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Abstract

Isosurfaces are an important visual representation of volumetric data sets and isosurface extraction and rendering remains one of
the most popular methods for volume visualization. Previous works identify a small set of representative isosurfaces from a set of
sample ones, providing a concise description of the underlying volume. However, these methods do not lend themselves to equally
spaced isosurfaces, i.e., keeping the same distance between neighboring isosurfaces, which can be advantageous from the user’s
perspective in terms of visual summarization and interactive exploration. In this paper, we present a new solution that efficiently
identifies a set of nearly equally spaced isosurfaces for a given volume data set. Our approach includes an estimation stage of
linear interpolation and a refinement stage of binary search in order to balance the tradeoff between quality and performance. The
refinement stage can incorporate spike and/or jump treatments to possibly improve the convergence. Experimenting with multiple
data sets of different sizes and characteristics, we perform both quantitative and qualitative studies, demonstrate the efficiency and

effectiveness of our approach, and summarize our findings.
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1 1. Introduction

2 Numerical simulations are extensively used by scientists to
s observe various phenomena that are not easily captured by real
4« experiments. These simulations normally produce an ample
s amount of data, requiring effective tools to visualize and an-
¢ alyze them. A typical visualization presents the simulation re-
7 sults as a series of volumes. One of the essential techniques to
s gain insights into these volumes is isosurface rendering. To de-
s scribe the structure of a volume, one can extract and visualize
10 isosurfaces. These surfaces describe surface geometries with all
1 points sharing the same isovalue. For insightful visualization,
12 it is critical to select a set of salient isosurfaces that captures
13 different features and characteristics of the underlying volume.
12 One common solution is to select a set of distinctive or
1s representative isosurfaces from sample ones based on a certain
16 similarity measure. For example, Tenginakai et al. [1] measured
17 the similarities between isosurfaces using data histograms and
1 higher order moments. Bruckner and Moller [2] derived dis-
19 tance fields from the sample isosurfaces and utilized mutual in-
20 formation to evaluate the similarity between the distance fields.
21 The similarity values are organized in a matrix form named
22 isosurface similarity map from which the representative isosur-
23 faces are selected.

2 One major challenge exists for these approaches: it is es-
25 sential for them to start with a set of reasonably good sample
26 isosurfaces that capture different features in a balanced way.
27 Otherwise, the features missing in the samples will not be re-
2s covered in the later stages, or the selection may be biased by
20 favoring the features corresponding to more samples. However,
a0 straightforward sampling techniques do not guarantee the de-
ar sired set of samples. Uniform sampling is likely to miss some
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a2 features when many of them reside in a small value range. Al-
as though sampling according to histograms of voxel values, i.e.,
a placing more samples in the value ranges with more voxels,
ss may alleviate this problem to some degree, it still suffers from
s oversampling as the value ranges with more voxels do not nec-
a7 essarily indicate more distinctive features.

3 Another key challenge is posed by the scale and complex-
% ity of the data generated by numerical simulations. To obtain a
s comprehensive understanding of physical phenomena, the sim-
a1 ulations usually involve multiple variables and their interac-
42 tions over time, resulting in large-scale time-varying multivari-
43 ate volume data sets. This requires a surface-based analysis to
4 be efficient in two aspects. First, the distance between two iso-
ss surfaces should be measured efficiently. Second, the number of
ss distance calculations should be minimized so that one can af-
47 ford to take a full run and draw a complete picture of the data.
s Previous approaches focused more on the definitions of similar-
49 ity measures and less on performance optimization. For exam-
so ple, it took around 25 minutes to process a single volume with
s1 the isosurface similarity map approach [2]. This cost becomes
s2 prohibitive when analyzing a typical time-varying multivariate
s data set with tens of variables and hundreds of time steps.

54 In this paper, we present an approach for identifying nearly
ss equally spaced isosurfaces, so that the distance between neigh-
ss boring surfaces is as similar as possible to the average distance.
s7 In flow visualization, creating evenly spaced or mutually distant
ss streamlines or stream surfaces has been well studied [3, 4, 5].
ss However, to the best of our knowledge, creating equally or
e evenly spaced isosurfaces has not been investigated. Our solu-
et tion ensures that the isosurfaces corresponding to neighboring
e isovalues are distinct enough according to the given distance
& measure. When identifying a small number of isosurfaces, we
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e« can consider the resulting isosurfaces as salient features on their
es own. Compared to the similarity-based approaches for identi-
e fying representative isosurfaces, our approach does not require
o7 the isosurfaces to be selected from a limited set of sample ones.
es It not only has a wider search space but also explicitly controls
6o over the resulting isosurfaces, which can potentially lead to bet-
70 ter results. Compared to the topology-based approaches, our
7+ method is more flexible when equipped with different distance
72 measures. Although this offers great flexibility, our method re-
73 lies on features being a function of isovalues. Given that pre-
7« condition, our algorithm may capture the topological changes if
75 the distance measure is topology-aware, and it may produce iso-
76 surfaces with distinct shapes if the distance measure is shape-
77 aware. In addition, when a large set of isosurfaces is identified,
78 the results can serve as reliable input to other volume analysis
7 and visualization tasks. In our experiment, we find that tak-
s ing our results as the input, the representative isosurfaces se-
s lected using isosurface similarity map [2] and k-means [6] can
e2 be improved. The comparison results will be presented in Sec-
83 tion 4.2.

s Our approach includes two stages: an estimation stage that
ss quickly converges to a rough solution within a few iterations,
s and a refinement stage that optimizes the estimation. For both
&7 stages, only the distances between neighboring isosurfaces are
ss needed at each iteration. Leveraging the parallel computation
s of GPU, we can process each iteration efficiently. In addition,
% our approach can be flexibly customized with various distance
o1 measures to meet different needs. In our experiment, we com-
9 pare the performance and sampling results using the isosurface
os similarity map (ISM) measure [2] and the mean of the closest
s« point distances (MCP) [7].

o The contributions of our work are as follows.

