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Abstract 

 
Many students in science and engineering do not realize how program correctness may be 
impacted when floating-point finite-precision arithmetic is used. In this paper, we present 
FPAvisual, a visualization tool that helps instructors teach the reasons for the inaccuracies 
caused by floating-point arithmetic (FPA), their impact and significance in programs, and the 
techniques to improve the accuracy. FPAvisual contains four components, namely, Roots, 
Pentagon, Associative Law, and Sine Function. Roots shows that the solution for a quadratic 
equation will be incorrect when two numbers that need to be subtracted are very close in 
magnitude or when one is much larger than the other. The program presents possible solutions to 
these subtraction problems. Pentagon demonstrates that accumulation of errors emanating from 
finite precision in geometric computation may result in large positional errors. Associative Law 
demonstrates how algebraically equivalent formulas computed by changing the order of 
operations can yield different results. Sine Function shows that results vary when the same 
infinite series for sine is used but computed in different ways. These four components allow the 
users to set up the parameters of the specific problem represented, trace the results step by step, 
see when the differences in results start to occur, and visualize how errors accumulate. They help 
students understand the ubiquity of issues with FPA, realize the significance of FPA in a 
multitude of contexts, and compare the methods to minimize the negative effects of FPA. 
FPAvisual has been classroom tested and evaluated by computer science students. We report our 
findings in this paper. 
 
1. Introduction 

 

Due to binary representation and finite precision, the floating-point data type in computer 
programs is not equivalent to real numbers in mathematics11, 15. Major differences occur when 
real numbers are converted into binary and are truncated to contain only the maximum number 
of digits allowed by the specific representation and precision. Programs that contain floating-
point variables may produce incorrect results, or worse, may contain assumptions that will 
produce unpredictable results when the computing environment or the program parameters 
change. However, many students in science and engineering do not realize how program 
correctness may be impacted when floating-point arithmetic is used. Therefore, it is important to 
include floating-point concepts in computing curricula. 
 
The ACM curricula recommendations include data representation or computer arithmetic among 
the core topics for all computing-related disciplines, namely, computer science, computer 
engineering, information systems, and software engineering. However, within already intense 
curricula there is little time left, if any, to extend the coverage of floating-point representation to 
show students how to effectively work with floating-point numbers. Based on this observation, 
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we developed FPAvisual, a visualization tool that helps instructors teach the reasons for the 
anomalies caused by floating-point arithmetic (FPA), their impact and significance in programs, 
and the techniques to increase the accuracy of FPA. 
 
The main guiding principle in the design of FPAvisual is ease and effectiveness of use for both 
students and instructors. The specific design objectives are threefold. The first objective is to 
create a flexible learning environment. It is desirable to deliver fundamental concepts through 
visualization without requiring extensive work or time commitment from the user. It is further 
desirable to provide opportunities for an in-depth exploration of the concepts. The second 
objective is to clearly depict not only what anomalies occur, but how and why they occur. The 
final objective is to show students how to deal with inaccuracies caused by FPA using known 
solutions. 
 
The remainder of this paper is organized as follows. The next section contains a brief survey of 
the research in teaching FPA and background information about the basic reasons behind FPA 
anomalies. We then present FPAvisual, the software we developed. Afterwards, we discuss the 
results of the formative assessment as conducted in Spring 2013 and Fall 2013 classes. We 
conclude with a summary and a description of future work. 
 

2. Related Work 

 
Dealing with unexpected inaccuracies caused by floating-point arithmetic is an important topic in 
many fields of engineering and computer science, most notably, numerical analysis8,10,12

 and 
computer systems7. It is important to note that the relevance of FPA extends beyond scientific 
computing and computer systems. In a recent paper, Polhill14 et al. gave several examples of 
inaccuracies or misleading results in agent-based modeling of systems in a multitude of domains 
such as sociology, environmental and ecosystem management, resource management, and 
artificial stock market. 
 
