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Abstract

Mind wander(ing) (MW) or zoning out is a ubiquitous phenomenon where attention involuntary shifts from task-related processing
to task-unrelated thoughts. Unfortunately, MW is a highly internal state so it cannot be readily inferred from overt behaviors and
expressions. To help experts investigate mind wanderings, we present a graph-based approach for visual analytics of eye-tracking
data, which utilizes the graph representations to illustrate the reading patterns and further help experts detect and verify mind
wanderings based on the graph structures and other graph attributes. The input data are collected from multiple participants reading
multiple pages of a book on a computer screen. Our approach first clusters fixations into fixation clusters, then creates the eye-
tracking graph, i.e., ETGraph, for use in conjunction with the standard page view, time view, and statistics view. The graph view
presents a visual representation of the actual reading patterns of a single participant or multiple participants and therefore serves as
the main visual interface for exploration and navigation. We design a suite of techniques to help users identify common reading
patterns and outliers for analytical reasoning at three different levels of detail: single participant single page, single participant
multiple pages, and multiple participants single page. Interactive querying and filtering functions are provided for reducing visual
clutter in the visualization and enabling users to answer questions and glean insights. Our tool also facilitates the detection and
verification of mind wandering that the experts seek to investigate. We conduct a user study and an expert evaluation to assess the
effectiveness of ETGraph in terms of its visual summarization and comparison capabilities.

Keywords: Eye-tracking data, Visual analytics, Graph layout, Saccade outlier detection, Repeated scanpath detection, Participant

comparison and clustering

1 1. Introduction

2 With advances of the eye-tracking technology, eye-trackers
s are getting increasingly affordable for use in research and ed-
s ucation. In this work, we study eye-tracking data collected
s from multiple participants reading multiple pages of a book on
¢ a computer screen. A research group led by a cognitive sci-
7 entist collected the data in order to investigate cognitive pro-
s cesses during reading. In this paper, we focus on attentional
o lapses called mind wandering, but our solution can be applied
10 to investigate other cognitive and affective phenomena, such as
1 cognitive load, inference generation, boredom, and so on.

12 Mind wander(ing) (MW) or zoning out is a ubiquitous phe-
13 nomenon where attention involuntary shifts from task-related
14 processing to task-unrelated thoughts [1]. Considerable research
15 over the last 5-10 years has documented the widespread inci-
1s dence and negative consequence of MW both in the lab and
17 in the real world. In one highly-cited, large-scale study, MW
18 was tracked in 5,000 individuals from 83 countries working in
19 86 occupations with an iPhone app that prompted people to re-
20 port MW at random intervals throughout the day [2]. People
21 reported MW for 46.9% of the prompts, which confirmed nu-
22 merous lab studies on the pervasiveness of MW [3, 4]. MW
23 is also more than merely incidental as a recent meta-analysis
24 of 88 studies indicated a negative correlation between MW and
25 performance across a variety of tasks [5], a correlation which
26 increases in proportion to task complexity. MW occurs around
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27 30% of the time during reading and is negatively correlated with
2s reading comprehension.

2o Unfortunately, MW is a highly internal state so it cannot
% be readily inferred from overt behaviors and expressions [6].
st Thus, the most common way to measure MW is via self-report.
a2 Self-caught methods ask people to monitor their attentional lev-
x els and to indicate (e.g., by pressing a key) when they catch
a themselves MW. For example, a participant in a reading study
ss may be asked to press a key when they realize that “they have
3 no idea what they just read because they were thinking about
a7 something else altogether” [7]. The same instructions are used
s in probe-caught methods; however, participants are prompted
3 (e.g., via an auditory probe) at multiple intervals to indicate if
s they are MW at the time of the probe [8]. MW data collected
a1 in this fashion have shown predictable relationships with phys-
2 iology [9], pupillometry [10], eye gaze [7], and task perfor-
s mance [5], thereby providing some validity for this measure-
s ment approach. However, there are many limitations of self-
a5 report measures, so it would be beneficial to obtain behavioral
ss indicators of MW. In this paper, we focus on eye gaze to track
7 MW, which is motivated by decades of scientific evidence in
a8 support of an eye-mind link that suggests a tight coupling be-
s tween internal thoughts and eye movements [11]. Our goal in
so this work is to design a visual interface that helps researchers
st investigate reading patterns (adduced from eye-movements) as-
s2 sociated with MW. Our long-term goal is to use these expert
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ss insights to improve automated measures of MW, which are still
s« in their infancy [12, 13].

55 We restrict our attention to the reading study with static
s stimuli (i.e., static text on screen) and aim to investigate reading
s7 behaviors for tens of participants. In a recent article, Raschke
ss et al. [14] pointed out that visually analyzing multiple viewers
so with an individual stimulus is an interesting research topic. It
e0 1S also challenging to present an effective solution to find pat-
et terns, detect outliers, and compare different participants. The
e key issue is how to design a visual analytics tool that leverages
e different visual mappings, interfaces and interactions to facili-
e+ tate visual exploration, navigation and comparison of the vast
es amount of eye-tracking data.

66 Our main contribution lies in the designing of a visual ana-
o7 lytics framework that helps researchers investigate reading pat-
es terns, which could be further categorized into three different
oo levels of detail: SPSP (single participant single page), SPMP
70 (single participant multiple pages), and MPSP (multiple partic-
71 ipants single page). For SPSP, our visual interface allows re-
72 searchers to capture the normal and abnormal reading patterns
73 of a participant on a single page and identify possible MWs.
7« This may be used to improve the automated measures of MWs.
75 For SPMP, our visual interface helps researchers identify simi-
76 lar behaviors among continuous pages. For MPSP, the common
77 reading patterns of the same page from all participants are illus-
78 trated. In addition, we allow users to compare the differences
70 between any two selected participants.

80 To this end, we propose to transform the eye-tracking data
st gathered from a reading study into a graph view for visual ana-
e2 lytics. Graph-based representations have been utilized for eye-
s tracking data analysis. For instance, Tory et al. [15] studied
s« the relation between areas of interest (AOIs) using a directed
ss graph visualization. In such a graph, each node represents one
s AOI and an edge connecting two nodes represents their tran-
e7 sition. The edge thickness depicts the number of transitions
ss between the two AOIs. In their work, the graph view was used
s mainly for a visual overview but not for interactive exploration.
90 In contrast, our work is pitched at a finer level of detail. That
o1 18, instead of using AOIs for visual summarization, we group
o fixations into clusters and build a graph, i.e., ETGraph (eye-
s tracking graph), to support interactive examination of the un-
o derlying structure in the eye-tracking data. Multiple coordi-
os nated views are utilized to dynamically link the graph view with
9 the standard page view during the interaction.

97 We design a suite of techniques to help users identify com-
s mon reading patterns and outliers for analytical reasoning at
s different levels of detail. Our tool enables visual comparison
100 of different pages being read by a single participant as well as
101 when the same page is read by different participants. It also
102 supports a global overview of reading patterns of all pages by
103 all participants and local exploration of a single page being read
104 by a single participant. We demonstrate the effectiveness of our
105 approach by showing experimental results gathered from ana-
106 lyzing the eye-tracking data. We also report the feedback of
107 using our tool for visual exploration and MW investigation.

