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Abstract

Isosurfaces are an important visual representation of volumetric data sets and isosurface extraction and rendering remains one of

the most popular methods for volume visualization. Previous works identify a small set of representative isosurfaces from a set of

sample ones, providing a concise description of the underlying volume. However, these methods do not lend themselves to equally

spaced isosurfaces, i.e., keeping the same distance between neighboring isosurfaces, which can be advantageous from the user’s

perspective in terms of visual summarization and interactive exploration. In this paper, we present a new solution that efficiently

identifies a set of nearly equally spaced isosurfaces for a given volume data set. Our approach includes an estimation stage of

linear interpolation and a refinement stage of binary search in order to balance the tradeoff between quality and performance. The

refinement stage can incorporate spike and/or jump treatments to possibly improve the convergence. Experimenting with multiple

data sets of different sizes and characteristics, we perform both quantitative and qualitative studies, demonstrate the efficiency and

effectiveness of our approach, and summarize our findings.
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1. Introduction1

Numerical simulations are extensively used by scientists to2

observe various phenomena that are not easily captured by real3

experiments. These simulations normally produce an ample4

amount of data, requiring effective tools to visualize and an-5

alyze them. A typical visualization presents the simulation re-6

sults as a series of volumes. One of the essential techniques to7

gain insights into these volumes is isosurface rendering. To de-8

scribe the structure of a volume, one can extract and visualize9

isosurfaces. These surfaces describe surface geometries with all10

points sharing the same isovalue. For insightful visualization,11

it is critical to select a set of salient isosurfaces that captures12

different features and characteristics of the underlying volume.13

One common solution is to select a set of distinctive or14

representative isosurfaces from sample ones based on a certain15

similarity measure. For example, Tenginakai et al. [1] measured16

the similarities between isosurfaces using data histograms and17

higher order moments. Bruckner and Möller [2] derived dis-18

tance fields from the sample isosurfaces and utilized mutual in-19

formation to evaluate the similarity between the distance fields.20

The similarity values are organized in a matrix form named21

isosurface similarity map from which the representative isosur-22

faces are selected.23

One major challenge exists for these approaches: it is es-24

sential for them to start with a set of reasonably good sample25

isosurfaces that capture different features in a balanced way.26

Otherwise, the features missing in the samples will not be re-27

covered in the later stages, or the selection may be biased by28

favoring the features corresponding to more samples. However,29

straightforward sampling techniques do not guarantee the de-30

sired set of samples. Uniform sampling is likely to miss some31

features when many of them reside in a small value range. Al-32

though sampling according to histograms of voxel values, i.e.,33

placing more samples in the value ranges with more voxels,34

may alleviate this problem to some degree, it still suffers from35

oversampling as the value ranges with more voxels do not nec-36

essarily indicate more distinctive features.37

Another key challenge is posed by the scale and complex-38

ity of the data generated by numerical simulations. To obtain a39

comprehensive understanding of physical phenomena, the sim-40

ulations usually involve multiple variables and their interac-41

tions over time, resulting in large-scale time-varying multivari-42

ate volume data sets. This requires a surface-based analysis to43

be efficient in two aspects. First, the distance between two iso-44

surfaces should be measured efficiently. Second, the number of45

distance calculations should be minimized so that one can af-46

ford to take a full run and draw a complete picture of the data.47

Previous approaches focused more on the definitions of similar-48

ity measures and less on performance optimization. For exam-49

ple, it took around 25 minutes to process a single volume with50

the isosurface similarity map approach [2]. This cost becomes51

prohibitive when analyzing a typical time-varying multivariate52

data set with tens of variables and hundreds of time steps.53

In this paper, we present an approach for identifying nearly54

equally spaced isosurfaces, so that the distance between neigh-55

boring surfaces is as similar as possible to the average distance.56

In flow visualization, creating evenly spaced or mutually distant57

streamlines or stream surfaces has been well studied [3, 4, 5].58

However, to the best of our knowledge, creating equally or59

evenly spaced isosurfaces has not been investigated. Our solu-60

tion ensures that the isosurfaces corresponding to neighboring61

isovalues are distinct enough according to the given distance62

measure. When identifying a small number of isosurfaces, we63
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can consider the resulting isosurfaces as salient features on their64