While there are several initiatives in teaching FPA to students, we give examples from 
approaches similar in spirit to FPAvisual. In his 1991 paper, Scott15 gave a rich set of examples 
regarding FPA as well as recommendations to teach them to students of computing. Garzón 6 et 
al. described an initiative for teaching computer arithmetic. Within this initiative, practical 
exercises have been designed in the areas of integer representation, integer arithmetic, floating-
point representation, floating-point arithmetic, the anomalies introduced by floating-point 
representation, and the IEEE 754 floating-point standard.  Horvath and Verhoeff11 discussed the 
issues in incorporating tasks involving FPA into the Annual International Informatics 
Competition, which is a programming competition for talented high-school students. The 
discussion includes how to prepare test cases that will bring out the degree of numerical insight 
possessed by competitors, how to design tasks with varying degrees of FPA challenges, how to 
prepare students for FPA awareness, and how to deal with platform differences. Fernández4 et al. 
developed a course and a web-based tool on FPA. Their tool is different from FPAvisual in two 
aspects. First, it emphasizes the floating-point representation while FPAvisual was designed to 
show the appearance and significance of FPA errors. Second their tool presents examples in 
textual format while FPAvisual uses animated and interactive graphical displays. Allison1 

reported on a recent junior-level course that was prepared to increase awareness of FPA issues 
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among computer science students. 
 
In the remainder of this section, we present brief background information on FPA issues shown 
in FPAvisual. 
 
2.1 Rounding and the Failure of the Associative Law 

 

Computers represent floating-point numbers using a finite number of bits, called the precision. 
When a number contains more digits than allowed by the hardware, it is rounded. The rounded 
number is an approximation of the original number. Consider an addition operation in base 10, 
where the precision is 3 significant digits, i.e., 3 digits without leading zeroes can be stored. 
                  The original numbers have at most three significant digits.  
   The exact result is 125.46.  
       The result is rounded to 3 significant digits.  (1) 
 
In the above example, the low order digits of the second number were lost due to rounding. 
Consider another example: 
                  The original numbers have at most three significant digits.  
   The exact result is 123.46.  
       The result is rounded to 3 significant digits.  (2) 
This time, the addition operation did not have an effect due to rounding, all digits of the second 
number were lost. 
 
Due to rounding, changing the computation order of a mathematical expression may lead to 
different results2. For example, assuming 3 significant digits with base 10, the result of  
                 can be calculated using two different orders: 
(           )         (        )       The exact result is 0.041745  

               0.041745 is rounded to 3 digits  
 = 0.175557 The exact result is 0.175557  
         0.175557 is rounded to 3 digits (3) 

      (          )                 The exact result is 1.45245  
              1.45245 is rounded to 3 digits  
   0.17545 The exact result is 0.17545  
   0.175 0.17545 is rounded to 3 digits (4) 

 
By changing the computation order, Equations 3 and 4 produce two different results. In other 
words, the associative law fails. 
 
2.2 Cancellation 

 
Cancellation occurs when subtracting two nearly equivalent numbers and leads to the loss of 
significant digits. For example, when solving a quadratic equation, cancellation may occur in 
computing       . Assuming the number of significant digits is 3 with base 10, consider 
   ,        and        , then 

                 
          The exact result is 1.5129  
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        1.5129 is rounded to 3 digits (5) 
4ac               

         The exact result is 1.496  
        1.496 is rounded to 3 digits (6) 

Therefore,  
                   Computation using rounding 

        (7) 
                      Actual computation 

          (8) 
The original numbers are accurate in all 3 digits while the result is only accurate in the first non-
zero digit. This computation loses almost all significant digits. Besides that, the actual result is 
0.0169 which is quite different from the computed result 0.01. 
 
2.3 Computing Iterative Summations 

 
Errors due to rounding, cancellation, or overflow may occur when calculating the sum of an 
array of floating-point values. Two widely known solutions to avoid these errors are the positive-
negative algorithm9 and Kahan12 summation algorithm. The positive-negative algorithm 
(Algorithm 1) reduces the number of subtractions thus reducing the possibility of cancellation 
errors. Kahan summation algorithm (Algorithm 2) uses a separate variable to store the error and 
utilizes it in the next iteration to improve the accuracy.  
 