108 2. Related Work

109 Rayner [11] synthesized over 100 years of eye-tracking re-
110 search and conducted an excellent survey of eye-tracking ap-
11 plications in reading and other information processing tasks.
112 Duchowski [16] presented a breadth-first survey of eye-tracking
13 applications in the following domains: neuroscience, psychol-
114 0ogy, industrial engineering and human factors, marketing or ad-
115 vertising, and computer science. Recently, Blascheck et al. [17]
s presented a comprehensive state-of-the-art report on techniques
17 for visualizing eye-tracking data. They classified the visualiza-
s tion techniques into different categories based on properties of
19 eye-tracking data and properties of visualization techniques.

120 Tracking eye-movement leads to vast amounts of fixation
121 points and scanpaths which can be clustered and visualized for
122 clear observation of patterns or outliers. Santella and DeCarlo [18]
123 presented a robust clustering of eye-movement recordings using
124 the mean-shift method, which forms a structured representation
125 of the viewer’s attention and avoids heavy influence from noise
126 Or outliers. Spakov and Raéihi [19] introduced EiKV, which
12z shows the reading and typing processes in parallel with details
128 for each word presented in word bars so that users could iden-
120 tify the unusual events. Goldberg and Helfman [20] proposed a
130 solution to identify scanning strategies by automatically aggre-
131 gating groups of matching scanpaths. First, they converted each
132 scanpath into a sequence of AOISs visited in order. Sequences of
133 AOIs were concatenated into one sequence and plotted with a
134 dotplot. Then they used linear repeated scanpaths to find match-
135 ing sequences in the dotplot for clustering the scanpaths hierar-
136 chically. Tang et al. [21] designed EyeMap, a system which
137 supports word segmentation, eye movement data visualization,
13s and XML data format. Since word segmentation could identify
139 separated words so that fixations are mapped to the words, Eye-
120 Map could support writing systems using different languages.
121 Furthermore, gaze, scanpath, and statistics information are dis-
12 played to support various kinds of queries. In addition, the
113 XML data format is utilized for describing data from a wide
144 range of reading experiments for data export and sharing.

145 To visualize the spatiotemporal behaviors of eye-movement
146 data, one can use heat maps or gaze plots. However, these vi-
17 sual representations suffer from high aggregation (heat maps)
148 and overplotting (gaze plots). New visual mappings and repre-
149 sentations are needed for investigating the vast amounts of spa-
150 tiotemporal eye gaze trajectories. Tsang et al. [22] presented
151 eSeeTrack, an eye-tracking visualization prototype to facilitate
152 the exploration and comparison of sequential gaze orderings in
153 @ static or dynamic scene. Their work integrates a timeline and
154 a tree-structured representation to encode multiple aspects (du-
1s5 ration, frequency, and fixation ordering) of eye-tracking data.
15s Burch et al. [23] transformed eye-movement data into a dy-
157 namic graph and achieved a fair tradeoff between aggregation
1ss and details. Their dynamic graph is a sequence of static graphs
159 where nodes represent AOIs and directed edges show transi-
160 tions between source and target AOIs. Burch et al. [24] de-
1e1 signed AOI Rivers for investigating time-varying fixation fre-
162 quencies, transitions between AOIs, and the sequential order
163 of gaze visits to AOIs. Based on the ThemeRiver technique,
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164 they represented the trajectory data as time-varying river-like
165 structures enhanced by influents, effluents, and AOIs transi-
1es tions, similar to Sankey diagrams.

Beyond analyzing eye-tracking data, eye-movement analy-
168 sis has gained its popularity as a tool for evaluating visualiza-
160 tion research. Andrienko et al. [25] proposed a visual analytics
170 methodology originated from analysis of geographic data for
171 analyzing large amounts of eye-tracking data. They focused on
172 deriving common task solution strategies for a given static stim-
173 ulus shown to participants. Their work presents a systematic
174 evaluation of movement analysis methods for the applicabil-
175 ity of eye-tracking data and provides the guidelines for choos-
176 ing appropriate methods given the analysis goals. Blascheck et
177 al. [26] presented a visual analytics approach for an integrated
17e analysis of multiple concurrent evaluation procedures such as
179 measures of task performance, think-aloud protocols, analysis
10 Of interaction logs, and eye tracking. An efficient exploratory
181 search and reasoning process is supported through automatic
1s2 pattern finding to derive common eye-interaction-thinking pat-
183 terns between participants.

167

1« 3. Research Questions

Blascheck et al. [17] defined the basic terminology related
186 to eye-tracking data. We briefly introduce several of them that
17 are used in this work. First of all, gaze points are the raw eye-
188 tracking data and each fixation is an aggregation of gaze points
19 based on specified area and timespan. Furthermore, saccades
190 describe a rapid eye movement from one fixation to another,
191 and a scanpath is a sequence of alternating fixations and sac-
12 cades. Analyzing them would help users understand the eye-
193 movements, therefore, there are a lot of related research ques-
194 tions. Since our eye-tracking data are gathered from multi-
15 ple participants reading multiple pages of a book, we propose
15 the following research questions categorized into three different
197 levels of detail: SPSP (single participant single page), SPMP
198 (single participant multiple pages), and MPSP (multiple partic-
199 ipants single page). The questions associated with SPSP, SPMP,
200 and MPSP focus on the reading patterns of a participant read-
201 ing one page, the consistency of a participant reading multiple
202 pages, and the behavior similarities/differences between partic-
203 ipants, respectively.

185

e SPSP (single participant single page):

204

205

— Q1. What is the scanpath structure of each partici-

208 pant when reading a single page?

— Q2. Does the participant exert a different amount of
effort reading different parts of the page?

207

208

Q3. Does the scanpath involve forward and/or back-
ward saccade outliers (i.e., saccades with amplitudes
larger than a given threshold)? If yes, when and
where do these saccade outliers occur and how fre-
quent are they? Does the same saccade outlier occur
multiple times?

209 -
210
211
212
213

214

— Q4. Does the scanpath involve repeated scanpaths
(i.e., a scanpath that represents rereading previously

215

216

CI|C2|C3] Cd] C5 | Cé
SPSP | Q1 | Q3 | Q4 | Q5 - Q2
SPMP | Q6 | - - - - Q7
MPSP | Q8 | - - TQI0 | Q9

Table 1: The ten research questions Q1 ~ Q10 associated with SPSP (single
participant single page), SPMP (single participant multiple pages), and MPSP
(multiple participants single page) are classified into six categories C1 ~ C6.

read text along the same path)? If yes, when and
where do these repeated scanpaths occur and how
frequent are they? Does the appearance of saccade
outliers have any correlation with the appearance of
repeated scanpaths?

217
218
219
220

221

Q5. Does the participant MW on a page? If yes,
when and where does MW occur?

222 -

223

224

o SPMP (single participant multiple pages):
225 — Q6. Is the reading pattern of a participant consistent

226 across all pages?

— Q7. What are the temporal dynamics of reading
behavior across consecutive pages? For example,
do the saccade outliers on the current page have a
relationship with the saccade outliers on the next

page?

227
228
229
230

231

232

o MPSP (multiple participants single page):
23 — Q8. What are the common patterns of multiple par-

234 ticipants when reading the same page?

— Q9. Do they spend a different amount of time read-
ing different parts of the page?

235

236
— Q10. What are the outliers (who, when and where)?