own. Compared to the similarity-based approaches for identi-65

fying representative isosurfaces, our approach does not require66

the isosurfaces to be selected from a limited set of sample ones.67

It not only has a wider search space but also explicitly controls68

over the resulting isosurfaces, which can potentially lead to bet-69

ter results. Compared to the topology-based approaches, our70

method is more flexible when equipped with different distance71

measures. Although this offers great flexibility, our method re-72

lies on features being a function of isovalues. Given that pre-73

condition, our algorithm may capture the topological changes if74

the distance measure is topology-aware, and it may produce iso-75

surfaces with distinct shapes if the distance measure is shape-76

aware. In addition, when a large set of isosurfaces is identified,77

the results can serve as reliable input to other volume analysis78

and visualization tasks. In our experiment, we find that tak-79

ing our results as the input, the representative isosurfaces se-80

lected using isosurface similarity map [2] and k-means [6] can81

be improved. The comparison results will be presented in Sec-82

tion 4.2.83

Our approach includes two stages: an estimation stage that84

quickly converges to a rough solution within a few iterations,85

and a refinement stage that optimizes the estimation. For both86

stages, only the distances between neighboring isosurfaces are87

needed at each iteration. Leveraging the parallel computation88

of GPU, we can process each iteration efficiently. In addition,89

our approach can be flexibly customized with various distance90

measures to meet different needs. In our experiment, we com-91

pare the performance and sampling results using the isosurface92

similarity map (ISM) measure [2] and the mean of the closest93

point distances (MCP) [7].94

The contributions of our work are as follows.95

• First, we present a feasible solution to identifying nearly96

equally spaced isosurfaces, an important yet seldom in-97

vestigated problem. We shall see that our solution does98

not fully converge in general but we are able to find a99

solution with acceptable quality and performance trade-100

off. Compared to similarity- or topology-based methods,101

the set of isosurfaces generated by our method provides102

an advantageous visual summarization of the volumetric103

data, especially when the number of surfaces is small.104

• Second, we perform a thorough study to compare param-105

eter choices, distance measures, and qualitative results,106

followed by a list of findings for other researchers to fol-107

low. The proposed solution can be adopted by others for108

incorporation into their high-performance volume data109

analysis and visualization workflow.110

2. Related Work111

To analyze and visualize volumetric data sets, researchers112

have sought different kinds of methods to understand the struc-113

tures of volumes. The distribution-based methods focus on the114

distributions of certain properties of the volume and identify the115

salient structure based on their corresponding statistical char-116

acteristics. The topology-based methods analyze the topologi-117

cal structure of the volumes and highlight the structures corre-118

sponding to topological changes. The similarity-based methods119

measure the similarity between volume representations such as120

isosurfaces and derive the representative ones based on their121

similarities.122

Distribution-based methods. Understanding the relation-123

ships between the volume distribution and the isosurfaces al-124

lows us to identify salient features. For instance, Tenginakai et125

al. [1] detected salient isosurfaces using local higher order mo-126

ments (LHOMs). LHOMs are computed and plotted for differ-127

ent sample values for a semi-automatic selection. Scheidegger128

et al. [8] applied Federer’s Coarea Formula to improve the iso-129

surface statistics by weighting with the inverse gradient mag-130

nitude. Duffy et al. [9] developed a mathematical model for131

continuous functions and proved the convergence to continu-132

ous statistics for regular lattices. Pekar et al. [10] proposed to133

use Laplacian weighted histograms for significant isovalue de-134

tection. However, the distribution of a volume data set does not135

translate to the spatial relationship among surfaces extracted,136

which is the focus of this paper.137

Topology-based methods. These methods extract struc-138

tures that essentially characterize properties of space such as139

convergence, connectedness, and continuity, providing a con-140

cise description of the overall structure of a volume. Bajaj141

et al. [11] proposed the contour spectrum, an interface com-142

bining the contour tree together with a variety of isosurface143

statistics, such as area and enclosed volume. Bremer et al.144

[12] presented the cancellation tree for describing the simpli-145

fication of a Morse-Smale complex. Each simplification step146

cancels a pair of critical points, i.e., minima and maxima. The147

cancellation tree encodes the simplification steps and provides148

the connections among critical points. They further extended149

this approach to the hierarchical merge tree, which is a track-150

ing graph that describes the temporal evolution of features [13].151

Carr et al. [14] proposed to use the contour tree to encode the152

nesting relationships among isosurfaces. It also serves as an in-153

terface that allows users to select contours for operations such154

as removal, evolution, and tracking. Correa et al. [15] intro-155

duced the topological spine that connects critical points along156

the steepest ascending or descending directions. In addition, it157

includes geometric and contour nesting information, providing158

better spatial reasoning.159

Although rigorous, topology-based methods normally cap-160

ture minute topological changes, which lead to a large number161

of isourfaces for a volume with complex topological variations.162

This, however, may not always be necessary for users to un-163

derstand the overall structure of the volume. In contrast, our164

approach generates a small set of nearly equally spaced iso-165

surfaces which are more amenable for user observation: each166

surface is distinct enough and they are mutually distant in the167

space. Such a set of isosurfaces could also be useful as a visual168

summarization of the underlying volume.169

Similarity-based methods. Recent works often seek to170

measure the similarities between a set of sample isosurfaces and171

derive the structure of the entire volume. For example, Bruck-172
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ner and Möller [2] evaluated the similarity between isosurfaces173

and organized them in the form of an isosurface similarity map.174

The similarity between two isosurfaces is defined as the mu-175

tual information shared by the distance fields of the two isosur-176

faces. Representative isosurfaces are identified using the iso-177

surface similarity map, which stores all pairwise similarity val-178

ues. Haidacher et al. [16] extended this approach to compare179

isosurfaces extracted from multiple volumes. Wei et al. [17]180

proposed a similarity measure between two isosurfaces based181

on intermediate level-set surfaces. The values on the interme-182

diate surfaces are sampled from the volume and their entropy183

values are used to evaluate whether the level-set surfaces align184

well with the intermediate isosurfaces. Recently, Ma et al. [6]185

used a tensor-based perceptual distance measure that simulates186

the human visual system and employed k-means clustering to187

select representative isosurfaces for comparing different volu-188

metric data compression approaches.189

These methods, including our approach, require distance190

fields of isosurfaces to be computed. As a common need of191

many applications, accelerating the distance field computation192

has been extensively studied [18, 19, 20, 21, 22]. Yu et al. [22]193

presented the parallel distance tree that distributes the workload194

to multiple processors guided by a coarse global distance tree.195

Each processor then constructs a local distance tree and derives196

the distance fields. To compute the distance field, the bound-197

ing volume hierarchy (BVH)-tree is often used to identify the198

closest points. Liu and Kim [20] proposed the multi-BVH that199

combines the octree and BVH-tree. The use of octree provides200

additional information to reduce the number of BVHs to be tra-201

versed. Karras [23] introduced a GPU-based method to con-202

struct BVH-trees in parallel. which is by far the fastest GPU203

solution available. In Section 3.4, we will discuss how we use204

Karras’ algorithm to accelerate distance computation.205

3. Our Approach206

We propose a two-stage approach for finding nearly equally207

spaced isosurfaces. Both stages run over several iterations aim-208

ing for convergence. First of all, during the estimation stage, we209

measure the distance between every pair of neighboring isosur-210

faces and resample the isovalues based on these distances using211

linear interpolation. This stage, however, assumes piecewise212

linearity of the distance function between neighboring isosur-213

faces, which does not hold in general. In our experiment, it ap-214

proaches approximate solutions in a few iterations but normally215

does not converge to the optimal solution. Therefore, we intro-216

duce the refinement stage that adopts a binary search strategy to217

adjust each isovalue so that its surface has equal distance to its218

two neighbors. By repeating this process for several iterations,219

we achieve nearly equal distances between all neighboring iso-220

surfaces.221

In this section, we denote a set of isovalues at iteration τ222

as V τ = {vτ
1,v

τ
2, . . . ,v

τ
n}, the isosurface corresponding to an iso-223

value vτ
i as sτ

i , and the distance between two values vτ
i and vτ

j224

as the distance between their respective surfaces, di, jτ , or more225

generally, d(vi,v j).226

v
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Figure 1: The estimation stage. Identifying isovalue vτ
i+1 based on its left neigh-

bor vτ
i and the distances evaluated at the previous time step τ −1.

3.1. Estimation Stage227

For the estimation stage, we start from a uniformly sam-228

pled set of isovalues V 0 and gradually adapt the isovalues based229

on the previous set of isovalues and their distances. Specifi-230

cally, at each iteration τ , we first approximate the isosurface231

using the approximation scheme of Imre et al. [24] (refer to232

Section 3.4), sτ−1
i of each isovalue vτ−1

i at the previous itera-233

tion τ − 1 and evaluate the distance dτ−1
i,i+1 between every pair234

of neighboring isovalues vτ−1
i and vτ−1

i+1 using their correspond-235

ing approximated isosurfaces. The average distance dτ−1
µ =236

(∑n−1
i=1 dτ−1

i,i+1)/(n− 1) (µ stands for the average) is considered237

to be the target distance to achieve at the current iteration τ .238

Then, starting from the first isovalue vτ
i = vmin, where vmin is239

the minimum isovalue, we resample each isovalue vτ
i+1 that has240

approximately the target distance dτ−1
µ to its left neighbor vτ

i ,241

as illustrated in Figure 1. The distance is estimated under two242

assumptions. First, the distance between neighboring isovalues243

can be linearly interpolated. For example, the isovalue vτ
i falls244

between two previous isovalues vτ−1
k−1 and vτ−1

k . We assume that245

the distance between vτ
i and vτ−1

k can be linearly interpolated246

using the distance dτ−1
k−1,k. Second, we assume that the distance247

can be added to estimate the distance between non-neighboring248

isovalues. For example, we assume that the distance dτ−1
k, j can249

be obtained using the summation of all neighboring distances250

between vτ−1
k and vτ−1

j , i.e., dτ−1
k, j = dτ−1

k,k+1+ · · ·+dτ−1
j−1, j. In this251

way, we can iteratively identify the entire set of isovalues Vτ .252

This process can also be considered as a parameterization based253

on the distances evaluated from previous neighboring isovalues.254

We repeat this process for several iterations until a prede-255

fined minimum iteration number δe is reached and the varia-256

tion of neighboring distances stops decreasing. As shown in257

the first two rows of Figure 5, we can see that the estimation258

stage approaches the desired solution within a small number259

of iterations. Note that the computation of distances between260

neighbors, which is the most costly step, can be performed in261

parallel for each iteration. As previously mentioned, this stage262

is unlikely to converge since the two aforementioned assump-263

tions do not hold for many volumetric data sets. In most cases,264

it is more likely to have di, j +d j,k > di,k due to the triangle in-265

equality. Therefore, the estimation stage only provides a rough266

solution, and an additional refinement stage is needed to obtain267

the optimal solution.268

3.2. Refinement Stage269

In the refinement stage, we advocate a binary search strat-270

egy: placing the candidate isovalue in the middle of its two271

neighbors to identify an isosurface having the equal distance272

to its two neighboring isosurfaces. The distance function in this273
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Figure 2: The refinement stage. (a) Adjusting odd-indexed and even-indexed

isovalues alternatively. (b) Identifying an isovalue vi that has the equal distance

to its two neighbors vk and v j . The red (blue) curve in (b) represents the distance

function from an isovalue in [vk,v j] to vk (v j).