Algorithm 1 Positive-Negative Summation Algorithm 
        //   is the sum of all values 
         //    is the sum of all positive values 
         //    is the sum of all negative values 
for     to num−1 do  // there are num values to be added 

if            then  // if the ith value is nonnegative 

               

else          // if the ith value is negative 
               

end if 

end for 

        
 
Algorithm 2 Kahan Summation Algorithm 
        //   is the sum of all values 
        // A variable to store the lost low-order bits 
for     to num −1 do 

             
        // If S is big and y is small, low-order digits of y are lost 
  (   )      // c recovers the low-order digits of y 
    

end for 
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3. FPAvisual Software 

 

FPAvisual was developed to provide engaging visualizations that show the inaccuracies caused 
by FPA, their significant influence on programs, and the techniques to increase the accuracy. It 
has Windows and Linux versions. FPAvisual consists of four components: Roots, Pentagon, 
Associative Law, and Sine Function. Roots solves a quadratic equation with four approaches, 
shows the incorrect results due to the cancellation, and provides solutions to increase the 
accuracy. Pentagon demonstrates that rounding may cause inaccurate calculations of geometric 
shapes. Associative Law reveals the fact that FPA can cause the associative law to fail. Sine 
Function shows the differences between twelve approaches that compute a sine value using the 
Taylor series. It helps students understand overflow and underflow errors and learn how to 
reduce them. In addition, students also learn how to sum an array of floating-point values 
accurately. 
 
To provide students an easy start, FPAvisual contains several pre-constructed examples in each 
component. The animations in Pentagon, Associative Law and Sine Function components were 
designed to attract students’ attention and to provide striking displays of when and how errors 
occur. The colors were selected to easily track different computations. Students can save the 
results of computations into *.txt or *.csv files for further studying with external tools or 
software. They can choose their preferred colors in each component for differentiation and 
tracking.  
 
In the following subsections, we describe in detail each individual component and its 
implementation. 
 
3.1 Roots Component 

 

Solving a quadratic equation is a common problem in many fields of science and engineering. 
However, rounding and cancellation may affect the results5. Roots demonstrates their effect and 
provides possible solutions using four approaches. The first and the third solutions are the “naive” 
floating-point implementations of the standard formula for the two roots in single precision and 
double precision, respectively. The second is the cancellation solution with single-precision 
floating-point format that improves the result in one case that is described below. The last one is 
the solution using a high-precision floating-point format, which is treated as a ground-truth 
solution. We describe these approaches in the following. 
 
Given a quadratic equation: 

             (9) 
The formula for the two roots is: 

       (   √      )    (10) 
When the above formula is computed using floating-point variables, incorrect roots can be 
calculated when cancellation causes an error in the numerator’s value. This can happen in two 
ways. First, if       , due to rounding, then  √        is approximately    . Then, 
cancellation occurs in    √       if    , and in   √       if    . Therefore, one 
of the roots is 0. We can avoid this particular cancellation easily by avoiding subtraction which is 
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referred to as the cancellation solution: 
If    , 

     (   √      )    (11) 
       (   ) (12) 

If     , 
     (   √      )    (13) 
       (   ) (14) 

Second, cancellation occurs when       . There is no easy way to overcome this situation. It 
might be addressed using double-precision arithmetic. 
 
To give students an easy start, Roots provides three examples: a “regular” example where 
cancellation does not occur, an example where       , and an example where       . By 
studying these three examples, students can observe the issues caused by FPA and learn about 
ways to address them. Different colors are used to highlight the differences between the first 
three solutions so that students can easily notice where the differences are. 
 
Figure 1 is a screenshot of Roots, where    ,         and    , which is the case where 
      . With the visual aid of colors, the differences appearing in √       are highlighted, 
where the naive solution with double-precision is more accurate than the first two. Between the 
first two, the cancellation solution generates a more accurate result. After calculating the large 
root, the naive approach with single floating-point format gets a zero while the second approach 
gets a result close to the ground-truth result.  
 

 
Figure 1: An example of Roots, where       . 
 