9% e First, we present a feasible solution to identifying nearly

97 equally spaced isosurfaces, an important yet seldom in-
% vestigated problem. We shall see that our solution does
9 not fully converge in general but we are able to find a

solution with acceptable quality and performance trade-
off. Compared to similarity- or topology-based methods,
the set of isosurfaces generated by our method provides
an advantageous visual summarization of the volumetric
data, especially when the number of surfaces is small.
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Second, we perform a thorough study to compare param-
eter choices, distance measures, and qualitative results,
followed by a list of findings for other researchers to fol-
low. The proposed solution can be adopted by others for
incorporation into their high-performance volume data
analysis and visualization workflow.
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11 2. Related Work

To analyze and visualize volumetric data sets, researchers
113 have sought different kinds of methods to understand the struc-
14 tures of volumes. The distribution-based methods focus on the
15 distributions of certain properties of the volume and identify the

112

16 salient structure based on their corresponding statistical char-
17 acteristics. The topology-based methods analyze the topologi-
s cal structure of the volumes and highlight the structures corre-
19 sponding to topological changes. The similarity-based methods
120 measure the similarity between volume representations such as
121 isosurfaces and derive the representative ones based on their
122 similarities.

123 Distribution-based methods. Understanding the relation-
124 ships between the volume distribution and the isosurfaces al-
12s lows us to identify salient features. For instance, Tenginakai et
126 al. [1] detected salient isosurfaces using local higher order mo-
12z ments (LHOMs). LHOMs are computed and plotted for differ-
12 ent sample values for a semi-automatic selection. Scheidegger
120 et al. [8] applied Federer’s Coarea Formula to improve the iso-
120 surface statistics by weighting with the inverse gradient mag-
1 nitude. Duffy et al. [9] developed a mathematical model for
132 continuous functions and proved the convergence to continu-
133 ous statistics for regular lattices. Pekar et al. [10] proposed to
134 use Laplacian weighted histograms for significant isovalue de-
135 tection. However, the distribution of a volume data set does not
136 translate to the spatial relationship among surfaces extracted,
137 which is the focus of this paper.

138 Topology-based methods. These methods extract struc-
130 tures that essentially characterize properties of space such as
140 convergence, connectedness, and continuity, providing a con-
141 cise description of the overall structure of a volume. Bajaj
12 et al. [11] proposed the contour spectrum, an interface com-
143 bining the contour tree together with a variety of isosurface
144 Statistics, such as area and enclosed volume. Bremer et al.
1s [12] presented the cancellation tree for describing the simpli-
16 fication of a Morse-Smale complex. Each simplification step
147 cancels a pair of critical points, i.e., minima and maxima. The
s cancellation tree encodes the simplification steps and provides
149 the connections among critical points. They further extended
1s0 this approach to the hierarchical merge tree, which is a track-
151 ing graph that describes the temporal evolution of features [13].
152 Carr et al. [14] proposed to use the contour tree to encode the
1s3 nesting relationships among isosurfaces. It also serves as an in-
1s4 terface that allows users to select contours for operations such
15 as removal, evolution, and tracking. Correa et al. [15] intro-
1ss duced the topological spine that connects critical points along
157 the steepest ascending or descending directions. In addition, it
158 includes geometric and contour nesting information, providing
159 better spatial reasoning.

Although rigorous, topology-based methods normally cap-
161 ture minute topological changes, which lead to a large number
162 of isourfaces for a volume with complex topological variations.
13 This, however, may not always be necessary for users to un-
164 derstand the overall structure of the volume. In contrast, our
165 approach generates a small set of nearly equally spaced iso-
surfaces which are more amenable for user observation: each
surface is distinct enough and they are mutually distant in the
space. Such a set of isosurfaces could also be useful as a visual
summarization of the underlying volume.

170 Similarity-based methods. Recent works often seek to
171 measure the similarities between a set of sample isosurfaces and
172 derive the structure of the entire volume. For example, Bruck-
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173 ner and Moller [2] evaluated the similarity between isosurfaces
17+ and organized them in the form of an isosurface similarity map.
175 The similarity between two isosurfaces is defined as the mu-
176 tual information shared by the distance fields of the two isosur-
177 faces. Representative isosurfaces are identified using the iso-
17e surface similarity map, which stores all pairwise similarity val-
17s ues. Haidacher et al. [16] extended this approach to compare
180 isosurfaces extracted from multiple volumes. Wei et al. [17]
11 proposed a similarity measure between two isosurfaces based
182 on intermediate level-set surfaces. The values on the interme-
1s3 diate surfaces are sampled from the volume and their entropy
184 values are used to evaluate whether the level-set surfaces align
1s well with the intermediate isosurfaces. Recently, Ma et al. [6]
18 used a tensor-based perceptual distance measure that simulates
17 the human visual system and employed k-means clustering to
188 select representative isosurfaces for comparing different volu-
1o metric data compression approaches.

These methods, including our approach, require distance
191 fields of isosurfaces to be computed. As a common need of
122 many applications, accelerating the distance field computation
193 has been extensively studied [18, 19, 20, 21, 22]. Yu et al. [22]
104 presented the parallel distance tree that distributes the workload
195 to multiple processors guided by a coarse global distance tree.
1ss Each processor then constructs a local distance tree and derives
17 the distance fields. To compute the distance field, the bound-
18 ing volume hierarchy (BVH)-tree is often used to identify the
199 closest points. Liu and Kim [20] proposed the multi-BVH that
200 combines the octree and BVH-tree. The use of octree provides
201 additional information to reduce the number of BVHs to be tra-
202 versed. Karras [23] introduced a GPU-based method to con-
203 struct BVH-trees in parallel. which is by far the fastest GPU
204 solution available. In Section 3.4, we will discuss how we use
20s Karras’ algorithm to accelerate distance computation.

190

206 3. Our Approach

207 We propose a two-stage approach for finding nearly equally
208 spaced isosurfaces. Both stages run over several iterations aim-
200 ing for convergence. First of all, during the estimation stage, we
210 measure the distance between every pair of neighboring isosur-
211 faces and resample the isovalues based on these distances using
212 linear interpolation. This stage, however, assumes piecewise
213 linearity of the distance function between neighboring isosur-
214 faces, which does not hold in general. In our experiment, it ap-
215 proaches approximate solutions in a few iterations but normally
216 does not converge to the optimal solution. Therefore, we intro-
217 duce the refinement stage that adopts a binary search strategy to
218 adjust each isovalue so that its surface has equal distance to its
219 two neighbors. By repeating this process for several iterations,
220 we achieve nearly equal distances between all neighboring iso-
221 surfaces.