Can we cluster participants based on different read-
ing patterns exhibited on the same page?

237
238

239

240 The research questions can be classified into six categories,
21 as shown in Table 1: C1 scanpath structures (Q1, Q6, Q8), C2
222 saccade outliers (Q3), C3 repeated scanpaths (Q4), C4 MW
213 (QS5), CS participant clustering (Q10), and C6 reading efforts
214 (Q2, Q7, Q9). To better answer these questions, we introduce
2ss four views as shown in Figure 1: page view, graph view, time
26 view, and statistics view. Categories 1 to 4 can be answered
247 using the graph, page, and time views. Categories 5 and 6 can
21 be answered using the statistics view. In addition, these four
249 Views can be combined together to help users better explore
250 and understand the data.

251 4. ETGraph Construction

252 Our goal is to design a visual analytics framework that can
253 help users understand reading patterns of the participants, iden-
254 tify the anomalous behaviors, and group participants. Specif-
255 ically, how can we apply the three levels of analysis to obtain
256 new insights on reading patterns? Can we visually discriminate
257 reading patterns from the graph representations? Can we find
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Figure 1: The four views of ETGraph. (a) page view, (b) graph view, (c) time view, and (d) statistics view show saccade outliers and MWs of SPSP. In (a) and (b),
fixation clusters and nodes corresponding to saccade outliers are highlighted in yellow. The selected clusters and nodes are in green. Red and blue edges indicate
backward and forward saccade outliers, respectively. The fixations and nodes around MW are highlighted as pink diamonds. The arrows between the diamond
fixations in the page view shows the scanpaths around MW. In (b), the shading of nodes (from dark to light) indicates the presumed reading order. In (c), the
vertical lines indicates the time points that the saccade outliers occurred. Red and blue arrows correspond to the selected saccade outliers. The pink rectangle and
the number below show the MW and its duration. (d) shows the distribution of the numbers of saccade outliers in page sections (each page is partitioned into three

equal sections: top, middle and bottom).

258 out the relations between saccade outliers and repeated scan-
2se paths? Furthermore, can we visually figure out the similari-
250 ties and/or differences between the reading patterns on different
261 pages or between different participants? Finally, can we embed
262 the visualization of MWs to help scientists analyze them?

Our strategy to analyze the given eye-tracking data is to
264 first cluster fixations into fixation clusters to produce a coarse-
265 level representation of the data. There are two benefits to doing
266 this. First, our fixation clustering provides spatial closeness.
27 Fixation clusters are spatially close fixations which are similar
268 to gazes as defined in Blascheck et al. [17]. However, unlike
260 gazes, we do not consider the temporal ordering of fixations
270 when we perform clustering. Second, fixation clusters are not
271 as coarse as AOIs which represent regions of specific interest
22 on the stimulus. Fixation clusters can be created for a single
273 page using fixations from a single participant or by combin-
27 ing all the fixations from multiple participants. Combining all
275 fixations for clustering would allow us to visualize the reading
276 patterns of different participants with a common ground of the
277 same fixation clusters.

263

27s We propose a graph-based representation for analyzing eye
27e movements using fixation clusters as nodes and a set of sac-
20 cades as a directed edge between nodes. We call this visual
281 representation the ETGraph, i.e., eye-tracking graph. Visual-
282 izing such a graph can be achieved using force-directed graph
283 layout algorithms or projection-based methods such as multi-
2.« dimensional scaling. In the original page view, fixations and
285 saccades can be plotted to produce scanpaths. However, nodes
285 are solely constrained by their spatial locations on the page.
257 With this stringent constraint, large saccadic amplitudes may
288 not always be of interest (e.g., a saccade moves from the end
of one line to the beginning of the next line). Unlike the page
view, nodes in the graph view are not constrained by their cor-
responding spatial locations of fixation clusters and the graph
structure are dictated by node connectivity (i.e., the actual read-
ing). Therefore, the graph view can reveal the underlying nature
of the reading pattern.

Finally, we design ETGraph so that users can smoothly tran-
sit between SPSP, SPMP, and MPSP. This facilitates the exam-
ination of reading patterns from both global and local perspec-

289
290
291
292
293
294
295
296

297
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AlgOl‘ithm 1 Cruster mpices Idx = FINoCLusTers(V)

Create a temporary point set P to store the locations of input points V after
each movement
for each point p; in P do
Pi=Vi
for each iteration j do
for each point p; in P do
pl=5w™
Create an empty point set C to store the centroids of clusters
for each point p; in P do
if the location of p; is not identical to any point in C then
Add p; to C
Create a set /dx to store the cluster indices
for each point p; in P do
for each point ¢; in C do
if the location of p; is identical to ¢; then
idx; = j
return /dx

208 tives while making connections between them.

200 4.1. Mean-Shift Algorithm

a0 We use the mean-shift algorithm, a density-based clustering
a01 to group fixations. This algorithm is deterministic and robust to
a2 outliers. In addition, it does not require users to input the num-
03 ber of clusters. Santella and DeCarlo [18] also demonstrated
ans the mean-shift method produces better quality of clusters com-
aos pared to the k-means clustering or expectation maximization
as (EM) algorithms. In the mean-shift algorithm, the input points
a7 are moved to a denser configuration so that they are naturally
as grouped into clusters. Moving each point p to a new location is
a0s based on the locations of its neighbors

2jker(p—pjp;
Yiker(p—p)’

sto where the kernel function estimates the contribution of each
sn neighbor pj, ie.,

S(p)= ey

-d,? - d*

ker(d) = exp (T), 2)
sz where d is the Euclidean distance between p and p;, and d, and
s13 dy, are the projections of d along the x and y directions, respec-
ais tively. € is a given threshold and the points with a distance to
as p larger than € are not considered. Since our data are collected
ae from text-reading experiments, the x and y directions are related
a7 to word length and line spacing, respectively. We therefore re-
ais vise the kernel function to

— dxz _ dyZ
ker(d) = exp| —— | xXexp| —— |
€ €

x y

3

s19 Where €, is the average word length and ¢, is the line spacing.
Algorithm 1 first moves the input points V to a denser con-
a21 figuration P. This process stops when the number of iterations
a22 reaches a user-defined threshold or the locations of points in P
a3 do not change. The points in P that move to the same loca-
a24 tion become a cluster. The locations are treated as the centroids
a2s of clusters. We assign the points to clusters by measuring the
azs distances between the points and the centroids.