3.2 Pentagon Component 

 

The Pentagon component illustrates the inaccuracies caused by rounding. We chose the pentagon 
problem in geometric computation because it provides an easy way to understand problems in an 
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interactive environment. The pentagon problem involves defining a pentagon with its five 
vertices and iteratively using “in” and “out” operations to get back to the original pentagon. The 
“in” operation computes a smaller pentagon by computing the intersection points of the lines 
joining the vertices of the original pentagon. This operation can be repeated on the new pentagon 
to form an even smaller one. The “out” extends the opposite sides of the pentagon to get the 
intersection points and form a larger pentagon. In Figure 2, the result of the “in” operation on the 
red pentagon is the blue one while the result of “out” operation on the blue pentagon is the red 
one. At each iteration, the vertices used for computation are calculated from the previous 
iteration. In theory, as long as the numbers of “in”s and “out”s are equal, the new pentagon 
should be exactly the same as the initial one. However, because of rounding, this may not always 
be true. The “in” and “out” operations require computing the intersection point of two lines. If 
the computation is inaccurate, the error may propagate to the next iteration, which will make the 
resulting pentagon dramatically different from the original one. This difference allows students 
to see the significance of accumulated floating-point errors and the difficulty of calculating the 
intersection point of two almost parallel lines. 
 

 
Figure 2: The “in” operation on the red pentagon will generate the blue one and the “out” 
operation on the blue pentagon will generate the red one. 
 
Hoffmann10, Dobkin and Silver 3, and Masotti13 studied the problem of calculating the 
intersection of two lines accurately. Computing the intersection of two almost parallel lines is not 
easy. This is because the intersection (x, y) is very far away. Hence, x and y can be very large. As 
a result, errors due to rounding cannot be avoided. In other words, this system is ill-conditioned. 
Since a line is represented by a linear equation of two variables, the intersection point is found by 
solving a linear system of two equations. To see this problem, consider a pentagons with vertices 
(0, 0), (0, 1), (1, 0), (1,    ) and (   , 1), where   is a small value. Because   is small, the 
edge defined by (0, 0) and (1, 0) and the edge defined by (0, 1) and (1,    ) are nearly parallel. 
Finding the intersection point can be represented by the following linear system:  
[
   
  

] [
 
 ]  [

  
 

]          (15) 
The solution is (    , 0). Therefore, if   is small,        is large and rounding can make      
inaccurate, or even overflow or underflow. Since the value will be used in the next iteration, by 
accumulating the errors, the result can get even worse. Figure 3 (a) shows the initial pentagon in 
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red. After six “in”s followed by six “out” operations, the result is the pentagon in blue shown in 
Figure 4 (b). 
 

  
(a)       (b) 

Figure 3: Starting from the pentagon shown in (a), six “in”s and six “out”s are applied. (b) shows 
all the pentagons generated. An obvious difference between the blue final pentagon and the red 
initial pentagon can be observed. 
 
The program allows the comparison of any intermediate pentagons to show the detail of 
differences. Figure 4 (a) is the selection window that allows students to select any pentagon for 
comparison. It lists all the pentagons along with their status, such as their corresponding 
operations and the numbers of “in” and “out” operations. The rectangles under “Status” illustrate 
the balances of “in” and “out” operations.  Figure 4 (b) shows the result of comparing two 
pentagons: the first is the resulting pentagon after one “in” operation on the initial pentagon and 
the second is the one leading to the final pentagon with one “out” operation. The small difference 
between these two pentagons leads to the large difference shown in Figure 3 (b). 
 

   
(a)      (b) 

Figure 4: (a) is the selection window that allows students to select any number of pentagons for 
comparison. (b) is the corresponding result of comparing two pentagons. 
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3.3 Associative Law Component 

 

Associative Law demonstrates a situation when changing the order of computations of 
algebraically equivalent formulas may yield very different results. FPAvisual uses one example 
from Colonna2’s paper to visualize this problem: 
Given a value R (the growing rate) and an initial population   , the following formula iteratively 
calculates the population of a group at time  : 

     (   )                   (16) 
If R is larger than 2.57, the failure of the associative and distributive laws can dramatically 
influence the accuracy of the results. 
 