stage neither assumes linearity nor violates the triangle inequal-274

ity. Unlike the estimation stage, this stage provides a slower275

but more robust process of convergence. This is achieved by276

adjusting the odd-indexed isovalues and even-indexed ones al-277

ternatively, as shown in Figure 2 (a). Specifically, the refine-278

ment stage is performed in multiple steps (δr). At odd steps, we279

adjust the red isovalues vi−2,vi,vi+2 with odd indices (assum-280

ing i is an odd number), so that they have the equal distance to281

their neighbor isovalues, i.e., di−3,i−2 = di−2,i−1, di−1,i = di,i+1,282

and di+1,i+2 = di+2,i+3, as indicated by the red arrows. Since283

the blue isovalues with even indices are fixed at odd steps, each284

odd-indexed isovalue can be adjusted independently in parallel.285

At even steps, we adjust the blue isovalues in the same fashion.286

Note that the blue and red arrows connect all distances between287

neighboring isovalues, which leads to equally spaced isovalues288

when this stage converges.289

In every step, we use several iterations (δτ ) of a binary290

search strategy to identify an isovalue vi that has the equal dis-291

tance to its two neighbors vi−1 and vi+1, as illustrated in Fig-292

ure 2 (b). This means that the goal becomes finding one inter-293

section point of the red and blue curves. At each iteration τ ,294

we maintain a lower bound lτ
i and an upper bound uτ

i that con-295

tain the intersection point between them. The lower and upper296

bound are initialized as vk and v j, respectively, i.e., l0
i = vk and297

u0
i = v j. The lower bound maintains a property that it is always298

closer to vk than v j, i.e., dk,li < dli, j, and the upper bound main-299

tains a similar property in the opposite way, i.e., dk,ui
> dui, j.300

Due to these properties, the red and blue curves must intersect301

somewhere in the middle as long as the distance functions are302

continuous.303

At each iteration, we assume that the two distance functions304

change linearly between the bounds, as shown by the blue and305

red dashed lines in Figure 2 (b), and compute the intersection306

point, as indicated by the black dot. This intersection point307

provides the new isovalue vτ
i at step τ , as shown by the black308

solid line in Figure 2 (b). We compute the distances dτ
k,i and309

dτ
i, j and determine whether vτ

i will replace the lower or upper310

bound. In this example, since dτ
k,i < dτ

i, j, indicated by the inter-311

section points between the black solid line and the two curves,312

we replace the lower bound with vτ
i , i.e., lτ+1

i = vτ
i , so that the313

properties of the lower and upper bounds still hold.314

It is clear that the smaller the search range gets, the better315

the distance functions can be approximated by linear functions.316

As shown in Figure 2 (b), the curves between the bounds are317
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Figure 3: An example of neighboring distances from different time steps of the

GT variable of the ionization data set. Every bar shows the distance d(i, i+1).
(a) shows one reason for a spike where two neighbors are too far apart. (b)

shows a different cause, that is related to a jump discontinuity in the distance

function.

nearly straight even if the distance functions themselves are not318

linear. This allows the desired isovalue to be identified within a319

small number of iterations. In our experiment, we find that five320

iterations per step is sufficient. For more details, please refer to321

Figure 5 and Section 4.1.322

3.3. Convergence Stabilization323

During the refinement stage, some proposed isovalues po-324

tentially lead to an adverse change of distance. This typically325

translates into distance values, named spikes, that are much326

higher/lower than the average distance, causing large average327

and maximum errors. Figure 3 demonstrates two common types328

of spikes: (1) the binary search successfully finds an isovalue329

that has mostly equal distances to its two neighbors, but these330

distances are larger than the average distance; and (2) the bi-331

nary search fails to identify a desired isovalue, and the distance332

between this isovalue and one of its neighbors becomes a spike.333

The first type of spikes between three isovalues vi−1, vi, and334

vi+1 can be expressed as di−1,i ≈ di,i+1 and di−1,i,di,i+1 >> dµ .335

These spikes usually appear due to the underestimation of the336

differences of isosurfaces in the interval [vi−1,vi+1]. For ex-337

ample, in Figure 3 (a), after one step of the refinement stage,338

the binary search identifies an isovalue v12 whose distances to339

its neighbors (i.e., d11,12 and d12,13) are about twice as high as340

the average distance, meaning that the interval between v11, v12,341

and v13 may be too large. This type of spikes may gradually dis-342

appear since vi−1 and vi+1 will be moved closer to vi in the next343

step of the refinement stage. For example, since d10,11 is much344

smaller than d11,12, v11 will be moved closer to v12 to reduce345

d11,12 for an equal distance between v10, v11, and v12. However,346

this type of spikes still causes a steep increase of the average347

and maximum errors, leading to an unstable status during the348

refinement stage.349

To alleviate this problem, we propose a spike treatment that350

rejects isovalues leading to spikes. Formally, for every isovalue351

vτ
i that has been changed in step τ , we compare dτ

i−1,i and dτ
i,i+1352

to dτ
µ using their relative differences with respect to dτ

µ .353

If any of the two difference values surpasses a predefined354

spike threshold δs, we reject vτ
i and replace it with vτ−1

i . Note355

that the old value vτ−1
i has more agreeable distances, as vi−1356

and vi+1 are static in this step. Intuitively, by avoiding the steep357
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Figure 4: An example of discontinuous distance functions using the GT variable

of the ionization data set. (a) shows the distances to isovalue 20547.8 (blue) and

to isovalue 20680.4 (red). The horizontal axis represents sampled isovalues

and the vertical axis represents the distance. (b) and (c) are the two isosurfaces

corresponding to the isovalues highlighted by the dashed lines in (a).

changes, this treatment postpones, instead of preventing, the358

salient isovalue vi to be discovered. Therefore, the entire refine-359

ment stage will exhibit a more smoothly convergence toward360

the best solution.361

For the second type of spikes, the binary search fails to iden-362

tify an isovalue vi with equal distances to its neighbors. In this363

case, at least one of the distances di−1,i and di,i+1 will differ364

from the average distance dµ . For example, in Figure 3 (b),365

the distance d8,9 is much smaller than the other distances be-366

tween neighbors, therefore, leading to a larger error. This type367

of spikes is usually caused by a jump discontinuity in the dis-368

tance functions between the neighboring isovalues.369

A jump discontinuity (henceforth jump) appears when the370

distance function between two isovalues is discontinuous. An371

example is demonstrated in Figure 4. For the purpose of analy-372

sis, we consider two distance functions dl(vi) and dr(vi), which373

map an isovalue vi to its distances to its left and right neighbors,374

respectively. In this example, we densely sample 200 isovalues375

between two fixed isovalues 20547.8 and 20680.4, and compute376

the distance from each sampled isovalue to the fixed ones. In377

Figure 4 (a), the distances to isovalues 20547.8 and 20680.4 are378

plotted as blue and red lines, respectively. Unlike the case of379

two smooth distance functions, as demonstrated in Figure 2 (b),380

a steep change occurs, highlighted by the red dashed ellipse.381

This indicates that the two distance functions are not continu-382

ous at the corresponding isovalue.383

Figure 4 (b) and (c) show the isosurfaces corresponding to384

the two isovalues on the two sides of this critical isovalue. We385

can see that this isovalue actually corresponds to the topological386

change with the lower ring emerging. The blue line appears be-387

low (above) the red line before (after) this change. This means,388

given the properties of the lower and upper bounds, the lower389

(upper) bound will always be on the left (right) of this isovalue.390

After several steps, the binary search will be trapped in a small391

value range centered at this critical isovalue. This does not only392

lead to a large error by itself but also stops the distance val-393

ues from propagating from one side of the critical isovalue to394

the other side. Therefore, when a jump appears, we may only395

achieve two equal distances on the two sides of the critical iso-396

value.397

To tackle this problem, we propose a jump treatment that398

first identifies the isovalue v∗ of the jump and balances the dis-399

tances on its two sides. By definition, a jump is a discontinuous400

point in the distance functions. Therefore, v∗ can be detected401

through examining the following criterion402

d(vi,v
∗+ ε)>> d(vi,v

∗), and

d(v∗,v j)>> d(v∗+ ε ,v j). (1)

