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Abstract

An algorithm is given to compute the real points of the irreducible
one-dimensional complex components of the solution sets of systems
of polynomials with real coefficients. The algorithm is based on homo-
topy continuation and the numerical irreducible decomposition. An
extended application is made to Griffis-Duffy platforms, a class of
Stewart-Gough platform robots.
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one-dimensional parts of the solution set of a system

f(x) :=




f1(x1, . . . , xN )
...

fn(x1, . . . , xN )


 = 0 (1)

of n polynomials on RN . The methods of numerical algebraic geometry
are almost exclusively aimed at detecting the complex solution components
of such a system: good references are [16, 17, 18, 19, 11, 22, 23]. The
algorithms of this article make use of some of those known methods from
the complex case.

The isolated solutions on CN that lie in RN may be found by first find-
ing all the isolated solutions of f(x) = 0 and filtering out those with real
coordinates. If the system f(x) = 0 depends on parameters and we need to
solve the system repeatedly for different values of the parameters, it can be
argued [23] that the extra work of finding all the isolated complex solutions
is unavoidable.

Finding all the isolated solutions of f(x) = 0 on RN , including those on
higher-dimensional solution sets, is a more difficult problem. For example,
consider the simple example [5, Example 13.6] of the polynomial of degree
2d

Πd
i=1(x− i)2 + Πd

i=1(y − i)2 = 0 (2)

with d2 isolated real solutions. These points are not isolated over the com-
plex numbers, but are instead singular points of a complex curve.

The situation for positive-dimensional solution sets is far more compli-
cated. Unlike the case of complex solution sets, an “irreducible component”
is not necessarily connected. For example, the set of zeroes of the irreducible
polynomial

y2 − x(x− 1)(x− 2)

is irreducible over the complex numbers, i.e., the common zeroes on C2

forms a connected set with the property that the set of nonsingular points
is connected. In contrast, the solutions on R2 are easily seen to consist of
two one-dimensional curves.

Moreover the difficulty of one-dimensional solution sets over the real
numbers that are part of higher-dimensional solution sets becomes more
complicated. For example, consider Whitney’s Umbrella, i.e., V (p), where
p(x, y, z) = x2 − y2z. Over the complex numbers, the z-axis is contained in
the irreducible two-dimensional solution set. Over the real numbers,

{(0, 0, z) | z ∈ R, z < 0}
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is a one-dimensional part of the set with the rest of the z-axis contained in
a two-dimensional set.

There is the potential for confusion when describing the “dimension” of a
set of real points that lies on a potentially higher-dimensional set of complex
points. For example, the real solutions of real dimension zero in (2) lie on
complex components of complex dimension one. In general, a real solution
set of real dimension k could lie on a complex solution set of any complex
dimension greater than or equal to k. For the purposes of this article, unless
otherwise stated, the dimension of a set of real solutions will refer to the
complex dimension of the complex solution set upon which it lies.

For applications to mechanisms, one-dimensional sets of real points have
a particular importance, e.g., see the extended example of a Stewart-Gough
platform robot in §4. Moreover, for one-dimensional sets, computations
yielding information useful in applications can be carried out in a relatively
straightforward manner.

Given a polynomial system as in (1), the algorithms of §3 will let us

1. compute isolated real points contained in the union Z1,R of the one-
dimensional complex components of V (f);

2. compute the one real-dimensional connected components of Z1,R; and

3. determine whether a given real solution belongs to Z1,R, and if it does,
determine which connected components and which irreducible compo-
nents it belongs to.

In rough terms, we take a generic real projection and compute points
where the projection is degenerate. From that set, we obtain a decom-
position similar to that using a Morse function on a manifold. Symbolic
algorithms along the same general lines exist, e.g., [1, 3, 9].

The numerical approach starts with the witness sets of [16, 18, 23].
Curves on which the Jacobian of the projection is singular present diffi-
culties, which we deal with by deflation along the lines of [23, §13.3.2 and
§15.2.3] generalizing the case of isolated points [4, 10, 13].

In §1, we give a general discussion of real points of solution sets of poly-
nomial systems. Here we give the method to obtain the connected compo-
nents of real points of complex curves. We also explain the data structure
we use to represent real points of one-dimensional complex algebraic sets.
The approach of §1 works with reduced complex curves, but curves arising
in practice are in many cases of multiplicity greater than one (in §4 we give
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an example of this that arose in the study of Stewart-Gough platform ro-
bots). In §2, we give a discussion of deflation as that technique provides
a means of dealing with components of multiplicity greater than one. In
§3, we present explicit numerical algorithms for the methods of §1. Finally,
several applications of the algorithm of §3 may be found in §4.

1 Real points of complex algebraic curves

Throughout this discussion we have a system of polynomials

f(x) :=




f1(x1, . . . , xN )
...

fn(x1, . . . , xN )


 = 0 (3)

on CN with real coefficients. We are interested in describing the set of real
solutions ZR := VR(f) ⊂ RN . The set of solutions Z := V (f) ⊂ CN is taken
to itself under conjugation κ : CN → CN , and RN is the set of fixed points
of κZ , the restriction of κ to Z.

We know that the complex solution set V (f) is of the form

Z :=
dim V (f)⋃

i=0

Zi =
dim V (f)⋃

i=0


 ⋃

j∈Ii

Zi,j


 (4)

where Zi is the union of all i-dimensional irreducible components of V (f)
and Zi,j for j ∈ Ii are the finite number of distinct irreducible components
of V (f). Recently in [16, 17, 18], new techniques have been developed to nu-
merically decompose Z into objects known as witness sets which correspond
to the irreducible components Zi,j . With the help of this decomposition, we
can give a numerical description of the real solution set ZR.

Note that κ takes each component Zi,j to a component Zi,k where Zi,j

may or may not be equal to Zi,k. This gives a bijection of the index set Ii

to itself, which by abuse of notation, we also denote by κ. Thus κ takes Zi,j

to Zi,κ(j).
Given an reduced quasiprojective algebraic set X we denote the singular

points of X by Sing(X) and the smooth points, X \ Sing(X), by reg(X).

Lemma 1.0.1. Let Z1 and κ be as above. Given a point x ∈ reg(Z1) with
κ(x) = x, there is a complex neighborhood U ⊂ reg(Z1) of x such that the
solutions of κ(z) = z on U is a smooth connected curve.