Due to the associative and distributive laws, Equation 16 is equivalent to the following five: 

     (   )         (         ) (17) 
     (   )       (      )       (18) 
     ((   )        )       (19) 
            (        )       (20) 
            (              ) (21) 

Since these five formulas are mathematically equivalent, they should yield the same set of    
values. However, it is not the case when using FPA. Table 1 lists the values at several iterations, 
where R is 3 and    is 0.5. Figure 5 is the corresponding plot. In this plot, the top row on the 
canvas shows the iteration number. There are small differences in the first 21 iterations. However, 
when the errors accumulate, these approaches start to have slight differences and begin to 
diverge dramatically at iteration 24. 
 

 
Figure 5: Associative Law. The differences become apparent at iteration 24. 
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Iteration 0 8 20 24 40 60 80 100 

Equation 17 0.50000 0.85315 0.40927 0.00116 1.28944 1.33298 0.14510 0.29079 
Equation 18 0.50000 0.85314 0.42221 0.02530 1.10737 0.01124 0.13318 1.29752 
Equation 19 0.50000 0.85314 0.41709 0.00688 1.30471 1.33288 0.04450 1.21970 
Equation 20 0.50000 0.85314 0.41770 0.00847 0.52484 0.86257 1.32618 1.31700 
Equation 21 0.50000 0.85314 0.41482 0.00240 0.29500 0.71097 1.05449 0.04980 
Table 1:   s at eight selected iterations. 
 

  
(a)        (b) 

Figure 6: (a) is the selection window, in which students are allowed to choose any approaches to 
view and compare the approaches based on one of them. (b) shows the comparison result based 
on the third approach shown in orange. 
 
FPAvisual provides a mechanism for students to see the relative error with respect to a base 
approach as shown in Figure 6 (a). Figure 6 (b) shows the comparison result based on the third 
approach. The five approaches have small differences between iterations 14 and 20, slight 
differences between iterations 20 and 24, and dramatic differences after iteration 24. 
 
3.4 Sine Function Component 

 

In this component, FPAvisual uses an infinite series approximation to the sine function to reveal 
some critical concepts in iterative summations of floating-point numbers. The sine function 

)sin(x  can be evaluated using the infinite Taylor series as follows: 

    ( )     
  

  
 

  

  
 

  

  
    

   ∑ (  )      

(    ) 
 
   , (22) 

where   is in radian. If    is very large or small,       may overflow or underflow when   is 
large. One way to overcome this problem is to reduce the user input   (in degrees) to the      ) 
interval using the following trigonometric identities: 
⑴ Since    ( )       (  ), if    , we just use      (   ). 
⑵ Since     ( ) has a period of    , we can reduce   to       ) by letting        . 
⑶ Since    (     )       ( ), if      , we may reduce   to       ) by letting     
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    and changing the sign of the computed result. 
⑷ Since    (     )      ( ), if   is in        ), we may reduce   to      ) by letting 
       . 
While the range of   can be reduced further, FPAvisual uses      ) because it serves our 
purpose well. 
 
There is another place where overflow or underflow may occur. If     ( ) is computed in a naive 
way by directly evaluating each term        (    )  , it is very likely that (    )  will 
quickly cause integer overflow. In the implementation, we utilized a floating-point value to store 
it. A safer approach is to update a term from the previous one: 

     

(    ) 
   

     

(    )
 

  

(  )(    )
 

(23) 

 
The third potential error occurs in the summation of terms with alternating sign values due to 
cancellation. To solve this problem, FPAvisual utilizes the positive-negative and Kahan 
summation algorithms discussed in Section 2.3. 
 

 
Figure 7: Four ways of calculating a sine value of the Taylor series and the way using the sin() 
library are selected for comparison. 
 

Including the direct way in each aspect, we have 2 ways of using x (i.e., original x and reduced x), 
2 ways of calculating the terms (i.e., direct evaluation and term update) and 3 ways for 
summation (i.e., direct, positive-negative and Kahan), therefore we have 12322   ways. For 
comparison, FPAvisual adds the result of the sin(x) library function. The 12 ways are shown in 
thick lines and the sin() library function is shown in thin line for differentiation. In addition, the 
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dashed lines are added to show the convergences of the 12 ways. Since visualizing 13 different 
approaches at the same time will be very cluttered and confusing, FPAvisual begins with only 
five ways. The first is the value calculated by the sin() library function which is used as the base 
for comparison. The second utilizes the original  , directly calculates the terms, and sums the 
terms in the usual way. The third updates the terms to show the benefits of term update. The 
fourth reduces   to      ). The last one uses Kahan summation algorithm. Figure 7 compares the 
five ways. The error sign indicates that directly calculating the term causes underflow at iteration 
16. All these approaches converge after iteration 7.  
 