In this section, we denote a set of isovalues at iteration T
2z as V' = {v],v},..., v}, the isosurface corresponding to an iso-
22« value v7 as s7, and the distance between two values v} and vf
225 as the distance between their respective surfaces, d; j=, or more
26 generally, d(vi,v;).

222
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Flgure 1: The estimation stage. Identifying isovalue v}, | based on its left neigh-

bor v} and the distances evaluated at the previous time step T — 1.

227 3.1. Estimation Stage

228 For the estimation stage, we start from a uniformly sam-
20 pled set of isovalues V° and gradually adapt the isovalues based
20 on the previous set of isovalues and their distances. Specifi-
231 cally, at each iteration 7, we first approximate the isosurface
232 using the approximation scheme of Imre et al. [24] (refer to
233 Section 3.4), sT*l of each isovalue vT*l at the previous itera-

234 tion T — 1 and evaluate the dlstance dfl +11

25 Of neighboring isovalues v}~ "and vl +1 using their correspond-
236 ing approximated isosurfaces. The average distance dﬁ’l =

a7 (L0 ldfl +11) /(n—1) (u stands for the average) is considered
23 to be the target distance to achieve at the current iteration 7.

239 Then, starting from the first isovalue v} = viyin, Where vy is
200 the minimum isovalue, we resample each isovalue v/, ; that has
201 approximately the target distance dﬁ’l to its left neighbor v},
222 as illustrated in Figure 1. The distance is estimated under two
203 assumptions. First, the distance between neighboring isovalues
244 can be linearly interpolated. For example the isovalue v} falls
25 between two previous isovalues vk 1 and vi . We assume that

between every pair

26 the distance between v} and v; " can be linearly interpolated
27 using the distance dy 1' & Second, we assume that the distance
2 can be added to estimate the distance between non- nelghbonng
29 isovalues. For example, we assume that the distance d; ;" can
250 be obtained using the summation of all neighboring dlstances
251 between v} ! and Vi Lie., di; ! d,ka +otds 1} In this
252 Way, we can 1terat1vely 1dent1fy the entire set of 1sovalues V.
253 This process can also be considered as a parameterization based
25« on the distances evaluated from previous neighboring isovalues.
We repeat this process for several iterations until a prede-
256 fined minimum iteration number &, is reached and the varia-
257 tion of neighboring distances stops decreasing. As shown in
258 the first two rows of Figure 5, we can see that the estimation
250 stage approaches the desired solution within a small number
2s0 Of iterations. Note that the computation of distances between
21 neighbors, which is the most costly step, can be performed in
262 parallel for each iteration. As previously mentioned, this stage
263 1s unlikely to converge since the two aforementioned assump-
264 tions do not hold for many volumetric data sets. In most cases,
265 it is more likely to have d; j +d;; > d;x due to the triangle in-
2ss equality. Therefore, the estimation stage only provides a rough
27 solution, and an additional refinement stage is needed to obtain
26s the optimal solution.

255

200 3.2. Refinement Stage

270 In the refinement stage, we advocate a binary search strat-
271 egy: placing the candidate isovalue in the middle of its two
272 neighbors to identify an isosurface having the equal distance
273 t0 its two neighboring isosurfaces. The distance function in this
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Figure 2: The refinement stage. (a) Adjusting odd-indexed and even-indexed
isovalues alternatively. (b) Identifying an isovalue v; that has the equal distance
to its two neighbors v and v;. The red (blue) curve in (b) represents the distance
function from an isovalue in [vg,v;] to v (v;).

274 stage neither assumes linearity nor violates the triangle inequal-
275 ity. Unlike the estimation stage, this stage provides a slower
276 but more robust process of convergence. This is achieved by
277 adjusting the odd-indexed isovalues and even-indexed ones al-
278 ternatively, as shown in Figure 2 (a). Specifically, the refine-
279 ment stage is performed in multiple steps (8,). At odd steps, we
280 adjust the red isovalues v;_»,v;,vi1o with odd indices (assum-
281 ing i is an odd number), so that they have the equal distance to
2e2 their neighbor isovalues, i.e., d;_3 ;2 =d;_2 1, di—1; = djis1,
23 and dj 1,42 = diy2,13, as indicated by the red arrows. Since
2s¢ the blue isovalues with even indices are fixed at odd steps, each
255 odd-indexed isovalue can be adjusted independently in parallel.
26 At even steps, we adjust the blue isovalues in the same fashion.
257 Note that the blue and red arrows connect all distances between
258 neighboring isovalues, which leads to equally spaced isovalues
250 When this stage converges.

In every step, we use several iterations (8;) of a binary
201 search strategy to identify an isovalue v; that has the equal dis-
202 tance to its two neighbors v;_; and v;;, as illustrated in Fig-
203 ure 2 (b). This means that the goal becomes finding one inter-
204 section point of the red and blue curves. At each iteration T,
205 We maintain a lower bound /7 and an upper bound u! that con-
206 tain the intersection point between them. The lower and upper
207 bound are initialized as v; and v;, respectively, i.e., ll-0 = v and
208 u? = v;. The lower bound maintains a property that it is always
299 closer to v than vy, i.e., dy; < d, j, and the upper bound main-
a0 tains a similar property in the opposite way, i.e., di,; > dy; j.
so1 Due to these properties, the red and blue curves must intersect
a2 somewhere in the middle as long as the distance functions are
a03 continuous.

304 At each iteration, we assume that the two distance functions
as change linearly between the bounds, as shown by the blue and
a0s red dashed lines in Figure 2 (b), and compute the intersection
a7 point, as indicated by the black dot. This intersection point
s0s provides the new isovalue vF at step 7, as shown by the black
s00 solid line in Figure 2 (b). We compute the distances df; and
310 df, ; and determine whether vi will replace the lower or upper
a1 bound. In this example, since d,fﬁi < dif » indicated by the inter-
a2 section points between the black solid line and the two curves,
a1z we replace the lower bound with v}, i.e., ll”l =7}, so that the
a1 properties of the lower and upper bounds still hold.

