). Then

2g(X)− 2 = d(2g(Y )− 2) + ρ,

where ρ =
∑

x∈B
ρx with B equal to the union of the branch points B of ψ, i.e.,

the finite set of points at which dψ is zero or X is singular.

3 The Algorithms

In what follows we do the result over C, and then we talk about the extensions
where the image curve is any Zariski open set in a smooth Riemann surface.

Let f(x) be as in (1), and let

Z := V (f) = ∪dim V (f)
i=1 Zi = ∪dim V (f)

i=1 ∪j∈Ii
Zij

be the irreducible decomposition of V (f). Here the Ii are finite sets; Zij is
irreducible of dimension i; and Zik is not contained in ∪dim V (f)

i=1 ∪j∈I\{k} Zij .
The numerical irreducible decomposition of V (f) [5, 6, 7, 9] is a set of finite sets
Zij and a flag

LN ⊂ · · · ⊂ L0

of general linear spaces Li of codimension i such that

Zij = Zij ∩ Li

for all i. Set (Zij , Li) is called a witness set for component Zij .

Input: A polynomial system f(x) = 0 consisting of n polynomials on CN and a
witness set (W,L) for some irreducible component C of V (f) of dimension one,
i.e., L is a generic hyperplane and W = C ∩ L.
Output: The geometric genus of C, i.e., the genus of the desingularization of
the closure of C in PN .

1. Preprocess so that n = N − 1 and C is reduced;

(a) If the multiplicity of C is greater than one, deflate [9, § 13.3.2] un-
til we have a curve birational to C having multiplicity one. For
simplicity, we rename the deflated system, the deflated curve, the
dimension of the space it is defined on, the witness point set, and
the linear space slicing the deflated curve in the witness point set as
(f(x), C, N,W,L). Set d := deg C, i.e., the cardinality of W .

(b) Randomize the system so that n = N − 1.

2. Letting π : CN → C be the linear projection with fiber over the origin
equal to L, choose a basis v1, . . . , vN−1 of L.

6



3. Let J denote the Jacobian of f(x); let V denote the matrix whose columns
are the vi; and let a1ξ1 + · · ·+aN−1ξN−1 = 1 be a random linear equation.
Compute the irreducible components S1, . . . , SM of the intersection of the
solution set of the system




J · V ·




ξ1

...
ξN−1




a1ξ1 + · · ·+ aN−1ξN−1 − 1


 = 0 (5)

with the inverse image of C in the (x, ξ)-space. Note that the sets Si may
have positive dimension, but under the natural projection πx : (x, ξ) 7→
(x), each πx(Si) is a single point for each i. Let S′i = πx(Si), i = 1, . . . , M ,
which we call “potential branchpoints.” The full irreducible decomposion
is unneeded for this step: at the expense of having more “potential branch-
points,” we may compute a witness point superset for the intersection
using the algorithm of [8].

4. For i from 1 to M let si := π(S′i) and set s0 = ∞.

5. For each si, with i ≥ 1, choose a disk ∆i around si that contains no other
si: in the case of s0 a disk is a set of the form {z ∈ C|z > R} for some
R > 0. Adjust the radii and R so that the disks are all disjoint.

6. For each i choose a point zi on the boundary of ∆i and carry out the mon-
odromy transformation of π−1(zi)∩C to compute the number of distinct
groups γi that π−1(zi) ∩ C breaks into.

7. Output g(X) = −d + 1 + 1
2

∑M
i=0(d− γi).

Because it is formulated on CN instead of PN , the above algorithm must
make a special case to account for contributions from branchpoints at infinity.
A slightly modified approach removes this special case by working on PN , or
rather, by picking a random patch of PN so that branchpoints at infinity in the
original formulation become finite points in the new patch. The modifications
are as follows.

• Homogenize the system f and preprocess it as in the above algorithm
so that it is a system F (X) of N − 1 homogeneous polynomials in the
variables X = [x0, x1, . . . , xn] ∈ PN . Treat X as a column vector in the
following steps.