As shown in Figure 8, students can zoom in to see the details more clearly. However, in this 
example, the first approach using sin() library (in black) and the second (in blue) overlap with 
each other while the fourth using reduced x (in cyan) is below the first one and the fifth using the 
Kahan summation algorithm (in red) is even below the fourth. Table 2 lists the sine values using 
the five approaches and an online calculator (keisan.casio.com/calculator). The fifth way is the 
most accurate among the five. 
 

 
Figure 8: The result of zooming in to the iterations between 6 and 17. 
 

Approach Sine value 
sin() library function -0.939692497 

Original   Direct term evaluation Naive summation -0.939692497 
Original   Term update Naive summation -0.939692020 
Reduced   Term update Naive summation -0.939692557 
Reduced   Term update Kahan summation -0.939692616 

Online high-precision calculator -0.939692595 
Table 2: The sine values calculated by the five ways and an online high-precision calculator. 
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4. Evaluation 

 

The first version of FPAvisual was developed in Spring 2013 and contained the Roots, 
Associative Law, and Pentagon components. The Sine function component was added in Fall 
2013. FPAvisual was tested and evaluated by the students of the Formal Models of Computation 
class. This is a required sophomore to junior level class which studies the hierarchy of automata 
and languages. The class prepares students for the Programming Language course by showing 
automata as tools. The class also studies model equivalency formally, e.g., regular expressions 
and finite automata are equivalent models for regular languages. At the end of the semester, one 
week consisting of three class hours was reserved to FPA topics to illustrate why floating-point 
variables are not a model for real numbers in mathematics. The FPAvisual software was 
demonstrated in the classroom. All the students were assigned a paper-pencil homework on FPA. 
In addition, they were asked to run the software and fill out an online survey. The survey was 
administered through the class management system. 
  
The first survey given in Spring 2013 focused on the user interface and was taken by 19 students 
in a class of 30. Based on student input, the user interface was improved, features to save raw 
data were developed, and pre-constructed examples were added. To aid in the design of the next 
survey, we conducted an ethnographic study with volunteer graduate students who had taken the 
Formal Models class earlier. These students had not worked with FPAvisual before because it 
was not available at the time they took the class. After a brief introduction, the students were 
asked to use and explore the software while thinking aloud. The observers frequently reminded 
them to utter what they are doing and why they are doing it.  These sessions helped us quickly 
uncover bugs and understand how users prefer to navigate in FPAvisual. Based on this 
information we updated the software and developed the Fall 2013 survey, which focused on the 
usefulness, usability, and the ease-of-use of FPAvisual. This survey was taken by 45 students in 
a class of 50. We collected 44 forms that included answers to all the survey questions. 
 

Table 3: Questions evaluating the usefulness of FPAvisual. 
 
The FPAvisual survey has two major components, 26 survey questions (Tables 3 to 5) and 9 
write-in comments (Table 6). The first nine questions (Q1-Q9 in Table 3) evaluate the usefulness 
of FPAvisual, the next eleven questions (Q10-Q20 in Table 4) investigate its usability and the 

    
 

Q1 The “Roots” component helped me understand the effects of floating-point errors. 3.9 0.7 

Q2 The “Roots” component helped me understand how to compute the roots of a quadratic equation 
more accurately. 3.6 0.8 

Q3 The “Pentagon” component helped me understand the effects of floating-point errors. 3.9 1.1 

Q4 The “Pentagon” component helped me understand that calculating the intersection points of two 
almost parallel lines can lead to noticeable errors. 3.9 0.9 

Q5 The “Associative Law” component helped me understand how executing floating-point operations 
in different orders affects the computed results. 4.2 0.7 

Q6 The “Associative Law” component helped me understand that there are no general techniques to 
detect and correct the errors coming from the failure of the associative law. 4.2 0.7 