4



Proof. It is an easy fact that there is a neighborhood U of x which is κ-
equivariantly diffeomorphic to a neighborhood of the origin in the real tan-
gent space TZ1|x of Z1 at x. The induced action of κ on the two-dimensional
real vector space TZ1|x is the same as conjugation on C.

If Zi,κ(j) 6= Zi,j , then any real points of ZR contained in Zi,j are the
real points of the algebraic set Zi,j ∩ Zi,κ(j) with dimZi,j ∩ Zi,κ(j) < i. This
intersection can be computed numerically using the diagonal intersection
technique of [19, 20]. The subject of this article is the curve case, i = 1, so
any such intersections Z1,j ∩Z1,κ(j) are isolated in the diagonal intersection,
even though they might be contained in some other real one-dimensional
component of the system.

This leaves only the case when κ(j) = j. Thus we have an irreducible
curve C with κ(C) = C. Throughout the following discussion, if C appears
with multiplicity greater than one as a solution component of f(x) = 0, we
take C to mean the underlying reduced algebraic set. We denote the real
subset of C as CR = C ∩κ(C). Note that κ takes singular points to singular
points. Therefore we are reduced to finding

1. the singular points of C and checking which are real, i.e., invariant
under κ;

2. real points of C that are not singular, i.e., the smooth points of C
invariant under κ; and

3. showing how the sets in 1) and 2) fit together.

By Lemma 1.0.1, the set in 2) is a smooth real curve.
Our approach to describing CR, the real points of C, is to take a general

linear projection π : CN → C with real coefficients. Thus the restriction
of π to the reals, πRN , is a linear map from RN → R. By the Noether
normalization theorem, we know that π : C → C is proper and thus so
also is πCR : CR → R. We think of V (π(x) − t) as t ranges over R as a
hyperplane that sweeps out the curve. For general values of t ∈ R, this
hyperplane intersects CR in isolated points, and on an open interval U ⊂ R
containing such a t, the corresponding segments of the curve π−1

CR
(U) can be

swept out numerically by continuation in t.
The numerical sweep of any particular curve segment fails at points

where the tangent to the curve is either (a) not unique or (b) unique but
lying wholly inside the sweep hyperplane. Together, these are the points
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where dπC is of corank > 1. Let us denote the set of all such rank-degenerate
points as B∗. For our purposes, it is acceptable if B∗ is expanded by including
a finite number of points where dπC is corank 1. These may enter our
computations via the processes of randomization and deflation, as described
in § 1.1. By definition, Sing(C) ⊂ B∗, so embedded points of C are included
in B∗. Let the real points of B∗ be denoted B∗R.

It is convenient to expand this set to a finite set B ⊃ B∗ by also including
all points of C lying in the same fiber as some point of B∗, that is, B =
C ∩ π−1(B∗). Similarly, let BR = CR ∩ π−1(π(B∗R)). Since πC\B is a finite
covering map, the structure of π−1(R) is simple. It consists of the union of
the finite set BR with the set π−1(R) \ BR, the latter of which consists of a
finite number of connected sets ek diffeomorphic to open intervals. We will
refer to these connected sets as “edges.”

Since open intervals of the line are simply connected, ek is mapped dif-
feomorphically onto its image. Let xk ∈ ek denote the unique point over
a point tk ∈ π(ek) ⊂ R. Since the real numbers have an ordering, each of
the ek has a direction of increase. By continuation from tk in both direc-
tions, we can find, for each ek, the points in BR which form the boundary
∂ek of ek. For this reason, the points of BR are referred to as “boundary
points.” Since we work in CN , it is possible that ek maps onto an infinite
interval. Therefore, we must add to our data structures a way of denoting
such edges.1

This Morse-theoretic observation is important because by Lemma 1.0.1,
each of the connected sets ek in the union π−1(R) \ BR either consists of
all real points or has no real points. Let us retain among these only those
edges that are real, so that ek, k = 1, . . . , n, is the collection of all the real
edges. Thus CR consists of the union of the real edges with the boundary
points BR. Accordingly, we may define a data structure to represent CR
numerically as follows.

Definition 1.1. A Morse-like representation of a real algebraic curve CR ⊂
RN consists of

1. a generic linear projection π : RN → R,

2. a boundary point set BR = {B1, . . . , Bm}, Bi ∈ RN for all i; and

1If we worked in PN , then ek would always be compact, with the possibilities that some
boundary points could be at infinity and some edges, homeomorphic to a circle, could have
just one boundary point or no boundary at all.

6



3. an edge set E = {E1, . . . , En}, where for all k, Ek = {xk, `k, rk} ∈
RN × (Z ∪ {−∞})× (Z ∪ {+∞}), where

(a) xk ∈ ek over a point of π(ek), and

(b) B`k
and Brk

are the left and right endpoints of edge ek.

A value of `k = −∞ means edge ek extends to infinity on the left, and
similarly rk = +∞ means ek extends to infinity on the right.

Since disjoint ei and ej have either identical or completely disjoint im-
ages, we can force π(xi) = π(xj) whenever π(ei) = π(ej). One could work
instead with the set B∗R and the edges that connect them, but then the
images of the edges would, in general, only partially overlap, which would
complicate the bookkeeping.

To describe the real points in the full curve Z1 instead of just a single
component C = Z1,j , one may construct a Morse-like representation for each
self-conjugate component, and also find the isolated points where distinct
complex conjugate components meet. If desired, one may also find the points
where the real curves inside distinct components meet each other.

1.1 Extra boundary points from randomization

The most basic part of the numerical computation of a finite set BR ⊂ CR
that includes all the real points where dπ(C) has corank > 1. Our methods
for computing BR can introduce extra boundary points. These do not affect
the validity of the data structure for representing the curve, they simply add
more edges than necessary.

One way extra boundary points can arise occurs when a curve in CN is
given by more than N − 1 equations. For example, consider the system f =
{x2, xy}. Then, V (f) is just V (x), a line, which could be described with just
one edge. However, to deal with the excess of equations, we pick a random
λ ∈ R to form a randomized system f ′ = {x2+λxy}. This gives a V (f ′) that
contains both the original component V (x) and an extraneous component
V (x + λy). Any general points found on the extraneous component will not
satisfy the original system, so they may be easily discovered and discarded.
However, the set of boundary points B′R for the system f ′ consists of the
point (0, 0). This causes us to have two edges to describe V (x), e1 = {(0, y) ∈
R2|y < 0} and e2 = {(0, y) ∈ R2|y > 0}, instead of just one.