320

a7 4.2. Transition Graph

a8 After clustering all fixations of each page using the mean-
a2e shift algorithm, we construct a transition graph. Each node in
a0 the graph denotes a fixation cluster. A directed edge between
a1 two nodes represents a transition. A transition i — j occurs
s between two clusters i and j if there is a saccade from a fixa-
s tion in i to another fixation in j. The transition frequency fi,;
aa4 1S the number of transitions from i to j. The directional transi-
s3s tion probability p;_, ; is the proportion between f;_, ; and the total
ass number of transitions from i to all the clusters (including itself).
sz As such, a transition indicates a chance for one cluster to trans-
xs fer to another, and its probability measures how high the chance
a9 1S. To draw the transition graph, we modify the Fruchterman-
a0 Reingold algorithm [27] by considering the transition probabil-
as1 ity when computing the attractive forces. Therefore, two nodes
a2 With strong transitions are placed close to each other. However,
a3 the nodes may overlap with one another due to their sizes in
aa the drawing. To reduce the overlap while preserving the over-
us all graph structure, we follow the layout adjustment solution
us given by Gu and Wang [28] which first triangulates the graph
a7 and then applies four additional forces (bidirectional, unidirec-
as tional, spring, and attractive forces).

us 5. SPSP, SPMP, and MPSP

ETGraph helps users identify common reading patterns and
ss1 outliers for analytical reasoning at three different levels of de-
as2 tail: SPSP, SPMP, and MPSP. First, SPSP provides detailed ex-
a3 amination of the reading patterns for one participant reading
sss one page. Second, extending single page to multiple pages,
ass SPMP visualizes the reading patterns for one participant read-
s ing continuous pages. This allows users to identify abnormal
as7 behaviors across different pages which may, for instance, indi-
ass cate that the difficulty levels of some pages are different from
ase others. Third, extending single participant to multiple partici-
a0 pants, MPSP aims to analyze the common reading pattern and
a1 different reading behaviors among participants.

350

s2 5.1. SPSP

To help users better understand detailed reading behaviors
s+ for SPSP, we provide several query functions, e.g., saccade out-
aes lier detection, MW highlighting, graph filtering, path anima-
aes tion, and repeated scanpath detection.

Saccade outlier detection automatically identifies the sac-
xs cade outliers that traverse a large distance (larger than a given
aeo threshold) along the x or y direction. Users are allowed to
aro change the threshold. By default, the thresholds along x and y
a1 directions are around 1/3 of the page width and 1/4 of the page
a2 height, respectively. These saccade outliers indicate long eye
a7z movements which may indicate abnormal reading patterns and
a7« possible MW. We further differentiate backward- and forward-
ars reading saccades. Backward-reading saccades indicate revisit-
a7 ing earlier portions of the text while forward-reading saccades
a7 may indicate foreshadowing. Figure 1 shows an example of
azs saccade outlier detection. Specifically, we show the informa-
a7e tion of saccade outliers in each of the four views.

363
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AlgOl‘ithm 2 Surrix TRee T = CoNsTRUCTSUFFIXTREE(S , 1)

Create a temporary string S’ where a unique symbol is added at the end of S
Create a tree 7 with an empty root
for i from O to n do
substring s = S’[0, 7]
for jfromOtoi+ 1 do
if s[J, i] starts from root to a leaf edge then
Add s[i + 1] to the leaf edge
else if s[ j, i] starts from root and ends at a non-leaf edge, but s[i + 1] is
not the next character of the edge then
A new leaf edge is created for s[i + 1] from the separation
return T

AN

3
1
2

Figure 2: An example of the scanpath in the transition graph. The scanpath
is ABABBC, the corresponding string is ABABC, and the repeated scanpath is
AB.

380 MW highlighting visualizes the scanpath immediately be-
a8t fore and after instances of MW. As shown in Figure 1 (a) and
as2 (b), the scanpath and its corresponding subgraph are highlighted
ass in pink. This function provides a way for users to study MW in
ass the page, graph, and time views.

Graph filtering allows users to hide nodes (fixations) and
ass edges (saccades) that are not of interest. As users select one
a7 or a group of nodes, we automatically hide the nodes that are
ass beyond a given distance to the selected node(s). The graph dis-
ase tance between two nodes is calculated using Dijkstra’s algo-
aso rithm. If two nodes that are not supposed to be connected in the
a1 presumed reading order are linked in the graph view, this indi-
as2 cates that at least one saccade outlier is present. Graph filtering
ass also allows users to filter the graph based on time information
ass and analyze the corresponding subgraph.

Path animation provides users the convenience of reviewing
as scanpath animation. We identify the starting and ending fixa-
ae7 tions fy and f, for the animation. By default, they are the first
ass and last fixations on the page. However, users are allowed to se-
ase lect fixations from the page view or nodes from the graph view
a0 for f; and f,. If the user selects two nodes from the graph view,
s01 we identify the first fixation in the first node as f; and the last
s fixation in the second node as f,. If the two fixations selected
a3 do not follow the actual reading order, we swap f; and f,. If
a04 the user selects a node from the graph view and a fixation from
w05 the page view, we ensure that f; occurs before f, in the actual
a0s reading order.

Repeated scanpath detection automatically detects repeated
408 scanpaths. We allow users to visualize them and find out their
a0e corresponding locations and time periods from the graph, page,
a0 and time views. In addition, we allow users to play back the
an1 scanpaths to compare similarities and differences in scanpaths
a1z between different pages and different participants. In order to

385

395

407

a3 detect repeated scanpaths, we first convert the scanpath into a
a2 string, and this string stores all the transitions between graph
ais nodes. Since we are more interested in transitions between
a1e nodes, we ignore all the transitions within the same node. Fig-
a7 ure 2 shows an example of the scanpath in the transition graph.
a1s We first assign IDs to the nodes. Therefore, the scanpath is
a9 ABABBC. Since we ignore all the self-transitions, the corre-
s20 sponding string becomes ABABC. By analyzing this string, we
s21 can detect interesting phenomenas, such as area revisitings (re-
s22 peated characters, A and B), repeated scanpaths (repeated sub-
a2 strings, AB), and similar behaviors between two participants
42« (common substrings of two given strings). To detect these phe-
25 nomena, we utilize the suffix tree [29] to identify the repeated
a2s substrings in a given string. The suffix tree is a tree structure
s27 that stores all the suffixes of a given string. Each edge repre-
s2s sents a substring. Therefore, all the non-leaf edges in the suffix
a29 tree represents repeated substrings. Constructing and searching
a3 takes linear time which allows for efficient queries. We first add
w31 a unique symbol $ at the ending of the given string to become
a2 2 new string. This symbol is used to indicate the ending of the
a3 given string. At each iteration, we consider a substring starting
a4 from string indices 0 to i, where i increases from O ton — 1, and
ass 1 is the length of the new string. Then, within each iteration,
s all the suffixes of the substring are inserted into the suffix tree
a7 as shown in Algorithm 2. For example, given a string ABA,
s A is the repeated substring. Once symbol $ is attached to the
s end, the given string becomes ABAS. According to Algorithm
wo 2, substrings AS$, BA$, ABA$ would be inserted into the suf-
w fix tree. Therefore, edge A has children $ and BA$. Then A is
a2 identified as a repeated substring. If no such a special symbol
as3 18 attached at the end of the given string, edge A would become
aaa part of ABA and thus could not be identified. To identify the
ws common substrings of two given strings, we further add an-
s other special symbol between the two given strings to indicate
a7 the separation of the two strings and use the whole string as
ass an input for the suffix tree. For example, given two strings BA
s and AA, without symbols separating them, the combined string
40 would be BAAA. In this case, AA will be considered as a sub-
ss1 string that repeats twice. However, it is not the case. If we add
ss2 a special symbol *, then the combined string would be BA*AA.
ss3 In this case, AA only appears once as a substring. Note that the
ss4 two symbols ($ and *) are different. Using the ending symbol
sss for the separation of the two strings may lead to the missing of
sss the repeated substrings. To allow users to focus on prominent
ss7 substrings, we removed the substrings which are substrings of
ass others, or less than a given length.