Q7 The “Sine” component helped me understand the effects of floating-point errors. 3.5 1.0 

Q8 The “Sine” component helped me compare the effects of reducing X to      ), using the term 
update method, and using Kahan summation algorithm. 3.3 1.1 

Q9 FPAvisual was a useful complement to the material presented in class. 3.8 0.6 
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last six questions (Q21-Q26 in Table 5) evaluate how easy it is to use FPAvisual. All the survey 
questions have the same set of choices on a 5-point Likert-scale: 
1:strongly disagree, 2:disagree, 3:neutral, 4:agree, and 5:strongly agree.  
 

Table 4: Questions evaluating the usability of FPAvisual. 
 

Table 5: Questions evaluating FPAvisual’s ease of use. 
 

Table 6: Write-in Questions. 

      

Q10 The example inputs provided in the “Roots” component helped me to see what kind of input 
values cause noticeable floating-point errors. 3.8 0.8 

Q11 The animated examples in the “Pentagon” component helped me compare the results of in-out 
operations for differently shaped pentagons. 3.9 0.9 

Q12 In the “Roots” component, seeing the results of computations in different colors helped me notice 
the differences between the approaches. 4.0 0.9 

Q13 Being able to select pentagons for comparison was useful for me to see the accumulated floating-
point errors. 3.8 0.9 

Q14 The animations in the “Associative Law” component were useful for me to gain an impression of 
the effect of floating-point errors. 4.1 0.7 

Q15 The animations in the “Sine” component helped me track the trend of different approaches. 3.7 0.9 

Q16 The color encoding in the “Associative Law” component was useful for me to track the trend of 
the five computations. 4.3 0.7 

Q17 Overall, I am satisfied with the color encoding. 4.2 0.6 

Q18 The “error” icon in the “Sine” component helped me easily notice and identify the errors that 
occur during the computations. 3.7 0.9 

Q19 The functionality that allows saving data into *.txt or *.csv files was useful for me to see the exact 
results of computations. 3.5 0.7 

Q20 The freedom of manual input was useful to select inputs that cause noticeable floating-point 
errors. 4 0.7 

      
Q21 FPAvisual provided me adequate control. 3.9 0.7 
Q22 FPAvisual is easy to use. 3.6 0.8 

Q23 I was able to operate FPAvisual with minimal memory load, i.e., without having to remember a 
lot of commands or menu items. 4.1 0.6 

Q24 FPAvisual required fewest steps to accomplish my tasks. 3.9 0.7 

Q25 FPAvisual gave a way to review and return to previous contexts, e.g., seeing previous iterations 
or results. 3.6 0.7 

Q26 Overall, I am satisfied with the support information (messages, documentation). 3.5 0.9 

Q27 Did the “Roots” component enable you to observe any new information pertaining to floating-point 
arithmetic? Please explain. 

Q28 Did the “Pentagon” component enable you to observe any new information pertaining to floating-point 
arithmetic? Please explain. 

Q29 Did the “Associative Law” component enable you to observe any new information pertaining to floating-
point arithmetic? Please explain. 

Q30 Did the “Sine” component enable you to observe any new information pertaining to floating-point 
arithmetic? Please explain. 

Q31 Which components of FPAvisual offer the most interesting visualizations? Please explain. 
Q32 Please list two or three of the most positive aspects of FPAvisual. 
Q33 Please list two or three of the most negative aspects of FPAvisual. 
Q34 Did you have problems when downloading, installing, or running FPAvisual? Please explain. 
Q35 Do you have any suggestions for improvements or additional features? Please explain. 
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4.1 General Discussion 

 

Tables 3 to 5 show the mean (  ) and standard deviation ( ) of each question. For usefulness 
questions, the highest scores (4.2) were given to Q5 and Q6, indicating that Associative Law 
helped students understand that different orders will affect the computation results and there are 
no general techniques to detect and correct the errors. Except for Q8, the other questions were 
rated in the range of 3.5 to 4.0, still above the neutral rating (3.0). The lowest rating (3.3) of Q8 
indicates that Sine Function slightly helped them compare the different approaches to calculate 
the sine value using the Taylor series. 
  