• Choose a random linear projection π : PN → P1 given as X 7→ [µ·X, λ·X],
where µ and λ are mutually orthogonal 1× (N + 1) complex row vectors,
i.e., µ · λT = 0.

• Let v1, . . . , vN−1 be a basis for the orthogonal complement of µ and λ and
carry out the same computation as in Step 3 above to find the solutions
S1, . . . , SM and their projections onto X, S′i = πX(Si).
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• Work on a patch λ ·X = 1 with projection to C defined by µ. Accordingly,
the solutions S′i are mapped to C as si := µ · (S′i/(λ · S′i)), i = 1, . . . , M .
(There is no s0 now, but M might be larger than before.)

• Do monodromy as before. That is, for the loop around si, we track solu-
tions of the system

[F (X), µ ·X − si − rie
√−1 θ, λ ·X − 1] = 0

as θ goes from 0 to 2π, where ri is chosen such that the disk of radius ri

centered on si does not contain any sj , j 6= i. In this notation, si + ri is
the point zi of Step 6 above.

• Determine the number of distinct monodromy groups γi for each point si

and output g(X) = −d + 1 + 1
2

∑M
i=1(d− γi).

Note that in either case, we must initialize the monodromy loop by finding
the d points of the fiber π−1(zi) ∩ C. This is done by following the paths from
the witness set for C as L is moved to π−1(zi).

To compute the Euler characteristic of C, we do the same steps as above ex-
cept for each zi compute the number νi of distinct limits as the points π−1(zi)∩C
are continued to π−1(si)∩C. When νi < d, these continuation paths have singu-
lar endpoints, so a singular endgame must be used to compute them accurately
[3, 4]. A particularly apt technique in the present context is to perform the mon-
odromy loop as in the algorithm for the genus and compute a Cauchy integral
from the points collected around the loop [3]. Then the output is

e(C) = 2d−
M∑

i=0

(d− νi).

Note that the arithmetic genus of the reduction of X is at least 1− e(X)/2
which in turn is at least g(X).

4 An Example

In this section, we demonstrate the application of our approach on a curve
arising from the kinematics of mechanisms: the coupler curve of a four-bar
linkage in the plane.

A planar four-bar linkage is a hinged quadrilateral. We may hold one link
fixed, extend the opposing side into a so-called coupler triangle, and study the
motion of the new vertex of this triangle, the coupler point. This defines a
curve in the plane, called a four-bar coupler curve. It is well known that for a
general four-bar, this curve is degree 6 and that it can be written in isotropic
coordinates as a curve of bidegree (3,3). Whereas a general plane curve of degree
6 has genus 10 and a general curve of bidegree (3,3) has genus 4, the four-bar
coupler curve has genus only one, e.g., [?]. Thus, this is an ideal initial test case
for our method.
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Figure 1: Four-bar ramification points with monodromy loops

We treated the problem as an homogenized system on P3 and selected ran-
dom complex numbers to define the sides of the four bar. At equation (5), we
have f(x) as degree 6 and J(x) · V as degree 5, hence we obtain 30 potential
branch points. Of these, 12 occur as a pair of multiplicity 6 roots. These cor-
respond to the triple self intersections of the curve at the isotropic points at
infinity [1,±√−1, 0]. Another 6 potential branchpoints occurs as three double
points. These are the finite points where the curve crosses itself. As all of
these points are simple crossings, they each contribute zero to the genus, that
is, γi = 6 at each one. All of the remaining 12 potential branchpoints are true
branchpoints, each having γi = 5. Hence, the genus of the four-bar coupler
curve is found to be

g = −6 + 1 +
1
2

12∑

i=1

(6− 5) = 1,

as expected.
In Figure 1, we plot the projections si of the potential branchpoints. For ease

of programming, we used diamond shaped monodromy loops, also shown. The
twelve monodromy loops drawn with bold lines are the ones which contributed
to the genus.
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5 Conclusions
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