It is clear that the smaller the search range gets, the better
a1s the distance functions can be approximated by linear functions.
317 As shown in Figure 2 (b), the curves between the bounds are
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Figure 3: An example of neighboring distances from different time steps of the
GT variable of the ionization data set. Every bar shows the distance d(i,i+ 1).
(a) shows one reason for a spike where two neighbors are too far apart. (b)
shows a different cause, that is related to a jump discontinuity in the distance
function.

a1s nearly straight even if the distance functions themselves are not
a1e linear. This allows the desired isovalue to be identified within a
a0 small number of iterations. In our experiment, we find that five
a21 iterations per step is sufficient. For more details, please refer to
a22 Figure 5 and Section 4.1.

as 3.3. Convergence Stabilization

s2s  During the refinement stage, some proposed isovalues po-
ass tentially lead to an adverse change of distance. This typically
ass translates into distance values, named spikes, that are much
a27 higher/lower than the average distance, causing large average
as and maximum errors. Figure 3 demonstrates two common types
aze Of spikes: (1) the binary search successfully finds an isovalue
xo that has mostly equal distances to its two neighbors, but these
aa1 distances are larger than the average distance; and (2) the bi-
a2 nary search fails to identify a desired isovalue, and the distance
ass between this isovalue and one of its neighbors becomes a spike.
The first type of spikes between three isovalues v;_1, v;, and
s35 Viy1 can be expressed as d; 1 ; ~ d; ;1 and d; 1, d; i1 >>dy.
xs These spikes usually appear due to the underestimation of the
a7 differences of isosurfaces in the interval [v;_j,v;y]. For ex-
ass ample, in Figure 3 (a), after one step of the refinement stage,
a0 the binary search identifies an isovalue v, whose distances to
a0 its neighbors (i.e., dq1,12 and dj2,13) are about twice as high as
a1 the average distance, meaning that the interval between vy, vi2,
a2 and vy3 may be too large. This type of spikes may gradually dis-
as appear since v;—1 and v;4; will be moved closer to v; in the next
s step of the refinement stage. For example, since djo,11 is much
ws smaller than dy,12, vi1 will be moved closer to vy, to reduce
w6 d11,12 for an equal distance between vy, v11, and vi2. However,
a7 this type of spikes still causes a steep increase of the average
xs and maximum errors, leading to an unstable status during the
ae refinement stage.

To alleviate this problem, we propose a spike treatment that
ss1 rejects isovalues leading to spikes. Formally, for every isovalue
w2 v; that has been changed in step 7, we compare d" | ; and df;
ss3 t0 djj using their relative differences with respect to dj;.

as4 If any of the two difference values surpasses a predefined
sss spike threshold J, we reject v} and replace it with vfﬁl. Note
ss6 that the old value vf*] has more agreeable distances, as v;_;
ass7 and v,y are static in this step. Intuitively, by avoiding the steep
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Figure 4: An example of discontinuous distance functions using the GT variable
of the ionization data set. (a) shows the distances to isovalue 20547.8 (blue) and
to isovalue 20680.4 (red). The horizontal axis represents sampled isovalues
and the vertical axis represents the distance. (b) and (c) are the two isosurfaces
corresponding to the isovalues highlighted by the dashed lines in (a).

ass changes, this treatment postpones, instead of preventing, the
ss0 salient isovalue v; to be discovered. Therefore, the entire refine-
a0 ment stage will exhibit a more smoothly convergence toward
as1 the best solution.

For the second type of spikes, the binary search fails to iden-
aes tify an isovalue v; with equal distances to its neighbors. In this
se4 case, at least one of the distances d;_1,; and d;;1 will differ
ses from the average distance dy,. For example, in Figure 3 (b),
s the distance dg 9 is much smaller than the other distances be-
a7 tween neighbors, therefore, leading to a larger error. This type
ass Of spikes is usually caused by a jump discontinuity in the dis-
ase tance functions between the neighboring isovalues.

A jump discontinuity (henceforth jump) appears when the
a7t distance function between two isovalues is discontinuous. An
a2 example is demonstrated in Figure 4. For the purpose of analy-
ars sis, we consider two distance functions d;(v;) and d,(v;), which
a74 map an isovalue v; to its distances to its left and right neighbors,
a7s respectively. In this example, we densely sample 200 isovalues
a7e between two fixed isovalues 20547.8 and 20680.4, and compute
a7 the distance from each sampled isovalue to the fixed ones. In
ars Figure 4 (a), the distances to isovalues 20547.8 and 20680.4 are
a7 plotted as blue and red lines, respectively. Unlike the case of
as0 two smooth distance functions, as demonstrated in Figure 2 (b),
as1 a steep change occurs, highlighted by the red dashed ellipse.
a2 This indicates that the two distance functions are not continu-
ass ous at the corresponding isovalue.

Figure 4 (b) and (c) show the isosurfaces corresponding to
ass the two isovalues on the two sides of this critical isovalue. We
ass can see that this isovalue actually corresponds to the topological
ass7 change with the lower ring emerging. The blue line appears be-
ass low (above) the red line before (after) this change. This means,
ase given the properties of the lower and upper bounds, the lower
aso (upper) bound will always be on the left (right) of this isovalue.
a1 After several steps, the binary search will be trapped in a small
a2 value range centered at this critical isovalue. This does not only
aws lead to a large error by itself but also stops the distance val-
aw ues from propagating from one side of the critical isovalue to
ass the other side. Therefore, when a jump appears, we may only
ass achieve two equal distances on the two sides of the critical iso-
a7 value.

To tackle this problem, we propose a jump treatment that
as first identifies the isovalue v* of the jump and balances the dis-
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s00 tances on its two sides. By definition, a jump is a discontinuous
w01 point in the distance functions. Therefore, v* can be detected
a0z through examining the following criterion

d(vi,v* +¢&) >>d(v;,v"), and

d(v',vj) >>d(v'+€,v)). ()

4p4 Instead of explicitly detecting v*, we examine this criterion at
a0s each iteration of the refinement stage. Once a jump is encoun-
a0s tered, we fix the upper and lower bounds of the binary search
407 8O that the jump will reside in the bounded interval, and push
a0s the isovalues from one side of the jump to the other side. Let
w0 Vi = {vi| 0 <k <i}and V, = {v| j <k < n} be the isovalue
a10 sets on the left and right sides of the jump, respectively, and let
an dy(Vy) and dy (Vy) be the average distances of the neighboring
a1z isovalues in V; and V., respectively. Without loss of general-
w13 ity, assuming dy, (V;) < dy(V,), we take an isovalue from V; and
a1 push it to V;, so that the set of isovalues V; becomes sparser and
a1s the set of isovalues V, gets denser. This will lead to an increase
w16 of dy; (V;) and a decrease of dy,(V;), thus achieving a better bal-
417 ance of the average distances on both sides.

a8 3.4. Distance Measures

We experiment our approach with two different distance
20 measures: the mean of the closest point distances (MCP) [7]
s21 and the isosurface similarity map (ISM) measure [2]. Other dis-
422 tance measures may be applied as well, according to the specific
s23 analysis goals.