a8 5.2. SPMP

To understand and compare different behaviors on different
ss1 pages (SPMP), we generate a SPMP-supergraph that displays
ss2 the transition graphs of all pages. An example is shown in Fig-
sss ure 3. The transition graphs are arranged clockwise in a spi-
sss ral shape. To reduce edge crossing between pages, we first fix
ass the positions of the first and last nodes at the middle-left and
sss middle-right parts of each subgraph, respectively. Then we ro-
ss7 tate each subgraph one by one to reduce the length of the edge
a8 connecting the adjacent pages.
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Figure 3: The SPMP-supergraph. Each subgraph corresponds to the transition
graph of each page. The subgraphs are marked with their page numbers and
are placed in a spiral along the clockwise order. In addition, we rotate each
subgraph to reduce the length of the edge that connects two adjacent pages.
The shading of nodes (from dark to light) indicates the presumed reading order.

a9 5.3. MPSP

For MPSP, we cluster fixations on each page with all the
a1 fixations of all participants on that page. After clustering, we
472 construct a MPSP-supergraph consisting of all the clusters of all
473 participants of that page. As a result, edges with high frequen-
474 cies form the major reading trend of all participants. ETGraph
475 encodes higher frequency edges with darker gray colors so that
a76 users can easily understand the overall reading patterns. How-
477 ever, it is difficult to notice the trend of saccade outliers since
a7 those edges are usually drawn with lighter gray colors due to
479 their low frequencies. To highlight saccade outliers and iden-
a0 tify their trend, we apply the edge bundling technique [30] to
ss1 bundle saccade outliers as shown in Figure 4.

It is also important to cluster and compare participants in
sss order to analyze their similarities and differences. We provide
48« two approaches. First, we utilize scarf plots and histograms in
ses the time and statistics views to show explicit information (e.g.,
sss section length in milliseconds, saccade outlier distribution) for
a7 comparison. Second, we calculate the similarities between par-
sss ticipants based on the graph information. For MPSP, the transi-
ag0 tion graph of a participant for a page is a subgraph of the MPSP-
a0 supergraph. Therefore, by comparing the similarities between
a1 two subgraphs, we can calculate the similarities between these
a2 two participants. The difference between two participants can
ss3 also be calculated based on their fixation distributions, repeated
494 scanpaths, etc. For each type of difference, we construct a dis-
sss tance matrix. We then normalize each distance matrix and add
a9s them together to form the final distance matrix. Finally, we uti-
so7 lize the k-means algorithm to cluster participants. The number
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mean layout layout repeated edge
shift generation | adjustment | scanpath | bundling
single
participant (SP) 1.283 18.941 3.968 0.143 -
multiple
participants (MP) | 28.433 0.951 0.244 - 1.193

Table 2: The timing results. The timing (in seconds) of SP is the total time for
all pages of all participants. The timing (in seconds) of MP is the total time for
all pages.

a8 Of clusters n, is chosen as n. = \N/2, where N is the number
ago Of participants. Based on the clustering, we allow users to se-
so0 lect two participants for comparison as shown in Figures 8 and
501 9.

s02 6. Results

503 In the section, we first describe the data set and report the
so timing performance. Then we demonstrate the results for SPSP,
ss SPMP, and MPSP, as well as the benefits and knowledge gained
sos using ETGraph. For the 10 research questions (Q1 ~ Q10)
sor grouped into six categories (C1 ~ C6), we add a note such as
sos (C1-Q1) to show the category and the question that each result

509 ANSWETS.

sw0 6.1. Data Set and Timing Performance

511 The data set was generated from eye-gaze data collected
sz while participants read an excerpt from a book entitled “Soap-
s13 bubble and the Forces which Mould Them™ [31]. This text was
s1a chosen as it was on a novel topic which would be relatively un-
s1s familiar to a majority of readers. Eye-gaze data was collected
sie with a Tobii TX300 remote eye tracker with the sampling fre-
si7 quency of 300 Hz. The eye tracker was affixed below a monitor
s1s set to a resolution of 1920 1080, which displayed the text. The
s1e excerpt consisted of text from the first 35 pages of the book and
s20 contained around 5700 words across 10 pages. Each partici-
s21 pant read the text for 20 minutes, and not every one was able
s22 to finish reading all pages. Few participants read the final page
s2s (Page 10), so it has not been included in our analysis. Eye-
s2« gaze data were collected from both eyes and the data from each
s2s eye were filtered and averaged together prior to eye-movement
s26 detection. The data were then converted into a series of fixa-
s27 tions using a dispersion-based filter. Using the Open Gaze And
s2s Mouse Analyzer (OGAMA) [32], the filter was set to detect fix-
s20 ations if there were consecutive gaze points within a range of
s0 57 pixels (approximately 1 degree of visual angle) for longer
sa1 than 100 ms, which is the shortest duration for naturalistic eye-
sz movements during reading [11, 33]. Saccades were then calcu-
s»s lated from the fixations. The timing was collected on a PC with
ss an Intel 3.6 GHz CPU and 32 GB memory. The processed data
sss set consists of 27 participants and 9 pages. The timing results
ss are shown in Table 2.

si7 6.2. SPSP

Figure 5 shows an example of SPSP. In (a), each dot in
s the page view represents a fixation and the fixation clusters
se0 are highlighted using convex hulls. In (b), each node in the
s+t graph view represents a fixation cluster and an edge represents
se2 A transition between two clusters. In the graph, the nodes with

7
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(a)

Figure 4: Edge bundling for MPSP. (a) The saccades of the selected bundles illustrate a close relationship between the two green areas in the page view. (b) The
bundled edges are highlighted in blue while user-selected edge bundles are shown in orange. The regular (non-outlier) edges are shown in gray with higher frequency

edges shown in darker gray.

se3 stronger transitions are placed closer to each other. The graph
s« view provides an overview of the reading pattern for a single
sss page. The darkness of nodes (from dark to light) indicates the
sss presumed reading order. Therefore, in general, nodes with sim-
se7 ilar darkness values are placed nearby. We can observe that
s the nodes in (b) are clearly separated into two groups. The
se0 Nodes in one group are in green and their corresponding fixa-
sso tions are located in the lower portion of the page as shown in
ss1 (a). The separation between these two groups of nodes could
ss2 indicate that this participant read the portion of text at the top
ssa of the page separately from the portion of text at the bottom of
ss« the page. Although some saccade outliers connect the top and
sss bottom portions of the page, more connections exist within the
sss two portions. This indicates that there are stronger connections
ss7 within each portion than between the two portions. Of partic-
sss Ular interest are the nodes in (b) that are not selected but are
sse connected to nodes that are. The corresponding fixations are
se0 located in the first few lines of the page, which could indicate
se1 that the participant always returned to this location of the page
2 to reread (C1-Q1).