If we have a component of multiplicity at least two, we must reduce the
multiplicity of the component to one before applying the basic method found
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below. We discuss how to do so in §2. As in the case of randomization, this
operation might also introduce some extra points into BR, again without
significant consequences.

1.2 A broader notion of conjugation

Conjugation in applications appears in different guises. For example, con-
sider the conjugate-transpose operation that sends a matrix A ∈ Cn×n to
its Hermitian transpose A∗, i.e., sending that matrix A to its transpose A′

and then taking the complex conjugate of every element of A′. In this case
the “real points” are the Hermitian matrices. This can be put into the form
of conjugation we consider in this article, by mapping points A ∈ Cn×n to
points (

A + A′,
A−A′√−1

)
∈ Cn×2n.

Under this mapping, the Hermitian matrices are mapped isomorphically
onto the set of real points of the image.

A special case of this occurs in planar mechanism theory, in which
isotropic coordinates can be used to represent vectors in the plane [2, 26].
These are pairs (z, ẑ) ∈ C2 that are “real” when z and ẑ are complex conju-
gates of each other, that is, real points are the stationary points of the gen-
eralized conjugation operation κ : (z, ẑ) 7→ (conj(ẑ), conj(z)), where conj()
means complex conjugation.

With minor adjustments, the techniques of this paper can be applied to
determine real curves under any of these generalized forms of conjugation.

2 Deflation

Let C be an irreducible component of Z1 as in the last section. To numeri-
cally deal with C in an efficient way, we need to use homotopy continuation
to compute the points of Lt∩C where Lt is a one-parameter family of generic
hyperplanes. This is straightforward when the multiplicity of C as a compo-
nent of the solution set is one. Unfortunately, this assumption is not always
true in practice, e.g., the motion path of the Stewart-Gough platform robot
described in §4.

Fortunately, we can use the deflation technique to effectively replace
such a component with a one-dimensional multiplicity one component of a
system of polynomials on a higher-dimensional space. This is discussed for
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isolated points in [10] and for components in [23, §13.3.2 and §15.2.3]. We
do not give the details here. Let it suffice to say that given a system f(x)
and a generic point x∗ on some irreducible component Z ⊂ V (f) having
multiplicity greater than one, deflation produces a new system, say F (x, ξ)
with a multiplicity one solution component Y , which projects under the map
(x, ξ) 7→ (x) generically one-to-one onto Z with an isomorphism in a Zariski
neighborhood of x∗. Deflation proceeds in stages, each stage guaranteed to
reduce the multiplicity by at least one.

The main difficulties with deflation are that:

1. each stage of deflation roughly doubles the number of variables; and

2. to form the deflated system, one must determine the rank of the Ja-
cobian matrix at a solution point.

For low-multiplicity singularities the increase in the number of variables
is not severe. For components with high multiplicity, there can be difficulties,
but this will likely be true with any approach to computing such components.
More research in this direction is warranted.

The determination of rank can be difficult as the numerical approxima-
tion of a singular point is less accurate than at well-conditioned points. Re-
search in “rank-revealing” algorithms is relevant to this difficulty [12]. Our
current approach is to use adaptive multiprecision with a singular endgame
to accurately compute the points of C ∩Lt for a given value of t and so that
the rank of the Jacobian matrix at such a point can be found accurately. If
more than one stage of deflation is required, we would continue to use mul-
tiprecision on the intermediate deflated systems until the final deflation is
obtained. (So far, we have only treated systems where one stage of deflation
suffices.) The computational cost for the deflations pays off since the ranks
stay constant over Zariski open dense sets of t ∈ C.

In general, a multiplicity µ component may require up to µ − 1 stages
of deflation to fully reduce it, although a sharp bound was developed in [4].
Also, it should be noted that at any stage of deflation, say fi, where the
rank of the Jacobian matrix, Ji = ∂fi/∂x is r, we restrict λi to a generic
r-dimensional linear subspace to form the new system fi+1 := {fi, Jiλi}.
Only when r = 0 is λi constant; otherwise, new variables are introduced to
parameterize the linear subspace. In this manner, the number of variables
usually increases with each stage of deflation.
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2.1 Extra boundary points from deflation

Let us see an example of how deflation reduces a multiplicity two curve in
C2 to multiplicity one and in the process introduces extra boundary points
into the description of the curve. Let g = x2

1 + x2
2 − 1, f = (x2

1 + x2
2 − 1)2.

The Jacobian matrix for f is

J := ∂f/∂x =
[

2x1(x2
1 + x2

2 − 1) 2x2(x2
1 + x2

2 − 1)
]
,

which has rank zero on V (f). In other words, the kernel of J is all of C2.
Consequently, on V (f), we may set Jλ = 0 for

λ :=
[

λ1

λ2

]
,

a generic point in C2. This gives the deflated system

f1(x) :=
[

f
Jλ

]
=

[
(x2

1 + x2
2 − 1)2

(x2
1 + x2

2 − 1)(λ12x1 + λ22x2)

]
= 0.

V (x2
1 + x2

2 − 1) is a component of V (f1). Moreover, rank(∂f1/∂x) = 1 on a
Zariski open subset of V (g), specifically, on the complement of V (λ12x1 +
λ22x2). The exceptional points are where the tangent to V (g) is orthogonal
to the randomly selected direction λ. Since rankV (f1)(∂f1/∂x) = codimV (f1),
the component is multiplicity one and no further deflation is needed. The
deflated system f1(x) is suitable for describing the real curve in V (f), but
extra boundary points V (x2

1 + x2
2 − 1) ∩ V (λ12x1 + λ22x2) will be included

in BR.
A Zariski open subset of the regular points of a deflated curve are guar-

anteed to project onto a dense Zariski-open subset of the original nonreduced
curve. Singular points of the deflated curve still project to the original curve,
but some may project to points that are not singular for the original curve.
Including such boundary points in the Morse-like representation of the curve
has the mild disadvantage of creating extra edges but also has the crucial
advantage of allowing us to compute with the numerically stable deflated
system instead of the original numerically unstable nonreduced system.

3 Algorithms

In this section, we give a method for finding all real solutions lying on the
one-dimensional complex irreducible components in the solution set of a
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polynomial system with real coefficients as in Eq. 1. We also give a mem-
bership algorithm that decides whether a given point lies on the real solution
set of complex dimension one.