MCP distance. The MCP distance between two isosurfaces
a5 5; and s; uses the Euclidean distance to compute the closest
«26 distance for every point py on s; to any point p; on s; and vice
«27 versa. The MCP distance of s; and s; is defined as follows

419

424

1
dMCP(S,',Sj) = E (d(s,’,sj') —I-d(Sj,S,')), where

_ ZPkESi minPIESj Hpk —pill
|Sil

d(si,s;j) 2)

i ISM distance. The ISM measure inspects the mutual infor-
a3 mation of the distance fields corresponding to two isosurfaces
a3 5 and s ;. Based on the uniformly sampled distance fields of the
2 two isosurfaces, a joint histogram can be computed to derive
a3 the mutual information. Again, we use the Euclidean distance
s to compute the distance fields for an isosurface s. For each
sss grid point in the distance field, we record two closest distances
a3 from that point to the two isosurfaces s; and s;, and compute
a7 the joint histogram of the distances. The mutual information
s between two random variables X and Y can be computed from
s30 their joint histograms as follows

I(X,Y)=H(X)+H(Y)—H(X,Y), with

H(X)=—Y px(x)log(px(x)), 3)
xeX
HX,Y) ==Y Y pxy(xy)log(pxy(x,y)),
xeXyey

i1 where H(X) and H(Y) are the marginal entropies and H(X,Y)
a2 denotes the joint entropy of X and Y. In our case, X (¥) is the
s distance from a grid point in the distance field to isosurface s;
ass (s7). We further normalize the mutual information
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2U(X,Y)
HX)+H(Y)’
442 and convert the similarity measure into a distance measure

I(X,y)= )

)

Approximation and acceleration. Distance measures be-
s tween isosurfaces often share two common steps: constructing
ss0 isosurfaces and identifying the closest points of given points.
sst When computing the ISM distance, the distance field of an iso-
ss2 surface requires the distance from each grid point to the closest
ss3 point on the isosurface to be computed. When computing the
s« MCP distance between two isosurfaces, for each point on one
sss isosurface, the closest point on the other isosurface needs to be
4«6 identified. We take three considerations from [24] to accelerate
ss7 these two key steps.

458 First, we approximate each isosurface using a point set in-
as0 stead of extracting the actual surface. Generating the exact iso-
as0 surface produces multiple points and their connections for each
w1 voxel. However, the connections are usually not involved in
ss2 the distance computation and the points are often unnecessarily
ssa dense. This approximation scheme splits the volume into uni-
sss form blocks and examines each block to determine whether it
ass contains the isosurface. The centers of blocks that contain the
ass 1sosurface are considered as an approximation of the isosurface.
a7 Using this scheme, the error for computing the closest point is
«s bounded by (1/3/2)I (i.e., half the length of a block’s diagonal
as0 [).

470 Second, we build one BVH-tree for each isosurface to or-
471 ganize its approximation points. This allows the closest point
472 on an isosurface to be queried efficiently. For construction effi-
473 ciency, we use bounding boxes and leverage Karras’ algorithm
474 [23] to build each BVH-tree on GPU in parallel. The BVH-trees
475 are stored in the graphics memory, so that multiple closest point
476 queries can be performed in parallel. In addition, given a point,
4«77 We estimate the upper bound of the distance to the closest point
a7 by uniformly sampling the approximation points. Since the ap-
479 proximation points are loosely ordered following the scanline
as0 order, this provides a tighter upper bound and therefore avoids
ss1 many unnecessary branches of the BVH-tree to be traversed.
Third, both the distance fields and the approximation of iso-
sss surfaces can be downsampled to further reduce the time cost.
s« The approximation can be downsampled by scanning blocks of
sss voxels. The centers of blocks that contain the isosurface be-
sss come the approximation in this case. The error of the closest
« point is bounded by (1/3/2)l, where [ is the edge length of a
4«8 block in voxels. For the distance fields, it has been shown that
ss0 the resolution can be reduced by eight folds along each dimen-
as0 sion without sacrificing the quality of the resulting ISMs [2].
Through this acceleration measures, we can achieve a lin-
s92 €ar time complexity considering all steps to compute neighbor-
a3 ing distances, except for building the BVH-trees. The initial
494 approximation examines O(|V|) voxel, where |V| is the size of
sss the volume. For the next step, building the BVH-tree, Karras re-
w6 ported the time complexity of O(nlogn) in the worst case [23].
ss7 Note that number of points from the approximation, n, is typi-
s cally much smaller than |V|. Using the BVH-tree, querying the

dISM(S,',Sj) =1 —f(si,sj).

447
448

482

491

499 closest point of a given point takes on average O(logn) steps.
so0 The number of queries for this is bounded by either the size
sor Of the distance field (O(|V|)) (when using ISM distance) or the
s02 size of another surface (O(n)) (when using MCP distance). Us-
s ing the GPU, multiple queries can be performed in parallel. For
so« the ISM distance, we further compute mutual information, by
s05 examining every point in the distance field. In our experiment,
sos we find that computing the distance between two isosurfaces
so7 already fully utilizes the computation power of a single GPU.
sos Therefore, the cost of our approach is linear to the number of
soo isosurfaces if a single GPU is used. Multiple GPUs, if avail-
s1o able, can be readily utilized as computing multiple distances is
s11 embarrassingly parallel.

si2 4. Results

s We mainly run our experiments on a desktop with an Intel
sia Core 17-4790 quad-core CPU @ 3.6 GHz, 32 GB RAM, and
sis an NVIDIA GeForce GTX 760 GPU accelerator. For further
s1s exploration of time-varying data sets, we leveraged a cluster
si7 with a shared GPU queue. The shared GPU queue uses the
s1s following systems:

e 8 Quantum TXR231-1000R servers with dual Intel Xeon
12-core CPU E5-2650 v4 @ 2.20GHz, 128 GB RAM,
and 4 NVIDIA TITAN X (Pascal) GPU accelerators;

e 8 Quantum TXR231-1000R servers with dual Intel Xeon
12-core CPU E5-2650 v4 @ 2.20GHz, 128 GB RAM,
and 4 NVIDIA Tesla P100-PCIE-16GB GPU accelera-
tors.