403
Instead of explicitly detecting v∗, we examine this criterion at404

each iteration of the refinement stage. Once a jump is encoun-405

tered, we fix the upper and lower bounds of the binary search406

so that the jump will reside in the bounded interval, and push407

the isovalues from one side of the jump to the other side. Let408

Vl = {vk| 0 ≤ k ≤ i} and Vr = {vk| j ≤ k < n} be the isovalue409

sets on the left and right sides of the jump, respectively, and let410

dµ(Vl) and dµ(Vr) be the average distances of the neighboring411

isovalues in Vl and Vr, respectively. Without loss of general-412

ity, assuming dµ(Vl)< dµ(Vr), we take an isovalue from Vl and413

push it to Vr, so that the set of isovalues Vl becomes sparser and414

the set of isovalues Vr gets denser. This will lead to an increase415

of dµ(Vl) and a decrease of dµ(Vr), thus achieving a better bal-416

ance of the average distances on both sides.417

3.4. Distance Measures418

We experiment our approach with two different distance419

measures: the mean of the closest point distances (MCP) [7]420

and the isosurface similarity map (ISM) measure [2]. Other dis-421

tance measures may be applied as well, according to the specific422

analysis goals.423

MCP distance. The MCP distance between two isosurfaces424

si and s j uses the Euclidean distance to compute the closest425

distance for every point pk on si to any point pl on s j and vice426

versa. The MCP distance of si and s j is defined as follows427

dMCP(si,s j) =
1

2
(d(si,s j)+d(s j,si)) , where

d(si,s j) =
∑pk∈si

minpl∈s j
‖pk − pl‖

|Si|
. (2)

428

ISM distance. The ISM measure inspects the mutual infor-429

mation of the distance fields corresponding to two isosurfaces430

si and s j. Based on the uniformly sampled distance fields of the431

two isosurfaces, a joint histogram can be computed to derive432

the mutual information. Again, we use the Euclidean distance433

to compute the distance fields for an isosurface s. For each434

grid point in the distance field, we record two closest distances435

from that point to the two isosurfaces si and s j, and compute436

the joint histogram of the distances. The mutual information437

between two random variables X and Y can be computed from438

their joint histograms as follows439

I(X ,Y ) = H(X)+H(Y )−H(X ,Y ), with

H(X) =− ∑
x∈X

pX (x) log(pX (x)), (3)

H(X ,Y ) =− ∑
x∈X

∑
y∈Y

pX ,Y (x,y) log(pX ,Y (x,y)),

440

where H(X) and H(Y ) are the marginal entropies and H(X ,Y )441

denotes the joint entropy of X and Y . In our case, X (Y ) is the442

distance from a grid point in the distance field to isosurface si443

(s j). We further normalize the mutual information444
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Î(X ,Y ) =
2I(X ,Y )

H(X)+H(Y )
, (4)

445

and convert the similarity measure into a distance measure446

dISM(si,s j) = 1− Î(si,s j). (5)

447

Approximation and acceleration. Distance measures be-448

tween isosurfaces often share two common steps: constructing449

isosurfaces and identifying the closest points of given points.450

When computing the ISM distance, the distance field of an iso-451

surface requires the distance from each grid point to the closest452

point on the isosurface to be computed. When computing the453

MCP distance between two isosurfaces, for each point on one454

isosurface, the closest point on the other isosurface needs to be455

identified. We take three considerations from [24] to accelerate456

these two key steps.457

First, we approximate each isosurface using a point set in-458

stead of extracting the actual surface. Generating the exact iso-459

surface produces multiple points and their connections for each460

voxel. However, the connections are usually not involved in461

the distance computation and the points are often unnecessarily462

dense. This approximation scheme splits the volume into uni-463

form blocks and examines each block to determine whether it464

contains the isosurface. The centers of blocks that contain the465

isosurface are considered as an approximation of the isosurface.466

Using this scheme, the error for computing the closest point is467

bounded by (
√

3/2)l (i.e., half the length of a block’s diagonal468

l).469

Second, we build one BVH-tree for each isosurface to or-470

ganize its approximation points. This allows the closest point471

on an isosurface to be queried efficiently. For construction effi-472

ciency, we use bounding boxes and leverage Karras’ algorithm473

[23] to build each BVH-tree on GPU in parallel. The BVH-trees474

are stored in the graphics memory, so that multiple closest point475

queries can be performed in parallel. In addition, given a point,476

we estimate the upper bound of the distance to the closest point477

by uniformly sampling the approximation points. Since the ap-478

proximation points are loosely ordered following the scanline479

order, this provides a tighter upper bound and therefore avoids480

many unnecessary branches of the BVH-tree to be traversed.481

Third, both the distance fields and the approximation of iso-482

surfaces can be downsampled to further reduce the time cost.483

The approximation can be downsampled by scanning blocks of484

voxels. The centers of blocks that contain the isosurface be-485

come the approximation in this case. The error of the closest486

point is bounded by (
√

3/2)l, where l is the edge length of a487

block in voxels. For the distance fields, it has been shown that488

the resolution can be reduced by eight folds along each dimen-489

sion without sacrificing the quality of the resulting ISMs [2].490

Through this acceleration measures, we can achieve a lin-491

ear time complexity considering all steps to compute neighbor-492

ing distances, except for building the BVH-trees. The initial493

approximation examines O(|V |) voxel, where |V | is the size of494

the volume. For the next step, building the BVH-tree, Karras re-495

ported the time complexity of O(n logn) in the worst case [23].496

Note that number of points from the approximation, n, is typi-497

cally much smaller than |V |. Using the BVH-tree, querying the498

closest point of a given point takes on average O(logn) steps.499

The number of queries for this is bounded by either the size500

of the distance field (O(|V |)) (when using ISM distance) or the501

size of another surface (O(n)) (when using MCP distance). Us-502

ing the GPU, multiple queries can be performed in parallel. For503

the ISM distance, we further compute mutual information, by504

examining every point in the distance field. In our experiment,505

we find that computing the distance between two isosurfaces506

already fully utilizes the computation power of a single GPU.507

Therefore, the cost of our approach is linear to the number of508

isosurfaces if a single GPU is used. Multiple GPUs, if avail-509

able, can be readily utilized as computing multiple distances is510

embarrassingly parallel.511

4. Results512

We mainly run our experiments on a desktop with an Intel513

Core i7-4790 quad-core CPU @ 3.6 GHz, 32 GB RAM, and514

an NVIDIA GeForce GTX 760 GPU accelerator. For further515

exploration of time-varying data sets, we leveraged a cluster516

with a shared GPU queue. The shared GPU queue uses the517

following systems:518

• 8 Quantum TXR231-1000R servers with dual Intel Xeon519

12-core CPU E5-2650 v4 @ 2.20GHz, 128 GB RAM,520

and 4 NVIDIA TITAN X (Pascal) GPU accelerators;521

• 8 Quantum TXR231-1000R servers with dual Intel Xeon522

12-core CPU E5-2650 v4 @ 2.20GHz, 128 GB RAM,523

and 4 NVIDIA Tesla P100-PCIE-16GB GPU accelera-524

tors.525

The queue distributes the workload on different machines de-526

pending on the availability. Since we were only interested in the527

number of iteration needed to achieve a good solution, we did528

not restrict our runs to a single hardware configuration. In the529

following, we first analyze our general approach quantitatively530

(Section 4.1) and qualitatively (Section 4.2), and then study the531

impact of the spike treatment and jump treatment (Section 4.3).532

4.1. Quantitative Study533

Quality measures. We evaluate the quality of a set of se-534

lected isovalues V = {v1, . . . ,vn} based on the distances among535

neighbors (i.e., d1,2, . . . ,dn−1,n) and the average distance dµ .536

For each distance di−1,i, we compute an error term ei−1,i to537

indicate the difference between this distance and the average538

distance539

ei−1,i =
‖di−1,i −dµ‖

dµ
, (6)

540 where dividing the absolute difference by the average distance541

normalizes the error term. In this paper, we quantify the quality542

of selected isovalues using the average error543

eµ =
∑n

i=2 ei−1,i

n−1
, (7)

544 and the maximum error545

emax = max
2≤i≤n

{ei−1,i}. (8)

546
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Figure 5: Parameter choices on error curves. (a) and (b) show results using the scalar dissipation rate (CHI) variable of the combustion data set at time step 20. (c)

and (d) show results using the gas temperature (GT) variable of the ionization data set at time step 150. (a) and (c) show results using the ISM distance, and (b)

and (d) show results using the MCP distance. Rows from top to bottom show results with < δe,δτ ,δr >=< 10,5,20 >, < 10,10,20 >, < 50,5,20 >, < 0,5,20 >,