To understand the scanpath structures, besides regular read-
ing patterns, it is important to analyze saccade outliers. They
could indicate a portion of text that is difficult to understand or
s a rereading pattern. We show an example in Figure 1. In (a)
» and (b), the fixation clusters and nodes of the saccade outliers
s are in yellow. The selected clusters and nodes are in green. Red
s and blue edges indicate backward and forward saccade outliers,
o respectively. Most of the saccade outliers in (a) are either tar-
geted at or moving from the upper portion of text. This could
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s72 indicate that the participant reread this portion of text. In ad-
s7s dition, there is a saccade outlier from the middle of the page
s74 toward the bottom of the page (outside of the screen), but the
575 connected nodes of the saccade outlier are close in (b), which
s7 demonstrates that ETGraph gathers the nodes based on their
s77 transition relations instead of their spatial closeness. In the time
s view of (c), the vertical lines indicates the time slots where sac-
s7o cade outliers occurred. The saccade outliers are displayed in red
se0 and blue. (d) shows the distribution of the saccade outliers in
se1 each of the three sections of the page. This distribution shows
se2 that this participant had a large number of saccade outliers in
ses the first section of the page (C2-Q3).

s8¢ 6.3. SPMP

585 An analysis of the reading patterns of a participant for mul-
sse tiple pages can be done by studying the SPMP-supergraph of
se7 the chosen pages along with their statistical information. Fig-
ses ure 3 displays a SPMP-supergraph of nine pages for a single
see participant. The transition graphs of Pages 1, 5 and 8 are quite
se0 simple since each transition graph forms a smooth curve. The
so1 graph of Page 3 is very interesting because it consists of two
se2 paths from the beginning to the end, which could mean that this
ses participant read the page twice. However, this graph structure is
sua still simple compared to the graphs for Pages 4, 6 and 7. These
ses graphs consist of complex relationships between nodes which
sse could indicate that the participant read these pages backward
sev and forward many times (C1-Q6). Shifting to the correspond-
s ing SPSP view allows for a more detailed examination of these
see pages, which could offer additional insights.
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Figure 5: The transition graph of SPSP shows the clear separation of two parts in reading by the participant. An interesting repeated rereading pattern is also
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identified in green. The lower portion of the text in (a) corresponds to the selected nodes in (b).

Figure 6: Frequency distributions of (a) fixations, (b) saccade outliers, (c) saccade outliers with large y distances, and (d) saccade outliers with large x distances.

600 SPMP also allows a comparison of pages by displaying sta-
e01 tistical information for each page, which could indicate consis-
ez tency of reading patterns across all pages. The charts in Fig-
s0s Uure 6 show the distribution of fixations (a), saccade outliers (b),
e04 saccade outliers with large y distances (c), and saccade outliers
eos With large x distances (d). In (a), the fixation distributions are
e0s quite similar among the first eight pages, which indicates sim-
eo7 ilar reading patterns. In (b), (c) and (d), the saccade outlier
eos distributions are similar between Page 2 and Page 3. In (b) and
e00 (), the saccade outlier distributions are similar between Page
e10 4 and Page 5. In (b) and (d), the saccade outlier distributions
et are similar between Page 6 and Page 7. We conclude that there
ez were similar reading patterns between these pages, especially
e adjacent pages (C6-Q7).

Besides showing the structures of the scanpaths, ETGraph
e1s may be useful to find the patterns of MWs. Figure 7 shows
ss MWSs of a participant. In (a), the pink nodes indicate the ap-
17 pearance of MWs. (b) and (c) show the page and graph views
e1s of Page 2, respectively, (d) and (e) show the page and graph
e1s views of Page 5, respectively. In (b) and (d), the scanpaths
e20 around the MWs consist of saccade outliers. So, in (¢) and (e),
e21 the subgraphs around the MWs span a large area. We can see
e22 that ETGraph could provide a hint for users to detect pages con-
sisting of MWs. If there is more than one episode of MW per

614

623

e24 page, the subgraphs of MWs may consist of saccade outliers
e2s and have overlap between them (C4-Q5).

o6 6.4. MPSP

To show the overall reading patterns of MPSP, we bundle
e2s the edges to observe their trends, as shown in Figure 4. In (b),
e only the saccade outliers are bundled since bundling all edges
&0 would hide the trend in the saccade outliers. The regular (non-
ea1 outlier) edges are shown in various gray colors and the darkness
ez Of each edge shows its transition frequency. These gray edges
e give an impression of common reading patterns (C1-Q8). In
e contrast, the saccade outliers are bundled and highlighted in
ess blue. Nodes or bundles can be selected for observing their cor-
e responding fixations and saccades. The selected bundles are
7 shown in orange and their connected nodes are shown in green.
s The corresponding page view in (a) illustrates a strong relation-
e ship between the areas highlighted in green.

640 Besides showing the overall patterns of all participants, we
es1 can also cluster participants based on their attributes, e.g., fix-
es2 ation distribution, graph similarities, and repeated scanpaths
s13 (C5-Q10). Figure 8 shows a comparison of two participants
s« Who are in the same cluster based on fixation distribution. In
ess (b), blue nodes belong to one participant and red nodes belong
ess to another, while gray nodes belong to both of them. The dark
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(a)

(d)

Figure 7: Visualization of MW of a participant for SPMP. In (a), the pink nodes indicate the occurrence of MW. (b) and (c) are the page and graph views of Page 2,

respectively. (d) and (e) are the page and graph views of Page 5, respectively.

7 edges belong to both participants and the gray ones do not. In
ess this example, most of the nodes and a large number of edges
eso are shared, which indicates that their corresponding graphs are
eso also quite similar. From (a), we can see that the two partic-
es1 ipants share quite a few fixation clusters shown in gray. The
es2 clusters that differ are located at the boundaries of the page,
esa shown in blue and red. In addition, they both have a relative
ess lack of fixations in the middle area, highlighted in yellow. (c)
ess displays the time of saccade outliers in the gray time views at
ess the top and bottom, and the shared repeated scanpaths in the
es7 middle time view. There are a large number of colored bars
ess Which shows that the two participants shared a large number of
eso repeated scanpaths. This further indicates that the two partic-
o0 ipants had similar reading patterns. (d) compares the fixation
est distributions of all pages and similar fixation distributions can
2 be observed (C6-Q2, C6-Q9).

Figure 9 shows a comparison of two participants who are
s« in two different clusters based on fixation distribution. In (b),
665 there are more blue nodes than red nodes. From (a), we can
ess see that there is a large number of blue fixation clusters in the
7 middle of the page and there are no red fixation clusters, which
ess indicates that the participant in red did not read those portions
eso at all. In (c) there are only four colored bars which show that
e70 the two participants only shared two repeated scanpaths. This
e71 further indicates that the two participants had different reading
o2 patterns. (d) compares the statistics of fixations of all the pages
e7s and shows different distributions (C6-Q2, C6-Q9).

We also provide statistical information to help users identify
e7s similarities and differences between all participants. For exam-
e76 ple, in our data, we found that the saccade outliers with large

663
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e77 y distances do not occur in any repeated scanpaths for all par-
e7s ticipants. This indicates that the participants did not revisit two
e79 portions of text that have a large y distance. However, it is not
es0 the case for saccade outliers with large x distances. Figure 10
es1 (a) shows the repeated scanpaths and saccade outliers with large
es2 X distances. The repeated scanpaths are shown in gray while the
ess saccade outliers are highlighted in red and blue bars indicating
es« backward and forward saccade outliers, respectively. Repeated
ess scanpaths occur when a participant rereads some portion of text.
ess A repeated scanpath may represent a scan of the text or a return
es7 to a particular sentence (C3-Q4). When a participant tries to
ess understand a large paragraph and a repeated scanpath is only
es0 a part of it, then this repeated scanpath is only a scan. This
oo 18 different from when the time gap between the corresponding
eo1 scanpaths of a repeated scanpath is short and there is a sac-
ez cade outlier between them. In Figure 10, we can see from (a)
eos that there are some repeated scanpaths overlapped with saccade
eos outliers with large x distances highlighted in the red rectangle.
ess These repeated scanpaths may be more interesting than others.
eos In this figure, repeated scanpaths that consist of saccade out-
eo7 liers are shown in the red rectangle. The corresponding time
eos View is shown in (b), and the corresponding selected repeated
ees scanpaths are shown in (c), (d), and (e). The page view shows
700 that this participant reread this sentence twice, ostensibly for
701 better understanding.