519
520
521
522
523
524

525

s2s The queue distributes the workload on different machines de-
s27 pending on the availability. Since we were only interested in the
s2s number of iteration needed to achieve a good solution, we did
s29 NOt restrict our runs to a single hardware configuration. In the
s0 following, we first analyze our general approach quantitatively
sa1 (Section 4.1) and qualitatively (Section 4.2), and then study the
se2 impact of the spike treatment and jump treatment (Section 4.3).

s 4.1. Quantitative Study

534 Quality measures. We evaluate the quality of a set of se-

s3s lected isovalues V = {v,...,v, } based on the distances among
s neighbors (i.e., dy,...,d,—1,) and the average distance d,.
se7 For each distance d;_1;, we compute an error term e;_j; to

s indicate the difference between this distance and the average
ss9 distance
i1 —dy||
il = T
i
s where dividing the absolute difference by the average distance

se2 normalizes the error term. In this paper, we quantify the quality
ses of selected isovalues using the average error

(6

Yisei 1
ey = —/————- 7
H n— 1 9 ( )
g4 and the maximum error
emax = max {e;_1;}. 8
max 2§i§n{ i 1,1} ( )
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Figure 5: Parameter choices on error curves. (a) and (b) show results using the scalar dissipation rate (CHI) variable of the combustion data set at time step 20. (c)
and (d) show results using the gas temperature (GT) variable of the ionization data set at time step 150. (a) and (c) show results using the ISM distance, and (b)
and (d) show results using the MCP distance. Rows from top to bottom show results with < &, 8¢, 5, >=< 10,5,20 >, < 10,10,20 >, < 50,5,20 >, < 0,5,20 >,
< 1,5,20 >, and < 10,5,200 >, respectively. In each plot, the yellow and white background colors indicate the estimation and refinement stages, respectively. The
blue, orange, and green curves show the maximum error, average error, and best error over iterations.



dimension avg. # iterations timing (sec.) average error refine difference to best (%)
data set X, Y, 2, V, t estimate refine estimate refine initial estimate best improve 20 iter. 40 iter. 60 iter. 80 iter.
atmosphere 147,129, 49, 4, 121 11.1 579 3.36 27.61 0.437 0.153 0.081 47.29% 26.62 13.47 5.71 1.71
climate 360, 66, 27, 2, 120 11.8 47.5 2.87 2221 1.060 0.251 0.165 34.12% 10.12 6.37 1.32 0.07
combustion | 480, 720, 120, 5, 122 11.9 68.8 27.90 211.35 0.417 0.184 0.099 | 46.20% 25.39 13.16 5.31 1.16
hurricane 500, 500, 100, 11, 48 11.2 59.2 28.07 230.11 0.427 0.150 0.073 | 51.07% 40.50 18.08 7.65 3.92
ionization 600, 248, 248, 8, 199 11.5 63.9 20.70 164.63 0.597 0.287 0.188 34.33% 30.12 20.49 10.85 2.79
vortex 128,128, 128, 1, 90 13.3 95.0 8.49 60.73 0.158 0.041 0.011 73.81% 41.42 28.95 20.22 15.27
(a)
dimension avg. # iterations timing (sec.) average error refine difference to best (%)
data set X, Y, 2, V, t estimate refine estimate refine initial estimate best improve 20 iter. 40 iter. 60 iter. 80 iter.
atmosphere 147,129, 49, 4, 121 11.1 59.6 4.10 31.70 0.525 0.198 0.099 | 49.94% 57.60 19.91 8.92 2.74
climate 360, 66, 27, 2, 120 12.3 93.8 6.34 48.29 0.863 0.260 0.033 87.15% 206.16 104.33 53.49 27.29
combustion | 480, 720, 120, 5, 122 12.9 72.2 91.51 646.55 0.560 0.205 0.099 | 51.54% 46.03 27.18 16.89 9.50
hurricane 500, 500, 100, 11, 48 12.8 88.8 49.57 379.31 0.281 0.061 0.010 | 82.17% 98.95 49.67 28.76 11.92
ionization 600, 248, 248, 8, 199 11.8 62.3 38.65 290.46 | 0.524 0.209 0.135 34.98% 27.79 15.26 6.08 2.72
vortex 128, 128, 128, 1, 90 11.0 80.0 15.42 126.15 0.533 0.194 0.072 | 62.81% 61.68 46.20 28.25 14.36
(b)

Table 1: Performances using (a) the ISM distance and (b) the MCP distance. The three columns of average errors show the initial average error of uniform sampling,
the average error after the estimation stage, and the average error of the best solution. The column “refine improve” shows the percentage of average error reduced
by the refinement stage. The four columns of “difference to best” show the percentage of difference between the average error of the best solution and the average

errors after 20, 40, 60, and 80 iterations in the refinement stage.

se7 Since the maximum error is usually determined by the nature of
sss the data sets and the distance measures, as will be shown in Sec-
se0 tion 4.3, we focus on the average error and use it to determine
the best solution, i.e., the set of isovalues with the minimum
average error. We do not use the variation or standard deviation
to evaluate whether the distances are similar since both of them
sss are dominated by the maximum error when the other errors are
ss4 small.

555 Parameter choices. Our approach has three parameters: J,
sss the minimum number of iterations in the estimation stage, 0;
ss7 the number of iterations at each step in the refinement stage,
sss and 8, the number of steps in the refinement stage. For sim-
ss0 plicity, we use a 3-tuple < &, ;, 8, > to denote a parameter
seo setting. Figure 5 shows the results of using two variables of the
sst combustion and ionization data sets for both the ISM and MCP
s distance measures with six different sets of parameter values
se3 (< O, 07,6, >=< 10,5,20 >, < 10,10,20 >, < 50,5,20 >,
see < 0,5,20 >, < 1,5,20 >, and < 10,5,200 >). For each run,
we plot the maximum error, the average error, and the current
s best solution over iterations. The current best solution is the
ss7 one with the minimum average error obtained up to the current
iteration.