Of the usability questions, the highest score (4.3) was given to Q16, indicating that the animation 
of Associative Law helped students get an impression of the errors generated by FPA. During the 
class demonstration of the software, the students reacted with a loud “Wow” when the lines for 
different orderings of the formula started diverging without any pattern. Q12, Q14, Q17 and Q20 
all received scores larger than 4.0, illustrating that the color encoding, animation, and freedom of 
manual input were helpful. The lowest rating (3.5) was given to Q19, suggesting that saving data 
files slightly helped students see the values. This is because there were no follow-up assignments 
requiring the use of the raw values. The results show that our software was able to assist students 
in understanding FPA better.  
 
For ease-of-use questions, the ratings were in           with the standard deviation in          , 
indicating that FPAvisual was easy to use. The highest rating (4.1) was given to Q23, showing 
that students did not need to remember a lot of commands or menu items to operate FPAvisual. 
 
4.2 Student Comments 

 

The set of nine write-in questions is designed to allow students to write comments for further 
improvement. We mainly focus on the following issues: which component has the most 
interesting visualization, what are the most positive or negative aspects. 
 
The comments showed that Pentagon and Associative Law were the most visually interesting 
components because they were able to show the differences clearly. For example,  
“I realized that the errors introduced by rounding errors in the associative law were 
unpredictable. By watching the drastically diverged simulation emphasized the point.” 
“I didn’t even know there were problems with the associative law before this.” 
“The pentagon function really shows how far floating point calculations skewed. The associative 
law also shows the progressive decay of accuracy.” 
“I liked the pentagon visualization the most, since it directly relates to the drawing of images in a 
program.” 
“Pentagon shows one of the impacts on everyday calculations that you might experience. 
Associative Law shows how unpredictable error can make results.” 
The feedbacks of the positive aspects of FPAvisual covered almost all of the main functions. The 
visualization got comments such as: 
“The visualizations were extremely helpful.”  
“Good for being able to see things happen as opposed to just looking at math.”  
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There were comments related to the animation. For example,  
“Easy to see errors and easy to track changes.” 
There were comments related to the manual input. For example,  
“Being able to input my own data was useful to emphasize the material.”  
Students also liked the color encoding and interface. For example,  
“The color schemes are very nice.”  
“The interface is easy to use.” 
Students also mentioned that the saving function was helpful. For example, 
“The fact that you can save data to a file so you can look at it is also useful.” 
 
There were a few students who indicated that they would not benefit from FPAvisual as a study 
aid. This is not unexpected because not every individual is a visual learner. In addition, the color 
encoding was not helpful to color-blind students. 
 
Besides the comments related to the positive aspects, FPAvisual also received suggests for 
improvement. Some students would like to see what kinds of error occurred and in which 
computation the errors occurred. For example, 
 “I have no idea where the rounding errors came in. I just know that errors did happen 
somewhere.”  
Some students complained about the visual clutter, for example,  
“The visuals are a little clutter, but that can be overlooked due to its usefulness.”  
One student suggested adding more specific hints about the manual input and operations, such as 
what would happen if a button was clicked and what may be a good input range to play with. 
Students also mentioned that FPAvisual should support MacOS and a web version. 
 

5. Conclusions 

 

This paper presents a visualization tool FPAvisual for teaching and learning the concepts of 
floating-point arithmetic. With this tool, instructors are able to present the effects of different 
types of floating-point errors and the methods to reduce them. It also complements the lectures 
by helping students see the magnitude of the inaccuracy. The evaluation results suggested that 
FPAvisual is a useful complement to class teaching.  
 
While nearly all students indicated that they understood the significance of the influence, we are 
currently looking at ways to show the details of computations leading to errors in the final results. 
Based on the student comments, the most needed extensions are visualizing what the errors are 
and where they occur, making the Sine Function component more understandable by 
distinguishing between the 12 approaches, adding detailed explanation text for the components, 
and developing a MacOS version.  
 
Our future work includes expanding the type and number of the examples in the program and 
conducting a summative assessment of the software. The FPAvisual tools, evaluation forms, and 
user guides will be released online for public access. 
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