Algorithm 3.1. (An algorithm for finding real solutions contained in the
one-dimensional complex component of V (f).)
Input: A polynomial system f(x) as in (1).
Output: An enumeration of the one-dimensional irreducible components
Z1,j ⊂ V (f), j ∈ I1, as in (4), and a numerical description of the real points
contained therein. This is a set of isolated points P arising as the intersec-
tion of two distinct complex conjugate components, along with a Morse-like
representation of the real curves in each self-conjugate complex component.
For the ith such component, this is given as a boundary set BRi and an edge
set Ei, as in Definition 1.1. Optionally, we can also find all points where the
real curves meet, thus completing a connection diagram for all real parts of
the complex one-dimensional components in V (f).

Step 1 Compute a numerical irreducible decomposition of V (f). Retain
only the one-dimensional components Z1,j, j ∈ I1. Each component
Z1,j is represented by a witness set W1,j = {Yj , Lj , gj , πj}, where Lj is
a generic hyperplane in CN , gj is a deflated polynomial system such
that V (gj) has a reduced and irreducible component, say Y, whose
closure Y projects under the projection πj to the closure of Z1,j, i.e.,
πj(Y) = Z1,j, and Yj is a set of witness points such that πj(Y ) =
Z1,j ∩Lj. In the case that Z1,j is reduced, we have gj = f and πj = id,
the identity map. The number of witness points, #(Yj), is equal to the
degree of the reduction of Z1,j. We choose Lj as a linear equation with
real coefficients.

Step 2 For each Z1,i determine which component Z1,j is its complex con-
jugate, i.e., κ(i) = j. Since Lj is real, these can be recognized by
the property κ(πi(Yi)) = πj(Yj). A component and its conjugate will
have the same degree and the same sequence of ranks in the deflation
process, both of which can be used to limit the number of comparisons.

Step 3 For each pair of distinct complex conjugate components, say Z1,i

and Z1,j, κ(i) = j, i 6= j, find the isolated points in Z1,i ∩ Z1,j. This
can be done using a diagonal homotopy [19, 20, 23] to solve the system




gi(x)
gj(y)

πi(x)− πj(y)


 = 0.

11



The witness sets for Z1,i and Z1,j enable the diagonal homotopy to find
just the intersection of these two components, even though the above
system may have other solution components. Since Z1,i and Z1,j are
distinct irreducible components of dimension one, their intersection is
at most dimension zero. However, in the case of nonreduced compo-
nents that have been deflated, it could happen that the fiber product
defined by the above system has higher-dimensional components whose
images in CN are isolated. That is, the extra dimensions lie entirely
within the subspace of the extra variables introduced in the deflation.
The collection of the images in CN is a set of points that is output as
set P .

Step 4 Choose at random a real projection π : CN → C defined by π(x) =
a · x = a1x1 + · · ·+ aNxN , a ∈ RN .

Step 5 For each self-conjugate component, i.e., Z1,i with κ(i) = i, compute
a Morse-like representation BRi, Ei, using Algorithm 3.2, below, and
the projection π.

Step 6 (Optional) Find all points where real components meet. Any point
where a reduced self-conjugate curve meets any other curve must be in
the set of boundary points BR for that curve. Thus, since the same
projection π is used for all curves in Step 5, points where two such
curves meet can be found by simple comparison. Points where such
a curve meets a nonreduced curve can be found by testing the bound-
ary points of the reduced one for membership in the nonreduced one.
Points where two nonreduced curves meet can be computed by a diag-
onal intersection of the same form as appears in Step 3, above.

Done

Algorithm 3.1 calls Algorithm 3.2, below, to find the real part of each
self-conjugate one-dimensional component of V (f). Before stating the algo-
rithm, we justify here our approach to formulating the main step of finding
the boundary points B∗. Recall that these are the points of the curve where
either (a) the tangent to the curve is not well-defined, i.e., it is not a unique
point in the tangent space PN , or (b) the tangent is orthogonal to the sweep
direction a that defines the sweep projection π. Both of these conditions can
be captured in a single condition: if the intersection of the tangent space
at x with the hyperplane orthogonal to a is not empty, then x is a bound-
ary point. Steps 1–3 of the algorithm formulate equations for this tangent
subspace and Step 4 checks every possible dimension for solutions.
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Algorithm 3.2. (An algorithm for finding real solutions contained in a
self-conjugate one-dimensional irreducible complex algebraic set Z.)
Input: A deflated witness set W = {Y, L, g, π′} for Z, and a real sweep
projection π(x) = aT x given by a column vector a ∈ RN .
Output: A Morse-like representation of the real points in Z, i.e., Z ∩RN ,
in terms of a set of boundary points BR and an edge set E, as given in
Definition 1.1.
Notation: Denote the dimension of the ambient space for the deflated sys-
tem as N ′ ≥ N ≥ 2, that is, N ′ − N is the number of extra variables
appended by the deflation process. Let Y ∈ CN ′

denote the component of
V (g) that projects to Z, i.e., π′(Y) = Z. Y ⊂ Y is the set of witness points
Y ∩ π′−1(π′(Y) ∩ L). Since Z is one-dimensional, g is a polynomial system
g : CN ′ → CN ′−1.

Step 1 Pad the sweep vector a with N ′−N zeros to form a′ =
[

a
0

]
∈ RN ′

.

Step 2 Find a basis B for the linear subspace in RN ′
orthogonal to a′.

That is, find a matrix B ∈ RN ′×(N ′−1) such that rank[ a′ B ] = N ′

and (a′)T B = 0. This can be done, for example, by choosing B′ ∈
RN ′×(N ′−1) at random and applying Gram-Schmidt orthogonalization.

Step 3 Let J(y) = ∂g/∂y be the (N ′ − 1) × N ′ Jacobian matrix of g(y).
Define H : CN ′ × PN ′−2 as h(y, z) = J(y)Bz. The variables z para-
meterize the tangent space orthogonal to a′.

Step 4 Define the projections πy : (y, z) 7→ (y) and πz : (y, z) 7→ (z).

We wish to find the set A =
(
Y × PN ′−2

)
∩ V (h). Since Y is one-

dimensional and since the fiber in A over a generic point in Y is empty,
we know that the projection of A onto Z, i.e., π′(πy(A)) is a finite set
of points. These are the boundary points B∗. The components of A
can be any dimension from 0 to N ′ − 2.

We find a witness superset W containing witness points on the com-
ponents of dimension M by intersecting πz(A) with a generic linear
subspace of PN ′−2 of dimension N ′ − 2−M . For computational pur-
poses, we may treat PN ′−2 as the lines through the origin in CN ′−1,
where we find components of dimension M ′ = M + 1 by intersect-
ing with an affine linear subspace of CN ′−1 of dimension N ′− 1−M ′.
These intersections can be computed independently one at a time in the
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style of [23, ch.13] or we may use a cascade as outlined in Remark 3.4
below.