We first investigate the impact of parameter ;. In the top
two rows of Figure 5, we fix the two parameters §, = 10 and
0, = 20 and compare the performance of 6; = 5 (first row) and
Or = 10 (second row). At each step, having more iterations may
s73 potentially allow better convergence of the binary searches. But
s7¢ overall, we do not see a noticeable improvement of accuracy
s75 using O; = 10 over 0; = 5 since the shape of the green curves
s76 (best solution) in the same column are mostly the same. With
s77 the same number of steps (5, = 20), this indicates that we ob-
s7 tain similar results using 6; = 10 but with twice the number of
s79 iterations as using 8; = 3.

580 Next, we study the impact of parameter &,. In the first and
ss1 third rows of Figure 5, we use 8, = 10 and 8, = 50, respec-
se2 tively. The other two parameters are fixed (8; = 5 and &, = 20).
sss We find that more than ten iterations in the estimation stage are
ss« usually unnecessary since the best solution is mostly unchanged
ses after ten iterations, as shown in the third row of Figure 5. In
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sss addition, we do not find that having more iterations in the esti-
se7 mation stage helps the refinement stage reach the best solution
sss faster. The green curves in the white background, correspond-
s ing to the best solution in the refinement stage, demonstrate
seo Similar decreasing patterns.

591 However, we still find that the estimation stage is necessary
se2 for the refinement stage to quickly reach its best solution. In
ses the fourth row of Figure 5, we experiment our approach with
ses only the refinement stage, i.e., §, = 0. With this setting, we
ses find that the refinement stage approaches the optimal solution
ses much slower. For example, using CHI of the combustion data
so7 set and the ISM distance measure shown in (a), the best solution
see slowly improves over the 100 iterations without the estimation
seo stage and reaches the minimum average error of 0.179 at the
oo last iteration. With the estimation stage, the best solution until
e01 the 20-th iteration in the refinement stage has an average error
ez Of 0.121, which is already very close to the minimum average
e0s error of 0.120 for the entire 100 iterations. The computation
e« time of each iteration in the estimation and refinement stages
eos 1S similar, since both of them are dominated by the computa-
e0s tion of distances between neighbors. Therefore, including the
e07 €stimation stage clearly gives a better performance.

es  The fifth row shows the results with only one iteration in
s00 the estimation stage, i.e., §, = 1. In contrast to setting &, =
s10 10, letting J, = 1 leads to a more stable convergence, implying
et that the algorithm got stuck in a local optimum. Note that for
ez the CHI variable at time step 20, we sometimes obtain empty
e1s isosurfaces. In this case, we run the estimation stage for more
e14 iterations until we obtain a set without empty surfaces.

615 In the last row, we show the results with < 6., 87,8, >=<
16 10,5,200 > (1000 total iterations in the refinement stage). For
17 some data sets, we achieve a slightly better solution several hun-
e1s dreds iterations later than the best solution achieved within 100
e1o iterations. However, the overall convergence pattern does not
e20 change. We believe that, given the time-quality trade-off, a rel-
e21 atively good solution can be found within 100 iterations.

In Figure 6, we show the visual differences among three sets
e2s Of isosurfaces identified in 20, 100, and 1000 iterations, respec-
e2s tively, using the GT variable of the ionization data set at time
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(d)

Figure 6: Comparison of the isosurfaces identified in different numbers of iterations using the GT variable of the ionization data set at time step 150. The isosurfaces
are selected from the best solutions after 20 ((a) and (d)), 100 ((b) and (e)), and 1000 ((c) and (f)) iterations in the refinement stage. The top row shows 17 selected
isosurfaces rendered together. The bottom row shows a single surface highlighting the fine differences.

e2s step 150. While the best solution after 1000 iterations is found
e2s at iteration 333 with an average normalized error of 1.86%, the
e27 earlier ones 2.89% (at iteration 92) and 3.92% (at iteration 20)
e2s show small errors as well. Although the relative difference in
629 average error seems enormous, their absolute difference is still
&0 small. Visual comparison confirms that similar isosurfaces are
ea1 identified. In the top row of Figure 6, we show all isosurfaces
ez corresponding to solutions at iteration 20 (a), 92 (b), and 333
eas (), respectively. We find that the overall difference is barely
ea¢ visible. Therefore, to inspect more closely, we depict the fourth
sss isosurface of the selected sets in the second row. We can clearly
s see a difference between the first two images ((d) and (e)) and
e37 the last one (f). Furthermore, subtle differences between (d) and
e (e) can be seen. Although single surfaces differ among the dif-
e ferent solution sets, the overall sets look fairly similar, offering
s0 @ comprehensive overview of the volumetric data set.

In our experiment, we use a large enough value of 5, = 20
ez to study how the best solution evolves over iterations. We find
s3 that the setting of < &, 8,5, >=< 10,5,20 > usually yields
e good results in terms of timing and error. Therefore, we use
ess this setting for reporting the remaining results.

Timing and quality. As shown in Table 1, we study the
e7 timing and quality performance using six data sets with differ-
s4s €nt characteristics. For each data set, we use all the associated
es9 variables with three time steps selected (the beginning, middle,
eso and ending time steps). Collected for each variable and each
es1 selected time step, the results are averaged for each data set.
Table 1 (a) shows the results using the ISM distance. Our
esa approach produces mostly equally spaced isosurfaces with the
ess average errors smaller than 0.1 for most of the data sets except

641

646

652

ess the climate (0.165) and ionization (0.188) data sets. This may
ess be related to the structures of the data sets as their initial er-
es7 rors are the largest among these six data sets. The number of
ese iterations in the estimation stage is stable for all data sets and
es0 slightly above our minimum number (5, = 10). In the refine-
es0 ment stage, our approach reaches the best solution around 60
es1 iterations for most of the data sets, except the vortex data set
es2 (averaging 95 iterations). The climate data set even reaches so-
ess lutions that are close to the best solution within 20 iterations,
s« With only 10.12% difference. The other data sets except the
ess vortex data set have differences less than or around 20% within
ess 40 iterations and less than or around 10% within 60 iterations.
es7 Although having the slowest convergence, the vortex data set
ess achieves the smallest average error (0.011) among all data sets
eeo after the refinement stage. In Figure 9 (k) and (1), we find that
e70 the green curve declines slowly after 15 iterations in the re-
e finement stage. The higher percentages shown in the table are
e72 probably due to the small average error. The average errors are
e73 smaller than 0.3 for all the data sets after the estimation stage,
7« and the refinement stage further reduces the average errors by at
e75 least 30%, which confirms the necessity of the refinement stage.
76 Our approach performs efficiently using the ISM distance. To
e77 process one volume, it takes around one minute for the atmo-
e7s sphere, climate, and vortex data sets, and less than five minutes
e79 for the other data sets.