< 1,5,20 >, and < 10,5,200 >, respectively. In each plot, the yellow and white background colors indicate the estimation and refinement stages, respectively. The

blue, orange, and green curves show the maximum error, average error, and best error over iterations.
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dimension avg. # iterations timing (sec.) average error refine difference to best (%)

data set x, y, z, v, t estimate refine estimate refine initial estimate best improve 20 iter. 40 iter. 60 iter. 80 iter.

atmosphere 147, 129, 49, 4, 121 11.1 57.9 3.36 27.61 0.437 0.153 0.081 47.29% 26.62 13.47 5.71 1.71

climate 360, 66, 27, 2, 120 11.8 47.5 2.87 22.21 1.060 0.251 0.165 34.12% 10.12 6.37 1.32 0.07

combustion 480, 720, 120, 5, 122 11.9 68.8 27.90 211.35 0.417 0.184 0.099 46.20% 25.39 13.16 5.31 1.16

hurricane 500, 500, 100, 11, 48 11.2 59.2 28.07 230.11 0.427 0.150 0.073 51.07% 40.50 18.08 7.65 3.92

ionization 600, 248, 248, 8, 199 11.5 63.9 20.70 164.63 0.597 0.287 0.188 34.33% 30.12 20.49 10.85 2.79

vortex 128, 128, 128, 1, 90 13.3 95.0 8.49 60.73 0.158 0.041 0.011 73.81% 41.42 28.95 20.22 15.27

(a)
dimension avg. # iterations timing (sec.) average error refine difference to best (%)

data set x, y, z, v, t estimate refine estimate refine initial estimate best improve 20 iter. 40 iter. 60 iter. 80 iter.

atmosphere 147, 129, 49, 4, 121 11.1 59.6 4.10 31.70 0.525 0.198 0.099 49.94% 57.60 19.91 8.92 2.74

climate 360, 66, 27, 2, 120 12.3 93.8 6.34 48.29 0.863 0.260 0.033 87.15% 206.16 104.33 53.49 27.29

combustion 480, 720, 120, 5, 122 12.9 72.2 91.51 646.55 0.560 0.205 0.099 51.54% 46.03 27.18 16.89 9.50

hurricane 500, 500, 100, 11, 48 12.8 88.8 49.57 379.31 0.281 0.061 0.010 82.17% 98.95 49.67 28.76 11.92

ionization 600, 248, 248, 8, 199 11.8 62.3 38.65 290.46 0.524 0.209 0.135 34.98% 27.79 15.26 6.08 2.72

vortex 128, 128, 128, 1, 90 11.0 80.0 15.42 126.15 0.533 0.194 0.072 62.81% 61.68 46.20 28.25 14.36

(b)

Table 1: Performances using (a) the ISM distance and (b) the MCP distance. The three columns of average errors show the initial average error of uniform sampling,

the average error after the estimation stage, and the average error of the best solution. The column “refine improve” shows the percentage of average error reduced

by the refinement stage. The four columns of “difference to best” show the percentage of difference between the average error of the best solution and the average

errors after 20, 40, 60, and 80 iterations in the refinement stage.

Since the maximum error is usually determined by the nature of547

the data sets and the distance measures, as will be shown in Sec-548

tion 4.3, we focus on the average error and use it to determine549

the best solution, i.e., the set of isovalues with the minimum550

average error. We do not use the variation or standard deviation551

to evaluate whether the distances are similar since both of them552

are dominated by the maximum error when the other errors are553

small.554

Parameter choices. Our approach has three parameters: δe555

the minimum number of iterations in the estimation stage, δτ556

the number of iterations at each step in the refinement stage,557

and δr the number of steps in the refinement stage. For sim-558

plicity, we use a 3-tuple < δe,δτ ,δr > to denote a parameter559

setting. Figure 5 shows the results of using two variables of the560

combustion and ionization data sets for both the ISM and MCP561

distance measures with six different sets of parameter values562

(< δe,δτ ,δr >=< 10,5,20 >, < 10,10,20 >, < 50,5,20 >,563

< 0,5,20 >, < 1,5,20 >, and < 10,5,200 >). For each run,564

we plot the maximum error, the average error, and the current565

best solution over iterations. The current best solution is the566

one with the minimum average error obtained up to the current567

iteration.568

We first investigate the impact of parameter δτ . In the top569

two rows of Figure 5, we fix the two parameters δe = 10 and570

δr = 20 and compare the performance of δτ = 5 (first row) and571

δτ = 10 (second row). At each step, having more iterations may572

potentially allow better convergence of the binary searches. But573

overall, we do not see a noticeable improvement of accuracy574

using δτ = 10 over δτ = 5 since the shape of the green curves575

(best solution) in the same column are mostly the same. With576

the same number of steps (δr = 20), this indicates that we ob-577

tain similar results using δτ = 10 but with twice the number of578

iterations as using δτ = 5.579

Next, we study the impact of parameter δe. In the first and580

third rows of Figure 5, we use δe = 10 and δe = 50, respec-581

tively. The other two parameters are fixed (δτ = 5 and δr = 20).582

We find that more than ten iterations in the estimation stage are583

usually unnecessary since the best solution is mostly unchanged584

after ten iterations, as shown in the third row of Figure 5. In585

addition, we do not find that having more iterations in the esti-586

mation stage helps the refinement stage reach the best solution587

faster. The green curves in the white background, correspond-588

ing to the best solution in the refinement stage, demonstrate589

similar decreasing patterns.590

However, we still find that the estimation stage is necessary591

for the refinement stage to quickly reach its best solution. In592

the fourth row of Figure 5, we experiment our approach with593

only the refinement stage, i.e., δe = 0. With this setting, we594

find that the refinement stage approaches the optimal solution595

much slower. For example, using CHI of the combustion data596

set and the ISM distance measure shown in (a), the best solution597

slowly improves over the 100 iterations without the estimation598

stage and reaches the minimum average error of 0.179 at the599

last iteration. With the estimation stage, the best solution until600

the 20-th iteration in the refinement stage has an average error601

of 0.121, which is already very close to the minimum average602

error of 0.120 for the entire 100 iterations. The computation603

time of each iteration in the estimation and refinement stages604

is similar, since both of them are dominated by the computa-605

tion of distances between neighbors. Therefore, including the606

estimation stage clearly gives a better performance.607

The fifth row shows the results with only one iteration in608

the estimation stage, i.e., δe = 1. In contrast to setting δe =609

10, letting δe = 1 leads to a more stable convergence, implying610

that the algorithm got stuck in a local optimum. Note that for611

the CHI variable at time step 20, we sometimes obtain empty612

isosurfaces. In this case, we run the estimation stage for more613

iterations until we obtain a set without empty surfaces.614

In the last row, we show the results with < δe,δτ ,δr >=<615

10,5,200 > (1000 total iterations in the refinement stage). For616

some data sets, we achieve a slightly better solution several hun-617

dreds iterations later than the best solution achieved within 100618

iterations. However, the overall convergence pattern does not619

change. We believe that, given the time-quality trade-off, a rel-620

atively good solution can be found within 100 iterations.621

In Figure 6, we show the visual differences among three sets622

of isosurfaces identified in 20, 100, and 1000 iterations, respec-623

tively, using the GT variable of the ionization data set at time624
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(a) (b) (c)

(d) (e) (f)

Figure 6: Comparison of the isosurfaces identified in different numbers of iterations using the GT variable of the ionization data set at time step 150. The isosurfaces

are selected from the best solutions after 20 ((a) and (d)), 100 ((b) and (e)), and 1000 ((c) and (f)) iterations in the refinement stage. The top row shows 17 selected

isosurfaces rendered together. The bottom row shows a single surface highlighting the fine differences.