The projection of the witness superset W onto the original coordinates
are the boundary points B∗ = π′(πy(W)). B∗R is the subset of B∗ having
all real coordinates.

Step 5 Initialize BR = B∗R and initialize E = ∅.
Step 6 Let t1 < t2 < · · · < tm be the distinct values π(B∗R), sorted in

ascending order. Pick values t′0 < · · · < t′m, one in each interval
(−∞, t1), (t1, t2), . . . , (tm−1, tm), (tm,+∞). For i = 1, . . . , m − 1, the
midpoint t′i = (ti+ti+1)/2 suffices. For the infinite intervals, t′0 = t1−1
and t′m = tm + 1 suffice.

Step 7 For each i = 0, . . . ,m, follow the solution paths of the homotopy
[

g(y)
sL(y) + (1− s)(π(π′(y))− ti)

]
= 0 (5)

as s goes from 1 to 0, starting at the witness points Y . Each real
endpoint, say y∗, of these solution paths is a point on an edge of the
Morse-like representation. Append the partially complete edge infor-
mation (y∗, ·, ·) as a new edge in E. There may be multiple endpoints
over the same t′i and there may be none at all over others.

Step 8 For every incomplete edge (y∗, ·, ·) in E, complete it by starting at
y = y∗ and tracking t left from t′k to tk and right from t′k to tk+1 using
the homotopy [

g(y)
(π(π′(y))− t)

]
= 0 (6)

Do not track left from t′0 or right from t′m, as these must go to infinity.
The endpoint π′(y) obtained by tracking left is compared to BR and the
index of the matching point, if any, is the left index, `, for that point.
If there is no match, the endpoint is appended to BR and its index
becomes `. Similarly, tracking to the right determines the right index
r, completing the edge descriptor (π′(y∗), `, r). It is important to use
a singular endgame in these homotopies, as some edges are expected
to end at the singular boundary points B∗R.

Done
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Remark 3.3. The algorithm assumes the problem is formulated on CN . If
instead it is formulated on PN , i.e., if the system consists of homogeneous
polynomials on CN+1, then we may work on an arbitrary patch b · x = 1,
b ∈ RN+1, and use a projection π(x) = a · x, a ∈ RN+1. In the case of a
nonreduced component, N ′ > N , pad both a and b with N ′ − N zeros in
Step 1 to get a′ and b′. Then in Step 2, B is a (N ′ + 1) × (N ′ − 1) matrix
whose columns span the subspace orthogonal to both a′ and b′. The rest of
the algorithm is unchanged.

Remark 3.4. The points in W in Step 4 may be computed in the style of
a cascade [23, ch.14]. In the cascade approach, we use the embedding

H(y, z, s) =




g(y)

J(y)Bz + Λ




s1c1z
...

sN ′−2cN ′−2z




dz − 1




(7)

where Λ is a random complex (N ′− 1)× (N ′− 2) matrix, each ci and d is a
random complex 1×(N ′−1) row vector. The final equation, dz−1 = 0, picks
a projective patch for representing PN ′−2 in CN ′−1, while the conditions
ciz = 0 slice out linear subspaces of PN ′−2. We begin by setting all si = 1
and solving this by diagonal homotopy. Call this stage M ′ = N ′ − 1. Then,
for stage M ′ = N ′ − 2, . . . , 1, we follow homotopy paths as sM ′ goes from 1
to 0. At the end of stage M ′, the path endpoints that satisfy ciz = 0, all
i < M ′, are the witness superset for boundary points having an orthogonal
tangent space of dimension M = M ′ − 1 in PN ′−2. We append these to the
witness superset W. The other endpoints are the start points for the next
stage of the computation.

Remark 3.5. Instead of the cascade technique of Remark 3.4, one could
avoid introducing the variables z and replace the equations J(y)Bz = 0
with the single condition det(J(z)B) = 0. While valid, the determinantal
equation can have a high degree, making it less stable numerically than the
cascade.

Remark 3.6. For the purpose of numerically sampling edges, we should
store the deflated system g(y) along with each edge. For simplicity, this
was dropped from the notation. Also, one may wonder if in Step 8 it is
sufficient to store π′(y∗) ∈ CN instead of y∗ ∈ CN ′

. It is sufficient, because
the auxiliary variables to complete y∗ in the deflated representation can be
reconstructed by linear algebra given just π′(y∗).
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Among the boundary points BR returned by Algorithm 3.1, there may be
some points not connected to any edge. Such points are isolated solutions.
Given x∗, a solution of the polynomial system, one may use the following
algorithm to identify the real component to which it belongs.

Algorithm 3.7. (An algorithm for membership test)
Input: A polynomial system f as in (1), a solution x∗ of the system, a
projection π, the set of isolated solutions P , and for all self-conjugate irre-
ducible components of the one-dimensional solutions of V (f), a Morse-like
representation BRi, Ei for the real points in the ith such component.
Output: The component upon which x∗ lies, if any.

Step 1 Check if x∗ is in the set of isolated points P . If so, return with this
information.

Step 2 Test for membership in each self-conjugate component, as follows:

Step 2a Set t∗ = π(x∗) and let t1 < · · · < tm be the sorted values
of π(BR). Clearly, t∗ ∈ [ti, ti+1] for some i (taking into account
the infinite left and right intervals as well). If t∗ is equal to one
of the endpoints of these intervals, then x∗ must be in the set
of boundary points BR. Find the matching point and return that
information.

Step 2b If we reach this step, x∗ must either be on one of the edges
that maps to the interval containing t∗ or it is not in the compo-
nent. Suppose edge Ek = {yk, `k, rk} has a value π(π′(yk)) that
lies in the same interval as t∗. We test for membership in the
edge by starting at y = yk and tracking the solution path of

[
g(y)

π(π′(y))− t

]
= 0, (8)

as t goes from tk to t∗. If the endpoint y∗ of this path matches
x∗, that is, if π′(y∗) = x∗, then x∗ is on this edge. If so, return
this information; otherwise, try the next edge.

Step 3 If no component contains x∗, then even though x∗ is a solution of
f(x), it does not lie on the real subset of the one-dimensional compo-
nent of V (f).