72 7. User Study and Expert Evaluation

708 To evaluate the effectiveness of ETGraph, we conducted a
704 user study and an expert evaluation. The user study mainly fo-
705 cused on the usefulness and usability of ETGraph, while the
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Figure 8: Comparison of two participants with similar fixation distributions. (a) The fixation distributions of the two participants. Note that both participants have
few fixations in the middle area (highlighted in yellow). (b) Blue and red nodes belong to a single participant only and gray nodes belong to both participants. Dark
edges belong to both participants. (c) Saccade outliers for the two participants are shown in the upper and bottom time views, while their shared repeated scanpaths
are shown in the middle view. (d) A comparison of the statistics of fixations of the three sections of each page for the two participants. The participant with red

nodes is at the top while the participant with blue nodes is at the bottom.

706 expert evaluation focused on the improvement and future direc-
707 tions.

708 7.1. User Study

We recruited five unpaid PhD students in our university to
7o evaluate the effectiveness of ETGraph. One student is from the
711 Department of Psychology and four students are from the De-
7z partment of Computer Science and Engineering. All five users
713 are analyzing MW in their respective PhD studies using differ-
714 ent kinds of data, e.g., physiology, facial features, or eye gaze.
7s The user study was conducted in a lab using the same PC for
76 each user. The users were first introduced to ETGraph and were
717 instructed about its design goals and main functions. Then they
71s were given ten minutes for free exploration to get familiar with
71e the system. After that, they were asked to complete six tasks
720 and a survey of seven general questions on the design of ET-
721 Graph. These tasks were written on paper and the users hand
722 wrote their responses. The observer (i.e., one author of this
723 work) stood near by and took notes. After the study, he then
724 interviewed the users about their thoughts of the tasks and ET-
725 Graph.

709

726 Since ETGraph was mainly designed to visualize the read-
727 ing patterns of the participants and help users identify MWs,
728 this user study focuses on evaluating the effectiveness of these
720 two aspects. As shown in Table 3, T1 ~ T3 were designed
720 to evaluate the effectiveness in terms of revealing the reading
731 patterns based on the graph representation, and T4 ~ T6 were
722 designed to evaluate the effectiveness in terms of helping the
733 users identify MWs.

In T1, the user was given three graphs. She was asked to
75 compare them based on the graph structures and identify the
726 one whose structure is different from those of the other two.
757 Then the user was asked to observe the corresponding scan-
738 paths and understand the relationships between graph structures
79 and scanpaths. Finally, she was asked to verify her observa-
70 tion through freely exploring the graphs and scanpaths. This
71 task was designed to evaluate if the user was able to identify
72 the graph with an abnormal scanpath and infer why the graph
73 structures are different.

In T2, given a graph, the user was asked to circle node clus-
s ters. Then she was asked to observe their correspondences in

734
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Figure 9: Comparison of two participants with different fixation distributions. (a) The fixation distributions of the two participants. Notice that the participant in
red have no fixations in the middle area. (b) Blue and red nodes belong to a single participant only and gray nodes belong to both participants. Dark edges belong
to both participants. (c) Saccade outliers for the two participants are shown in the upper and bottom time views, while their shared repeated scanpaths are shown in
the middle view. (d) A comparison of the statistics of fixations of the three sections of each page for the two participants. The participant with red nodes is at the

top while the participant with blue nodes is at the bottom.

s the page view. Finally, she was allowed to explore the other
77 graphs and infer why some graphs had clusters while others did
78 not. This task was designed to evaluate if the user understood
749 that the nodes are placed nearby in the graph view due to their
750 strong relations in the scanpath.

In T3, given a graph, the user was asked to estimate which
752 edges in the graph represent saccade outliers. Then she was
753 asked to verify her guesses using ETGraph. Finally, she was
75 allowed to explore the other graphs to observe the correspon-
75 dence of outliers between the graph view and the page view.
7 This task was designed to evaluate if the user understood that
7s7 saccade outliers with large y distances exist between two nodes
78 with either very different gray-scale colors or very long edges.
759 The typical way for MW detection is to follow the anima-
70 tion of scanpath and identify MWs based on user experience.
71 However, the scanpath could be long, dense, and self-occluded,
762 which makes it difficult for users to follow the animation, mem-
763 orize the animation history, and detect abnormal reading pat-
7es terns. ETGraph simplifies the scanpath during animation by
7es preserving the most important features and reducing the user’s

751

76 effort. Furthermore, since identifying MWs by watching the
77 animation requires a lot of domain knowledge, ETGraph sim-
768 plifies the process by helping users detect MWs through show-
760 ing a static view of the graph structures and visual hints for
770 saccade outliers. T4 ~ T6 were designed to evaluate the effec-
1 tiveness of ETGraph in terms of helping identifying MWs. In
72 T4, the user was asked to watch the scanpath animation of sev-
773 eral participants reading different pages, and identify whether
772 MW was reported on each page. TS and T6 asked the user to
775 identify whether MW was reported on the pages based on the
776 graph structures and saccade outliers, respectively.

The users could perform the tasks at their own pace. Each
778 session took about 30 to 60 minutes to complete. We summa-
779 rize the binary task completion scores for the six tasks in Ta-
780 ble 3.

781 We note that all users answered T1 and T2 correctly. For
72 T1, the users noticed that when a participant read from left to
783 right and from top to bottom, then the corresponding graph
784 presents a continuous transition from darker nodes to lighter
785 nodes, which conforms to the presumed reading order. How-
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Figure 10: (a) The time view of saccade outliers and repeated scanpaths for MPSP, organized in a scarf plot. Repeated scanpaths are shown in gray while saccade
outliers are highlighted in red and blue bars, indicating backward and forward saccade outliers, respectively. The red rectangle marks the repeated scanpaths that
overlap with saccade outliers. (b) A participant is selected from (a) and the corresponding time view is shown. (c) The repeated scanpaths are selected. (d) and (e)
are the corresponding page view and graph view for the selected repeated scanpaths, respectively.

76 ever, the graph structure became complex when there was a
7e7 large number of saccade outliers. For T2, the users drew circles
788 to highlight the clusters in the graph, and selected each group
780 to verify their estimates. They concluded that if the participants
790 separated the text into portions and read each portion carefully,
7o1 then each portion would form a cluster in the graph.