step 150. While the best solution after 1000 iterations is found625

at iteration 333 with an average normalized error of 1.86%, the626

earlier ones 2.89% (at iteration 92) and 3.92% (at iteration 20)627

show small errors as well. Although the relative difference in628

average error seems enormous, their absolute difference is still629

small. Visual comparison confirms that similar isosurfaces are630

identified. In the top row of Figure 6, we show all isosurfaces631

corresponding to solutions at iteration 20 (a), 92 (b), and 333632

(c), respectively. We find that the overall difference is barely633

visible. Therefore, to inspect more closely, we depict the fourth634

isosurface of the selected sets in the second row. We can clearly635

see a difference between the first two images ((d) and (e)) and636

the last one (f). Furthermore, subtle differences between (d) and637

(e) can be seen. Although single surfaces differ among the dif-638

ferent solution sets, the overall sets look fairly similar, offering639

a comprehensive overview of the volumetric data set.640

In our experiment, we use a large enough value of δr = 20641

to study how the best solution evolves over iterations. We find642

that the setting of < δe,δτ ,δr >=< 10,5,20 > usually yields643

good results in terms of timing and error. Therefore, we use644

this setting for reporting the remaining results.645

Timing and quality. As shown in Table 1, we study the646

timing and quality performance using six data sets with differ-647

ent characteristics. For each data set, we use all the associated648

variables with three time steps selected (the beginning, middle,649

and ending time steps). Collected for each variable and each650

selected time step, the results are averaged for each data set.651

Table 1 (a) shows the results using the ISM distance. Our652

approach produces mostly equally spaced isosurfaces with the653

average errors smaller than 0.1 for most of the data sets except654

the climate (0.165) and ionization (0.188) data sets. This may655

be related to the structures of the data sets as their initial er-656

rors are the largest among these six data sets. The number of657

iterations in the estimation stage is stable for all data sets and658

slightly above our minimum number (δe = 10). In the refine-659

ment stage, our approach reaches the best solution around 60660

iterations for most of the data sets, except the vortex data set661

(averaging 95 iterations). The climate data set even reaches so-662

lutions that are close to the best solution within 20 iterations,663

with only 10.12% difference. The other data sets except the664

vortex data set have differences less than or around 20% within665

40 iterations and less than or around 10% within 60 iterations.666

Although having the slowest convergence, the vortex data set667

achieves the smallest average error (0.011) among all data sets668

after the refinement stage. In Figure 9 (k) and (l), we find that669

the green curve declines slowly after 15 iterations in the re-670

finement stage. The higher percentages shown in the table are671

probably due to the small average error. The average errors are672

smaller than 0.3 for all the data sets after the estimation stage,673

and the refinement stage further reduces the average errors by at674

least 30%, which confirms the necessity of the refinement stage.675

Our approach performs efficiently using the ISM distance. To676

process one volume, it takes around one minute for the atmo-677

sphere, climate, and vortex data sets, and less than five minutes678

for the other data sets.679

Table 1 (b) shows the results using the MCP distance. In680

general, we find that it takes more iterations for the refine-681

ment stage to approach the best solutions using the MCP dis-682

tance. Three data sets reach the best solutions after 80 iter-683

ations. Within 40 iterations, only two data sets obtain good684
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Figure 7: Comparison of our approach (top row), the ISM approach (middle row), and the k-means approach (bottom row) using the GT variable of the ionization

data set at time step 10. (a), (d), and (g) show the distance matrices of the selected isosurfaces. Note that the distances are normalized and all matrices use the same

color map. (b), (e), and (h) show all the selected isosurfaces in a single image. (c), (f), and (i) show the central regions of individual isosurfaces in separate images.
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Figure 8: Comparison of results using a set of 128 nearly equally spaced isosurfaces as input for the ISM approach (top row) and the k-means approach (bottom

row) using the GT variable of the ionization data set at time step 10. (a) and (d) show the distance matrices, (b) and (e) show the representative isosurfaces rendered

together, while (c) and (f) show the individual surfaces.

solutions whose average errors have less than 10% differences685

from the best solutions. For five of the data sets, it takes 80 it-686

erations to reach reasonably good solutions with less than 15%687

difference from the best solutions. However, we find that the688

average errors are usually smaller using the MCP distance. The689

largest average error is 0.135 using the ionization data set, and690

all the other data sets have average errors smaller than 0.1. The691

refinement stage provides more significant improvement using692

the MCP distance. It reduces the average error by at least 80%693

for two data sets and 49% for five data sets. Actually, we find694

that the data sets with a smaller best error usually benefit more695

from the refinement stage and take more iterations to reach the696

best solution. This is likely related to the intrinsic structures of697

the data sets. The distance functions are probably more con-698

tinuous using these data sets so that the binary search in the699

refinement stage is less likely to be trapped by the discontinu-700

ous points in the distance function. Although the average er-701

ror is smaller, we find that the MCP distance takes more time702

to compute. The combustion data set requires the longest to-703

tal computation time of around nine minutes. The computation704

time for the other data sets varies from one to seven minutes.705

4.2. Qualitative Study706

Comparison to other approaches. For visual comparison,707

we generate eight isosurfaces of the GT variable of the ioniza-708

tion data set at time step 10 using our approach, the ISM ap-709

proach [2], and k-means clustering [6]. For our approach, we710

fix the minimum and maximum isovalues and compute eight711

isovalues between them. For the other approaches, we evenly712

sample 128 isovalues and identify eight representative ones.713

We use Imre et al.’s [24] approximation to compute the ISM714

distances between the sampled isovalues for all three variants.715

The implementation of the ISM algorithm is based on the prior-716

ity queue algorithm [2] and the k-means clustering is based on717

Lloyd’s algorithm [25]. Figure 7 (a) shows the distance matrix718

of the isosurfaces selected by our approach. Note that in this,719

and the following images, the distance values are in [0,1]. We720

can see that the cells recording the differences between neigh-721

boring isosurfaces (i.e., the cells that are next to the diagonal722

cells) share similar colors. This indicates similar distances be-723

tween neighbors. Figure 7 (b) confirms this observation as the724

selected isosurfaces distribute evenly in the space. The eight725

isosurfaces demonstrate a smooth transition of the features at726

the center of each isosurface, as shown in Figure 7 (c).727

In contrast, five of the representative isosurfaces selected by728

the ISM approach and four of the representative isosurfaces se-729

lected by the k-means approach are similar. In Figure 7 (d), we730

can see a 5× 5 block at the bottom left corner of the distance731

matrix of the representative isosurfaces, indicating high similar-732

ities among the corresponding isosurfaces. Similarly, Figure 7733

(h) contains a 4×4 block.734

In Figure 7 (e), we can see that the five similar representa-735

tive isosurfaces collapse in space. Therefore, five of the feature736

regions in the representative isosurfaces actually corresponds737

to the nearly identical structure, as shown in Figure 7 (f). Al-738
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Figure 9: Typical error curves over iterations using the ISM distance (first and third column) and the MCP distance (second and fourth). (a) and (b) show the results

of the curl magnitude (CURL MAG) variable of the atmosphere data set at time step 50. (c) and (d) show the results of the temperature (TEMP) variable of the

climate data set at time step 270. (e) and (f) show the results of the heat release (HR) variable of the combustion data set at time step 60. (g) and (h) show the results

of the cloud moisture mixing ratio (QCLOUD) variable of the hurricane data set at time step 40. (i) and (j) show the results of the H mass abundance (H) variable

of the ionization data set at time step 150. (k) and (l) show the results of the vortex data set at time step 30.