Done
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Remark 3.8. As is common, suppose several edges share the same t value,
say tk. It would be more efficient to track in step 2b from x∗ as t goes from
t∗ to tk and compare the endpoint against all these edges. This is fine for
edges that come from reduced complex components, but it is less straightfor-
ward for edges coming from nonreduced components, because these would
require reconstructing the y∗ that lies over x∗ in the deflated representation.
We have sacrificed efficiency for simplicity in the above statement of the
algorithm.

4 Examples

This section starts with three very simple examples that can also be derived
by hand. These serve to illustrate how our method finds and represents so-
lutions. A more challenging fourth example from the theory of mechanisms
completes the section. For brevity, we report solutions to only a few deci-
mal places, although all computations were done in double precision using
HomLab[23], adding new routines for the algorithms of this paper. Also
for brevity in the presentation, we choose “random” constants of only two
decimal places, although our standard procedure is to use a random number
generator in double precision.

4.1 Isolated real point

Consider the polynomial f = x2 +y2, which clearly has (0, 0) as its only real
root. The results of each step of Algorithm 3.1 are as follows.

Step 1 The irreducible decomposition of V (f) reveals two one-dimensional
components. Each component has a single witness point, hence the
components are linear. This reflects the factorization

x2 + y2 = (x + iy)(x− iy),

where i =
√−1. To be explicit, let

L(x, y) = 0.38x + 0.54y − 0.5.

Then the witness sets are Wj = {wj , L, f, id}, j = 1, 2, where

w1 = [0.43578 + 0.61927i, 0.61927− 0.43578i],
w2 = [0.43578− 0.61927i, 0.61927 + 0.43578i].

.

Call the two components Z1 and Z2.
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Step 2 Since the witness points are complex conjugates, κ(w1) = w2, so
are the components they represent, κ(Z1) = Z2.

Step 3 Find the intersection Z1 ∩ Z2 using the diagonal homotopy:



x2
1 + y2

1

x2
2 + y2

2

γsL(x1, y1) + (1− s)(x1 − x2)
γsL(x2, y2) + (1− s)(y1 − y2)


 = 0, (9)

where γ is a random complex number. Track one path from the start
point [(x1, y1), (x2, y2)] = [w1, w2] as s goes from 1 to 0. The endpoint
at s = 0 is the point [(x1, y1), (x2, y2)] = [(0, 0), (0, 0)]. (Although
the point is singular, it is easily computed to full precision using a
singular endgame.) Accordingly, the set P of isolated real points is
P = {(0, 0)}.

Steps 4-6 There are no self-conjugate components, so the algorithm is com-
plete.

Return P = {(0, 0)}, BR = E = ∅.

4.2 Line with an embedded point

Consider the polynomial system

f(x, y) =
[

x(y − 1)
(y − 1)2

]
= 0. (10)

The real solution set of this system consists of the line y = 1. This system has
an embedded point of higher multiplicity at (x, y) = (0, 1). Algorithm 3.1
proceeds as follows.

Step 1 Using the slice

L(x, y) = 0.82x− 0.27y + 0.66,

we get a single witness point for the one-dimensional component:

(x, y) = (−.47561, 1).

Since the component has codimension 1, we represent it with a single
polynomial via randomization, say g(x, y) = [1 − 0.92]f(x, y).
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Step 2 The component is its own conjugate.

Step 3 Their are no conjugate pairs, so P = ∅.
Step 4 We choose a sweep projection π(x, y) = 0.44x− 0.83y.

Step 5 Algorithm 3.2 returns a single boundary point BR = {(0, 1)} and
two edges in E (details below).

Step 6 There is just one component, so do nothing more.

Return P = ∅, BR = {(0, 1)}, and E from Step 5.

The actions of Algorithm 3.2, called in Step 5 above, are as follows.

Step 1 The component is reduced; N ′ = N = 2. So a′ = a.

Step 2 The orthogonal complement is B = [0.83 0.44]T .

Step 3 In the formula J(x, y)Bz = 0, z lives in P0, that is, it is a nonzero
constant. The choice z = 1 suffices.

Step 4 The cascade (7) has just one stage:

H(x, y) =




g(x, y)
J(x, y)B

z − 1


 = 0,

We can drop the last equation, since z does not appear in the first
two. We have a single witness point for the first polynomial and the
second polynomial is linear, so we may solve the system with a single
continuation path in a diagonal homotopy. The result is the point
B∗R = (0, 1).

Step 5 Set BR = {(0, 1)} and E = ∅.
Step 6 We have t1 = π(0, 1) = −0.83. Choose t′0 = −1.83 and t′1 = 0.17.

Step 7 We have one continuation path for each of t′0 and t′1, giving an edge
point on each side of t1.

Step 8 We track from t′0 right to t1 and also from t′1 left to t1. Both edges
end at the point (0, 1). The edge description is

E =
{

[ (−2.2727, 1), −∞, 1 ]
[ (+2.2727, 1), 1, +∞ ]

}
.
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Figure 1: The real solutions of y2 + x2(x− 1)(x− 2).

Remark 4.1. We should note that an exception could be made for lines:
two sample points on a line suffice to describe it as a geometric object. For
illustrative purposes, we have followed every step of the algorithm, revealing
the embedded point in the process.

4.3 Isolated boundary point plus curve

Consider the following simple polynomial system:

y2 + x2(x− 1)(x− 2) = 0. (11)

As depicted in Figure 1, the real solution set of this system consists of a
bounded curve and an isolated point at the origin. On the other hand, the
complex solution set consists of a single irreducible curve.

Let us describe the numerical treatment of this problem more briefly
than in the previous two. In Step 1 of the main algorithm, we find a single
irreducible complex component of degree four. Being just one component, it
must be self-conjugate, and indeed, the four witness points appear as either
two complex conjugate pairs, or one such pair and two real points, depending
on the linear slice used. We choose a projection, say π(x, y) = 0.8x + 1.2y,
and proceed to Algorithm 3.2 to find the Morse-like representation.
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As in the prior example, there is only one stage in the cascade of Step 4.
The four witness points for the component give rise to four homotopy paths.
Two of these end at the point b1 = (0.0, 0.0), while the others go to b2 =
(1.4413970,−0.71573118), and b3 = (1.7632215, 0.74955463). Letting ti =
π(bi), we have that t1 = 0.0, t2 = 0.29424019, and t3 = 2.3100428. It
is therefore reasonable to choose the values t′0 = −1.0, t′1 = 0.14712009,
t′2 = 1.3021415, and t′3 = 3.0.