For T3, the users could identify most of the saccade outliers
70s With large y distances based on the edge lengths of the graph,
704 but there was one saccade outlier that they all failed to identify.
7s The edge of that saccade outlier linked two nodes that were
796 close in the graph but one node was very dark and the other was
77 very light. The fixation of the light node was very close to the
798 bottom of the page and the dark node consisted of a lot of fixa-
790 tions at the top of the page. Therefore, the dark node pulled the
a00 light one close to itself and the corresponding edge length was
g1 small. Failing to identify such an outlier shows that we should
a2 have explained the details of ETGraph construction and the lay-

792

sos OUt generation algorithm to users. This would help them better
s« Understand the graph so they would know that the edge repre-
s0s sents a saccade outlier when they observe such a phenomenon.
For T4, the users tended to animate the entire scanpath to
so7 understand the reading pattern and identify possible MW. How-
ss ever, it was sometimes difficult for them to do this because
sos Of visual clutter and the effort of remembering the previous
s10 scanpath. To help users keep track of the reading pattern, ET-
s11 Graph only displays a few of the most currently displayed sac-
sz cades and all the previous saccade outliers during the anima-
s1s tion. The average score of successfully identifying MW was 0.7
s14 for this task and most of the users considered this task difficult
a1s to complete. All users except one made at least one incorrect
s16 judgement. Most of the users stated that viewing an animation
s17 based on time that included saccade outliers helped them iden-
s1s tify rereading behaviors and abnormal reading patterns that may
s19 include MW, but this function still requires them to have some
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task | description average score | standard deviation
T1 Identify the abnormal reading pattern based on the graph representations, and study their corresponding scanpaths. 1 0

T2 Circle the clusters in the graph and observe their corresponding portions in the page view. 1 0

T3 Circle the saccade outliers with large y distances in the graph view and verify your guesses in the page view. 0.8 0

T4 Identity the pages with MW based on the animation of the whole scanpath. 0.7 0.21

TS Identify the pages with MW based on the graph structures. 0.8 0.27

T6 Identify the pages with MW based on the saccade outliers in the graph view. 0.8 0.45

Table 3: The six tasks in the user study and user scores of the tasks.

a0 knowledge about typical reading patterns associated with MW.
For TS, the average score of successfully identifying MW
s22 was 0.8. All users stated that the graph structure could help de-
s23 termine whether the participant read normally or was MW. This
s24 task consisted of two subtasks. Three users who considered this
a2s task easy completed it correctly. The remaining two users only
e26 answered one small part of the task correctly. They both agreed
s27 that Figure 7 (c) (used in TS) showed a graph with a normal
s2s structure. This result indicates that we need to train users about
a20 the graph structure in order to distinguish the differences be-
a0 tween graphs with and without MW.

For T6, the average score of successfully identifying MW
sz was 0.8. This task consisted of two subtasks. Four users who
sas considered this task easy completed it correctly. The remain-
s ing user did not respond correctly. He studied the content con-
a5 nected by the saccade and decided that there was no MW present
ass if the content was related. However, this is not necessarily al-
ss7 ways the case.

On the general questions, all users agreed that ETGraph
a0 was helpful for studying eye-tracking data. Based on the graph
as0 Structure, they could get an impression on whether the partici-
a1 pant followed a regular reading pattern or not. Saccade outlier
as2 detection helped them identify saccade outliers and possible
ss MW. Users also had some suggestions to improve ETGraph.
ses Four of them suggested that we should provide more training
s and explanation of ETGraph for better use. One even suggested
ass that we list pages with or without MW, so that their differences
a7 would be more obvious in ETGraph. Two users suggested that
ss we develop an iPad or Windows version for them to explore
seo further as our current system runs on Linux.

821

831

838

0 7.2. Expert Evaluation

851 We also invited two domain experts: a professor and a PhD

s Of abnormal reading patterns. However, he suggested that we
sso bundle the outliers separately for pages with or without MW.
s70 This could help researchers study common patterns of MWs.
s71 Finally, he thought that after identifying the common patterns
s72 of the graphs with MW, using graph similarity measures could
e73 help identify the pages with MW.

874 The student expert considered ETGraph to be a useful tool
a7 because it provides a new approach to visualize eye-tracking
a7 data. He has used tools like the Open Gaze and Mouse Analyzer
s77 (OGAMA) [32] and has even written his own programs to ana-
e7s lyze eye movements. These tools render the data using a scan-
e7o path or heatmap. Visual clutter is inevitable when displaying a
ss0 scanpath, while heatmaps lack saccade information. ETGraph
ss1 addresses both limitations. In addition, he thought that ET-
ss2 Graph helps to not only visualize eye movements but also gain
sss an understanding of patterns that are not obvious with other
ss« tools. In addition, he is particularly interested in the repeated
sss scanpath detection function. For him, this function provides ad-
sss ditional information drawn from ETGraph besides saccade out-
se7 liers that could be used to detect MW. Finally, he thought that
sss our approach could help to engineer novel features for use in
sss machine learning based on observations drawn from ETGraph.

s0 8. Conclusions and Future Work

We have presented ETGraph, a new approach that trans-
s forms eye-tracking data of reading studies from the original
s page view to a graph-based representation. The graph view
s presents fixation clusters as nodes and saccades as edges, and
sss it can reveal the very nature of the reading pattern by placing
ass nodes in the graph according to their connections, rather than
so7 their fixed locations in the page. Through brushing and linking,
sos Users are able to explore eye-tracking data from multiple per-

891

ss2 student whose research interest is identifying MW in eye-trackingesss spectives. We demonstrate the usefulness of ETGraph by pre-

ess data. We utilized the think-aloud protocol during the evalua-
ss4 tion. The experts described their thoughts while completing the
sss tasks, and we summarized their comments after the evaluation.
sss They both agreed that ETGraph is a very helpful tool for re-
ss7 searchers who are interested in studying eye movements.

The professor considered ETGraph a useful tool to identify
a0 the reading patterns around MWSs. He pointed out some sug-
a0 gestions to improve ETGraph. First, he suggested that screen
ss1 space should be added for the graph view so that users can se-
ss2 lect multiple graphs for comparison. Second, he suggested that
sss ETGraph should focus more on saccade outliers with large y
ss+ distances because they are important to identify rereading and
sss MW. Saccade outliers with large x distances might be due to
ass the poor calibration of eye trackers and line jumps. For MPSP,
ss7 he thought bundling outliers was helpful to identify the trend

858

w0 senting results generated from studying single participant sin-
%01 gle page, single participant multiple pages, and multiple partic-
o2 ipants single page. The feedback from the domain experts and
s03 a group of student researchers confirms the effectiveness of our
s04 approach.

The current implementation of ETGraph has some limita-
s0s tions. First, ETGraph helps users identify whether or not MWs
%07 happen in pages, but it cannot tell accurately when and where
ss MWSs happen. Second, MW detection in ETGraph may not be
s extended to analyzing other types of data such as videos. MW
s10 detection in our reading context assumes that the participants
o11 should follow a normal reading pattern (from left to right, from
o1z top to bottom), and if they do not, MW may happen. Clearly,
o13 this assumption does not hold anymore for other types of data.
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14 Third, the clustering of participants is based on their graph sim-
ilarities, which does not allow users to manually select certain
graph attributes for more flexible participant classification.

In the future, we would like to further apply graph min-
s ing techniques, such as solutions for graph alignment or match-
ing, to ETGraph, and investigate common reading patterns and
abnormal reading behaviors. The goal is to help users detect
a wide variety of cognitive and affective phenomena, such as
22 mind wandering, cognitive load, inference generation, and bore-
o2s dom, in a visually guided manner. We would also develop
24 graph-based visual analytics tools for studying some other eye-
o5 tracking data, such as data recorded for dynamic stimuli such
s26 as videos.
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