though the ISM approach has a scheme to prevent similar iso-739

surfaces to be selected [2], this scheme may be ineffective when740

the input is biased. As a matter of fact, more than half of741

the sampled isosurfaces in this volume correspond to the same742

structure. In general, we find that the distance matrix of the743

representative isosurfaces identified by the ISM approach often744

exhibits this kind of blocking effect for the structures captured745

by more sampled isosurfaces. This echoes that it is critical to746

producing unbiased isosurfaces as input for the surface-based747

volumetric data analysis algorithms. In addition, Figure 7 (h)748

shows the same effect for the k-means clustering with four sim-749

ilar isosurfaces selected. In Figure 7 (i), a closer inspection750

reveals that three of the four surfaces are very similar, with the751

fourth one being closely related to them.752

In contrast, Figure 8 depicts the representative isosurfaces753

selected by the ISM [2] and k-means clustering [6] approaches754

using 128 nearly equally spaced isosurfaces as input instead of755

the uniformly sampled ones. We use the GT variable of the756

ionization data set at time step 10. In (a) and (d), the distance757

matrices do not show the strong blocking effect, which means758

that the problem of oversampling certain value ranges could be759

circumvented. Compared to Figure 7, we can see that there is760

a shift between the representative surfaces selected, allowing to761

further explore previously overseen isosurfaces. For example,762

the third surface in the second row (pink) in both (c) and (f) has763

not been discovered previously. This further indicates that an764

unbiased input may improve the understanding of the underly-765

ing surfaces.766

Comparison of ISM and MCP distances. For a qualitative767

study of the impact of distance measures, we first investigate the768

error curves using the ISM distance and the MCP distance, as769

shown in Figure 9. For each volume, we chose to identify 15770

equally spaced isovalues between the minimum and maximum771

isovalues. In general, the curves confirm our finding in Table 1772

that the MCP distance has a slightly smaller average error. The773

only exception is the vortex data set. Figure 9 (k) and (l) show774

that the MCP distance converges slower with unstable spikes of775

the maximum error curve for this data set. Figure 10 shows the776

distance matrix and a set of selected isosurfaces using the vortex777

data set for each distance measure. In Figure 10 (a), we can778

see that the distances between neighbors are actually similar779

for both measures. However, the two distance measures behave780

differently with this data set: the MCP distance changes in a781

smoother manner when the isovalues become more different,782

while the ISM distance seems to better distinguish isovalues in783

a smaller value range. For each distance measure, we evenly784
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Figure 10: Comparison of the ISM distance (top row) and the MCP distance (bottom row) using the vortex data set at time step 30. (a) shows the distance matrices

of the selected isosurfaces. (b) to (f) show the two sets of isosurfaces chosen by the respective distance measures.

select five isosurfaces (the second, fifth, eighth, 11th, and 14th)785

from the set of fifteen isosurfaces, as shown in Figure 10 (b) to786

(f). We find that the ISM distance identifies more large-scale787

isosurfaces while the MCP distance selects more small-scale788

isosurfaces. This is probably because the ISM distance better789

distinguishes the large isosurfaces and the MCP distance better790

differentiates the small ones using this data set.791

We then investigate the combustion data set, for which the792

average errors are similar using both measures. We show the793

results of the HR variable in the top two rows of Figure 11. For794

this variable, although both the error curves in Figure 9 (e) and795

(f) and the distance matrices in Figure 11 (a) indicate smaller796

errors using the MCP distance, we find that the isosurfaces se-797

lected using the two distance measures are actually similar, as798

shown in the top two rows of Figure 11 (b) to (d). The isosur-799

faces are the ninth, 12th, and 14th from the fifteen selected ones.800

The first nine isosurfaces all demonstrate small-scale structures,801

which are visually similar. For the YOH variable, the distance802

matrices and the fourth, eighth, 12th isosurfaces (evenly sam-803

pled) are shown in the bottom two rows of Figure 11. We can804

see that the ISM distance selects more small-scale isosurfaces,805

which contradicts our findings with the vortex data set. We ac-806

tually find that both measures are sensitive to changes on small-807

scale isosurfaces in general. This leads to the conclusion: the808

behavior of the two distance measures heavily depends on the809

spatial distribution of the isosurfaces. While large isosurfaces810

usually have stable spatial distributions, changes (even if they811

are tiny) on small isosurfaces may lead to significantly differ-812

ent spatial distributions. Therefore, due to the nature of these813

two measures, the differences among small isosurfaces are of-814

ten emphasized.815

4.3. Discussion816

Time-varying data sets. We further experiment possible817

solutions to improve the performance of time-varying data sets.818

In Section 4.1, we demonstrate that the refinement stage con-819

verges much faster with the use of the estimation stage, which820

better vol. (%) # iter. (%)

data set # vol. best 10% diff. best 10% diff.

atmosphere 242 87.6 91.3 57.2 38.7

climate 151 72.9 99.3 91.4 35.20

combustion 61 0.0 1.6 N/A 18.93

hurricane 19 79.0 84.2 42.6 33.7

ionization 25 16.0 24.0 57.3 57.2

vortex 45 77.8 82.2 21.0 18.4

Table 2: Using the isovalues selected at the previous time step as initial isoval-

ues for the next time step. “# vol.” shows the number of volumes experimented

with. “better vol. (%)” shows the percentage of volumes achieving better re-

sults. “# iter. (%)” shows the percentage of iterations spent to achieve better

results. “best” indicates that the result is better than the best solution obtained

from the normal run, and “10% diff” indicates that the result is within 10%

difference from the best solution of the normal run.

indicates the importance of a good initial set of isovalues. Ob-821

serving that the structures of volumes usually change gradually822

over the time steps, we hypothesize that using the isovalues se-823

lected for the same variable at the previous time step will speed824

up the computation. Although this strategy has not been fully825

studied, we discuss some preliminary findings. We use a clus-826

ter with a shared GPU queue to experiment with the six data827

sets shown in Table 2. For each variable, we have a normal828

run that starts from the uniform sampling of the value range for829

each time step, and a run that starts from the isovalues selected830

at the previous time step. Each computation node in the GPU831

queue performs one run of a variable. Since the cluster contains832

computation nodes of different configurations, we compare the833

performance using the number of iterations instead of the com-834

putation time.835

Our experiment shows that we do not always get better re-836

sults by starting from the isovalues at the previous time step.837

Keeping the isovalues produces better results than the normal838

run for more than 70% of the volumes with four data sets. How-839

ever, for the combustion and ionization data sets, this strategy840

fails to produce better or even similar results. For the volumes841

that better results are obtained, it generally takes much fewer it-842
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Figure 11: Comparison of the ISM distance and the MCP distance using the heat release (HR) and hydroxyl radical mass fraction (YOH) variables of the combustion

data set at time step 60. Rows from top to bottom show the results using HR with ISM distance, HR with MCP distance, YOH with ISM distance, and YOH with

MCP distance, respectively. (a) shows the distance matrices of the selected isosurfaces. (b) to (d) show the four sets of isosurfaces chosen by the respective

combinations of variable and distance measure.

erations to achieve the better results (less than 60% for three of843

the four data sets). For the vortex data set, it only takes 21% of844

the number of iterations compared to the normal run. For five845

of the data sets, it takes less than 40% of the number of itera-846

tions to achieve a similar result. However, the conditions under847

which this strategy will perform effectively are still not clear.848

We further investigate the impact of the overlap percentage of849

the value ranges at neighboring time steps and the average error850

at the previous time step, but none of them exhibits a signifi-851

cant impact on the performance. It seems that the performance852

of this strategy heavily relies on the nature of the data since for853

all the data sets shown in Table 2, the percentage of volumes854

with better results is either higher than 70% or less than 20%.855

If we can determine in advance that a time-varying data set is856

suitable for this strategy, nearly 2× speedup can be obtained.857

Spike treatment. To analyze the impact of the parameter858

δs, we conduct an experiment using the common setting of <859

δe,δτ ,δr >=< 10,5,20 > but varying δs from 0.05 to 0.25 in860

steps of 0.05. Note that the original approach without spike861

treatment can be considered as setting δs = ∞, meaning that all862

spikes are tolerated and will not be explicitly treated. Figure 12863

shows the results for the GT variable of the ionization data set864

at time step 60. The figure represents typical error curves for865

the ISM distance measure with different δs settings. We can866

see that using a high tolerance value for δs, as seen in (a) the867

original (δs = ∞), (e) δs = 0.2, and (f) δs = 0.25, yields high868

spikes in the maximum error, resulting in spikes in the average869

error. Dampening those instabilities by reducing the threshold870

translates to fewer negative changes as can be seen in (b) δs =871

0.05, (c) δs = 0.1, and (d) δs = 0.15. This further allows us872

to achieve a lower average error for the two variations shown873

in (c) and (d). Using δs = 0.05 may easily get trapped in a874

local optimum, since this parameter setting is too strict to allow875

any drastic changes that could resolve the problem. Setting δs876

to 0.1 or 0.15 leads to the most stable convergence, showing877

that those values offer a good balance between allowing too878

little changes (δs = 0.05) and allowing too much changes (δs ≥879

0.2). However, the best average errors achieved by setting δs =880

0.1,0.15,0.2,0.25 are similar. We will study the impact of δs to881

the best average errors using more data sets later in this section.882

Jump treatment. To analyze the impact of jumps and our883

treatment, we experiment our approach with several configura-884

tions (with and without spike treatment) using the GT variable885

of the ionization data set at time step 20. The error curves are886

shown in Figure 13. In (a), we can see the original without jump887

or spike treatments. The rest shows the different parameter set-888
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Figure 12: Comparison of the impact of δs on the convergence and the final result using the ISM distance on the GT variable of the ionization data set at time step