In Step 7, for each t′i, i = 0, . . . , 3, we track four homotopy paths.
Only t′2 has any real solutions, and these are (1.1090746, 0.34573486) and
(1.9853600,−0.23845543). Tracking these points from t = t′2 to t = t2, both
paths end at b2. Similarly, tracking from t = t′2 to t = t3, both paths end
at b3. Therefore, we may conclude that b1 is an isolated solution while the
other two boundary points are connected by two edges. In other words, the
real solution set consists of an isolated solution and a bounded curve, as
expected.

To summarize, the final output BR, E , and their projection values are as
follows.

BR = {(0, 0), (1.4413970,−0.71573118), (1.7632215, 0.74955463)}
π(BR) = {0.0, 0.29424019, 2.3100428}

E =
{

[ (1.1090746, 0.34573486), 1, 3 ]
[ (1.9853600, −0.23845543), 1, 3 ]

}

π(E) = {1.3021415, 1.3021415}.

4.4 The Stewart-Gough platform problem

A generic Stewart-Gough platform consists of two rigid bodies, called the
base and endplate, joined by six legs. The legs are connected to the base and
endplate by spherical joints. When the six ball joints in the base and the six
ball joints in the end plate are in general position, a Stewart-Gough platform
has forty isolated solutions. This was first established by continuation [14]
and later proven analytically [7, 25]. One formulation of the kinematic
equations is as follows, where (u, v) ∈ P7 are Study coordinates for rigid
body motion [25] and we treat each of u and v as a 4×1 column vector. We
note that u is a quaternion that describes the orientation of the endplate,
and v is a quaternion that encodes the position of the endplate such that
p = vu′/(u′u) (where u′ is the quaternion conjugate of u and quaternion
multiplication is implied) is the position vector from the origin of the base
to the origin of the endplate. In the following, we use 4× 1 column vectors
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to represent the quaternions, such that u = ai + bj + ck + d becomes the
column vector u = [a, b, c, d]T , and similar for v.

uT v = 0 (12)
uT Aiu + 2vT Biu + vT v = 0, i = 1, . . . 6. (13)

Formulas for the 4 × 4 constant matrices Ai and Bi in terms of the ball
joint positions and the leg length may be found in [25].

A special kind of Stewart-Gough platform is called a Griffis-Duffy plat-
form [6, 8]. In this platform, the base and endplate are triangles with ball
joints at each vertex and along each side. The leg connects a side point
of one body to a vertex of the other. A special Griffis-Duffy platform first
identified in [8] is to make the base and endplate triangles equilateral and
the ball joints on the sides are at the midpoints. This platform is called
Griffis-Duffy I platform in [21]. A further specialization of Griffis-Duffy I
platform is to make the base and endplates congruent and to make all six leg
lengths equal, which is called Griffis-Duffy II platform. It is well known that
Griffis-Duffy I and Griffis-Duffy II platforms have one degree of freedom of
motion if one specifies a general position of endplate with respect to the base
and sets the leg lengths to match. In [8, 21], the motion of Griffis-Duffy I
and Griffis-Duffy II platforms are analyzed. Especially in [21], the move-
ment curve is broken into twelve lines and five one-dimensional irreducible
components of degree {6, 6, 6, 6, 4}.

The nature of the real components varies with the leg length. For exam-
ple, for leg length less than one-third the altitude of the base triangle, the
mechanism cannot be assembled: there are no real solutions. For our present
study, we choose leg length equal to the altitude of the base. This allows
an assembly in which the base and endplate exactly coincide and the legs
all coincide with one of the altitudes. By physical intuition, we expect that
the existence of such a special assembly configuration signals a mechanism
with a particularly interesting motion.

For the numerical study, we scale the mechanism so that the edge length
of the base and endplates are 2, making the altitudes equal to

√
3. To

best reveal the three way symmetry of the problem, we place the origin
of coordinates at the center of the triangles, and let the initial reference
configuration

xref = (u, v) = ([0, 0, 0, 1]T , [0, 0, 0, 0]T ) (14)

be the configuration where the base and endplate coincide, as described in
the previous paragraph. In other words, the coordinates of the joint locations
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in the base and endplate are as follows.

Base =

1 2 3 4 5 6
x 1 1/2 0 −1/2 −1 0
y −1/

√
3 1/(2

√
3) 2/

√
3 1/(2

√
3) −1/

√
3 −1/

√
3

z 0 0 0 0 0 0

Endplate =

1 2 3 4 5 6
x −1/2 −1 0 1 1/2 0
y 1/(2

√
3) −1/

√
3 −1/

√
3 −1/

√
3 1/(2

√
3) 2/

√
3

z 0 0 0 0 0 0

The ith point of the base is connected to the ith point of the endplate by a
leg of length L =

√
3.

On this problem, Algorithm 3.1 proceeds as follows.

Step 1 The 7 polynomials of (12) have only rank 6: they are linearly de-
pendent. We replace them with 6 linear combinations of the original
equations. The first stage of computing an irreducible decomposition
is the generation of a witness superset using the cascade algorithm
[15], [23, ch.14]. The system of 6 quadratics has 26 = 64 paths in
the cascade. Four of these end in a pair of double roots on the two-
dimensional set S = {(u, v) ∈ P7|u = 0, vT v = 0}. This set is not
physically meaningful, because the position vector p = vu′/(u′u) is
not defined. The remaining 60 paths carry over to the final cascade
stage for dimension one. Here 26 end as singular points, while 34
are nonsingular. Of the 26 singular ones, 20 are junk points on the
two-dimensional set S, while 6 appear as three double points.

The three double points require deflation for further numerical work.
Since the multiplicity is two, one stage of deflation suffices. A linear
trace test shows that each of the three points represents an irreducible
component, that is, these are three double lines.

Next, monodromy and trace tests are applied to decompose the 34
nonsingular roots into irreducible components. This gives 12 linear
factors, 3 quadrics, and 4 quartics. Since all 12 lines satisfy u′u = 0,
they are nonphysical, and we cast them aside.

In short, we have 3 double lines, 3 quadrics, and 4 quartics requiring
further study.

Step 2 Each of the 10 components is self-conjugate.
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x0 T x0 T x0 T

0.2601 -0.4119 -2.5334 0.0423 -0.3198 1.3401
-0.4506 0.7134 -4.3880 0.0733 0.0000 0.0000
-0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
-0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000
-0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000
-0.6008 0.9512 5.8506 -0.0977 -0.3693 1.5474
0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000

Table 1: Data for the double lines of the Griffis-Duffy example

Step 3 There are no complex conjugate pairs of components.

Step 4 We choose a random real projection, π(x) = a · x, with

a = [ 0.90 −0.54 0.21 −0.03 0.78 0.52 −0.09 −0.96 ]. (15)

Since the Griffis-Duffy system (12) is formulated on P7, we recast it
onto C7 by choosing a projective patch, b · x = 1, where we choose b
arbitrarily as

b = [ 0.59 0.90 0.56 0.07 0.67 0.93 0.23 0.53 ]. (16)

Step 5 We may describe the three double lines as s1x0 + s2T , where x0 is
the witness point found in Step 1, T is the tangent vector computed
from the Jacobian matrix for the deflated system, and (s1, s2) ∈ P1

are the free parameters of the line. The results are given to four digits
in Table 1.

This leaves the 3 quadrics and 4 quartics for treatment by Algo-
rithm 3.2. For brevity, let’s label the quadratics as Q1, Q2, and Q3

and the quartics as R1, R2, R3, and R4. In Step 4 of Algorithm 3.2,
we use the cascade of Remark 3.4, which has 12 cascade paths for
each quadratic and 24 cascade paths for each quartic. For all three
quadrics, 2 paths end at stage M ′ = 2 and the other 10 end at stage
M ′ = 1. For quartic R1, 2 paths end at M ′ = 3, 8 paths end at M ′ = 2
and 14 paths end at M ′ = 1. Quartics R2, R3, and R4 have the same
pattern: 6 paths end at stage M ′ = 2 and 18 end at stage M ′ = 1.
Some of the endpoints at lower dimensions are “junk” points on the
sets found at higher dimension. These are easily identified as they lie
over the same point B∗.
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B1 B2 B3 xref

ui -0.4330 -0.4330 0.8660 0.0000
uj -0.7500 0.7500 0.0000 0.0000
uk 0.0000 0.0000 0.0000 0.0000
u1 0.0000 0.0000 0.0000 1.0000
vi 0.0000 0.0000 0.0000 0.0000
vj 0.0000 0.0000 0.0000 0.0000
vk 1.0000 1.0000 1.0000 0.0000
v1 0.0000 0.0000 0.0000 0.0000

M ′ 2 2 2 3

B1 B2 B3 xref

−√3/4 −√3/4
√

3/2 0
−3/4 3/4 0 0

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
1 1 1 0
0 0 0 0
2 2 2 3

Table 2: Boundary points B∗R having higher-dimensional tangencies (numer-
ical and exact).

The counts of points B∗ over the complexes will remain the same
for different choices of projection and projective patch. However, the
number of real endpoints B∗R will vary, because as the sweep direction
varies, real tangencies in the orthogonal direction come in and out
of existence. In contrast to these, the higher-dimensional points in
the cascade remain fixed, as for example, a self crossing of the curve
remains singular independent of the sweep direction. There are four
such fixed singularities, listed in Table 2. Each of the quadrics passes
through two of {B1, B2, B3} at stage M ′ = 2 of the cascade, and one
of the quartics has xref as a double root at stage M ′ = 3. The other
three quartics have no real boundary points at all.

The next step is to fill in the edges between the boundary points.
Rather than list all the results numerically, we present them in graph-
ical form in Figure 2. Here, the arcs of the curve are traced out in the
projective patch defined by (16) and then projected onto a 2-plane,
using the projection (15) as the horizontal axis and using a second
projection â · x as the vertical axis with

â = [ −0.21 −0.37 0.00 0.03 −0.13 0.02 −0.07 0.89 ]. (17)

In Figure 2, the quadrics are shown in solid line (each appears as
an hyperbola in the projection chosen), the singular double lines are
shown in dotted line, and one quartic is shown in dashed line. The
remaining three quartics contain no real points. On the curves, each
open circle marks a point in the middle of each edge found, a box filled
with an asterisk marks one of the singular boundary points B∗R, and
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Figure 2: A projection of the Griffis-Duffy real curve for L =
√

3.

an empty box marks the end of an edge in the fiber over a singular
boundary point, i.e., a point in BR \ B∗R.

Step 6 Computing intersections between the singular lines reveals that they
all pass through the reference configuration, xref , see (14). This con-
figuration is also a singular double boundary point on the quartic:
close inspection of Figure 2 confirms that the quartic passes through
this point twice. All intersections with the reduced components must
appear as a point B∗R already found. Checking these, we find that
the points B1, B2, B3 in Table 2 are triple intersections: two of the
quadrics and one of the lines meet in each.

The components of the curve can be better understood by drawing the
mechanism at selected configurations. First, in Figure 3, we display the
four configurations where multiple components meet. We see that in the
reference position, the top and bottom triangles coincide. In the other three
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The reference pose xref

The folded out poses B1, B2, B3

Figure 3: Singular poses of the Griffis-Duffy mechanism for L =
√

3.

meeting places, the two triangles are coplanar, sharing one edge: call these
the “folded out” configurations. In Figure 4, we display general configu-
rations along the various components of the curve. For each of the lines,
we see that the triangles rotate along a coincident edge, thus taking the
mechanism from a folded out configuration to the reference configuration.
At a general configuration of the quadrics, the two triangles have one vertex
that coincides. These take the mechanism from one folded out position to
another. Finally, on the quartic, the two triangles are in parallel planes,
one centered above the other. As the moving triangle rotates, it descends
from above to pass through the reference position, then loops below until
it rises again through the reference position, eventually coming back to its
initial configuration. From these observations, the complete motion of the
mechanism is now well understood.
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Poses on the singular lines

Poses on the quadrics

Poses on the quartic: above, near xref , below

Figure 4: Selected regular poses of the Griffis-Duffy mechanism for L =
√

3.
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5 Conclusions

This paper shows that the real points contained in a one complex-dimensional
algebraic curve can be described as a finite list of isolated real points along
with a Morse-like representation of the real one-dimensional part of the
curve. The latter consists of a finite set of boundary points along with a set
of edges connecting them, each edge represented by a point in its interior
and indices for its left and right boundary points. We have described how to
numerically compute this representation using the operations of numerical
algebraic geometry, with polynomial continuation as the main computa-
tional technique. The method is illustrated on four examples, including an
instance of the Griffis-Duffy type II platform robot. For leg lengths equal
to the altitude of the triangles, this mechanism has seven real curve compo-
nents: 3 lines, 3 quadrics, and a quartic. The algorithm also discovers the
singular poses where two or more components meet, thus determining that
all the components connect.
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