60. (a) shows the original error curve over the set of iterations (i.e., δs = ∞). (b) to (f) show the configurations with δs = {0.05,0.1,0.15,0.2,0.25}, respectively.

tings for δs to treat spikes while handling jumps at the same889

time. In our experiments, we encounter at most three jumps890

during the refinement stage using this data set. In (c) to (e),891

a strict choice of δs = 0.05,0.1,0.15 restricts isovalue changes892

to a degree where it is not possible to detect a single jump in893

the distance functions. By allowing more drastic changes to894

the isovalues ((f) δs = 0.20, (g) δs = 0.25, and (b) δs = ∞), we895

can see that jumps appear around strong fluctuation on the er-896

ror curve. Treating these jumps helps to reduce the fluctuation897

from that point on. In (b), although the error curve still has898

strong spikes after treating the first jump, it finds a better so-899

lution than the original approach in a later iteration. An even900

stronger reduction in fluctuation of the error curve can be seen901

in (f). Dampened by spike treatment, the first jump is detected902

at iteration 70 and its treatment allows the curve to come down903

further, achieving the best solution for this data set at iteration904

90. However, jump treatment does not always lead to better905

convergence or lower average and maximum error values. Fig-906

ure 13 (g) showcases this. Instantly after the jump around iter-907

ation 50, the error function cannot recover, resulting in another908

jump quickly. This results in multiple fixed isovalues, allowing909

fewer changes in the set of isovalues at every iteration, which910

hinders the optimization process.911

As mentioned previously, it is not always clear beforehand912

whether or not jump treatment improves the best solution due to913

multiple reasons. First, we treat each jump when it is detected at914

the refinement stage without the knowledge of all jumps. There-915

fore, treating one jump may lead to the appearance of an undis-916

covered jump. As shown in Figure 13 (g), the treatment may917

not be effective when multiple jumps are encountered. Second,918

pushing an isovalue over a jump does not guarantee that the919

distances on the two sides of the jump will be equal, especially920

when the jump occurs close to the end of the value range. In ad-921

dition, this situation is often aggravated when additional jumps922

are encountered.923

Configuration selection. As we have seen before, treating924

jumps and spikes can both have a positive or a negative impact925

on the achieved solution. In order to recommend an appropri-926

ate configuration, we run experiments among all time steps of927

different data sets and variables. Figure 14 shows the mean and928

standard errors of the best average errors with different config-929

urations using four variables from four different data sets.930

The top row shows the results collected using all the time931

steps. We can see that in most of the cases, one of our conver-932

gence stabilization configurations improves the overall solution933

or yields a solution similar to the original one. For (a), the CHI934

variable of the combustion data set, our experiment shows that935

treating the jumps but ignoring spikes outperforms the other936

methods by a huge margin. This is likely due to an initial set of937

isovalues being stuck in a local optimum and can only escape938

it by treating jumps while allowing huge spikes. For (b), the H939

variable of the ionization data set, we witness that a strict pol-940

icy for spikes yields the best results. Interestingly, we can see941

that all configurations, except for δs = 0.05,0.1 without jump942

treatment, and δs = 0.2 with jump treatment, have a very high943

standard error. This indicates that the structure of the volume944

differs heavily between time steps. In contrast, a loose spike945

treatment (δs = 0.2,0.25) has a small standard error among all946

configurations using the SALT variable of the climate data set,947

as shown in (c). Similarly, in (d), the bar chart shows that too948

strict spike treatment can have a strong negative impact on the949

performance, using the VEL MAG variable of the atmosphere950

data set.951

As there is no clear favorite among all data sets, we sam-952

ple the first five time steps of a data set to see if we can pre-953

dict a good configuration for the full run. These results are954

demonstrated in the bottom row of Figure 14. In (a) and (b),955

our method performs consistently over the time steps, showing956

the possibility to predict the best variation from the first couple957

of time steps. In (c), although we mispredict the best configura-958
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Figure 13: Error curves generated with different configurations using the GT variable of the ionization data set at time step 20. (a) shows the original approach

without jump and spike treatments. (b) shows a configuration with only jump treatment. (c) to (g) show configurations with both jump and spike treatments while

δs increases from 0.05 to 0.25 in steps of 0.05. Dots on the curves indicate the iterations when jumps are detected.

tion, the predicted one still shows significant improvement over959

the original. However, in (d), the bar chart indicates that a bad960

configuration is recommended based on the results using the961

first five time steps. Although the recommended configuration962

(δs = 0.15 with jump treatment) performs similarly as the orig-963

inal approach, we fail to spot the best configuration (δs = 0.15964

without jump treatment). In this example, the high standard er-965

rors among the first five time steps may indicate that the inter-966

mediate favorite is not a stable one for all the time steps. Over-967

all, we cannot always predict the exact configuration that yields968

the best result for a given data set. However, when considering969

the first couple of time steps, we often identify a configuration970

of the convergence stabilization that outperforms the original.971

5. Conclusions972

We have presented a solution for identifying nearly equally973

spaced isosurfaces for volumetric data sets. Motivated by find-974

ing a small set of isosurfaces to better represent the underly-975

ing volume data in the spatial domain, we design a two-stage976

approach to seeking an approximated solution that maintains977

a good balance between quality and performance. The result-978

ing surfaces are nearly equally spaced, and the user can freely979

choose the number of surfaces. Our study demonstrates the ef-980

fectiveness of the proposed approach and leads to valuable feed-981

back. To conclude, we summarize our key findings and major982

recommendations as follows.983

First, our two-stage strategy is effective for achieving the984

best solution in a small number of iterations. Our experiment985

shows that both stages are necessary: without the estimation986

stage the refinement stage would require a lot more iterations to987

converge, and the estimation stage may never achieve a solution988

with a similar error as the refinement stage does.989

Second, our approach can produce nearly equally spaced990

isosurfaces for most of the data sets, although some error may991

be introduced by jump discontinuities in the distance functions.992

These points may divide the entire range of isovalues into mul-993

tiple segments and prevent the isovalues from moving between994

neighboring segments, resulting in unequal distances among the995

segments. Our convergence stabilization scheme alleviates this996

situation by treating spikes and jumps explicitly, although the997

effectiveness depends on the specific data set.998

Finally, our approach is independent of the choice of the999

distance measure. This provides great flexibility for users to1000

apply a suitable distance measure according to their own needs.1001

Our experiment performs effectively using both the ISM and1002

MCP distance measures with a common parameter setting of1003

< δe,δτ ,δr > =< 10,5,20 > for all the data sets. To ensure1004

smoother convergence without a strong restriction, we recom-1005

mend using δs = 0.2 and ignoring jumps, as these settings either1006

outperform or show similar results as the original across all data1007

sets.1008
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Figure 14: Comparison of the best average errors with different settings using (a) the CHI variable of the combustion data set, (b) the H variable of the ionization

data set, (c) the salinity (SALT) variable of the climate data set, and (d) the velocity magnitude (VEL MAG) variable of the atmosphere data set. The top row shows

the results using all the time steps and the bottom row shows the results using only the first five time steps. In each chart, a bar represents the mean of the average

errors achieved over the respective time steps of the corresponding data set (lower is better). The bars from left to right correspond to the original (δs = ∞), spike

treatment with δs = 0.05,0.1,0.15,0.2,0.25, and jump and spike treatments with δs = ∞,0.05,0.1,0.15,0.2,0.25, respectively. The error bars in red indicate the

standard error of the mean. The bars in green represent the best settings.
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