680 Table 1 (b) shows the results using the MCP distance. In
1 general, we find that it takes more iterations for the refine-
ez Mment stage to approach the best solutions using the MCP dis-
ess tance. Three data sets reach the best solutions after 80 iter-
ess ations. Within 40 iterations, only two data sets obtain good

9



(h)

Figure 7: Comparison of our approach (top row), the ISM approach (middle row), and the k-means approach (bottom row) using the GT variable of the ionization
data set at time step 10. (a), (d), and (g) show the distance matrices of the selected isosurfaces. Note that the distances are normalized and all matrices use the same
color map. (b), (e), and (h) show all the selected isosurfaces in a single image. (c), (f), and (i) show the central regions of individual isosurfaces in separate images.
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(e)

Figure 8: Comparison of results using a set of 128 nearly equally spaced isosurfaces as input for the ISM approach (top row) and the k-means approach (bottom
row) using the GT variable of the ionization data set at time step 10. (a) and (d) show the distance matrices, (b) and (e) show the representative isosurfaces rendered

together, while (c) and (f) show the individual surfaces.

ess solutions whose average errors have less than 10% differences
ess from the best solutions. For five of the data sets, it takes 80 it-
ee7 erations to reach reasonably good solutions with less than 15%
ess difference from the best solutions. However, we find that the
eso average errors are usually smaller using the MCP distance. The
oo largest average error is 0.135 using the ionization data set, and
eor all the other data sets have average errors smaller than 0.1. The
ez refinement stage provides more significant improvement using
s the MCP distance. It reduces the average error by at least 80%
es for two data sets and 49% for five data sets. Actually, we find
eos that the data sets with a smaller best error usually benefit more
es from the refinement stage and take more iterations to reach the
eo7 best solution. This is likely related to the intrinsic structures of
s the data sets. The distance functions are probably more con-
oo tinuous using these data sets so that the binary search in the
700 refinement stage is less likely to be trapped by the discontinu-
701 ous points in the distance function. Although the average er-
702 Tor is smaller, we find that the MCP distance takes more time
703 to compute. The combustion data set requires the longest to-
704 tal computation time of around nine minutes. The computation
70s time for the other data sets varies from one to seven minutes.

706 4.2. Qualitative Study

Comparison to other approaches. For visual comparison,
708 We generate eight isosurfaces of the GT variable of the ioniza-
700 tion data set at time step 10 using our approach, the ISM ap-
710 proach [2], and k-means clustering [6]. For our approach, we
71 fix the minimum and maximum isovalues and compute eight

707

712 isovalues between them. For the other approaches, we evenly
73 sample 128 isovalues and identify eight representative ones.
714 We use Imre et al.’s [24] approximation to compute the ISM
715 distances between the sampled isovalues for all three variants.
76 The implementation of the ISM algorithm is based on the prior-
717 ity queue algorithm [2] and the k-means clustering is based on
7s Lloyd’s algorithm [25]. Figure 7 (a) shows the distance matrix
79 of the isosurfaces selected by our approach. Note that in this,
720 and the following images, the distance values are in [0, 1]. We
721 can see that the cells recording the differences between neigh-
722 boring isosurfaces (i.e., the cells that are next to the diagonal
723 cells) share similar colors. This indicates similar distances be-
724 tween neighbors. Figure 7 (b) confirms this observation as the
725 selected isosurfaces distribute evenly in the space. The eight
726 isosurfaces demonstrate a smooth transition of the features at
727 the center of each isosurface, as shown in Figure 7 (c).

In contrast, five of the representative isosurfaces selected by
72 the ISM approach and four of the representative isosurfaces se-
7o lected by the k-means approach are similar. In Figure 7 (d), we
731 can see a 5 x 5 block at the bottom left corner of the distance
722 matrix of the representative isosurfaces, indicating high similar-
7as ities among the corresponding isosurfaces. Similarly, Figure 7
73 (h) contains a 4 x 4 block.

s In Figure 7 (e), we can see that the five similar representa-
7 tive isosurfaces collapse in space. Therefore, five of the feature
77 regions in the representative isosurfaces actually corresponds
78 to the nearly identical structure, as shown in Figure 7 (f). Al-
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Figure 9: Typical error curves over iterations using the ISM distance (first and th
of the curl magnitude (CURL_MAG) variable of the atmosphere data set at tim

ird column) and the MCP distance (second and fourth). (a) and (b) show the results
e step 50. (c) and (d) show the results of the temperature (TEMP) variable of the

climate data set at time step 270. (e) and (f) show the results of the heat release (HR) variable of the combustion data set at time step 60. (g) and (h) show the results
of the cloud moisture mixing ratio (QCLOUD) variable of the hurricane data set at time step 40. (i) and (j) show the results of the H mass abundance (H) variable

of the ionization data set at time step 150. (k) and (1) show the results of the vort:

730 though the ISM approach has a scheme to prevent similar iso-
70 surfaces to be selected [2], this scheme may be ineffective when
71 the input is biased. As a matter of fact, more than half of
722 the sampled isosurfaces in this volume correspond to the same
743 structure. In general, we find that the distance matrix of the
744 TEpresentative isosurfaces identified by the ISM approach often
75 exhibits this kind of blocking effect for the structures captured
76 by more sampled isosurfaces. This echoes that it is critical to
77 producing unbiased isosurfaces as input for the surface-based
78 volumetric data analysis algorithms. In addition, Figure 7 (h)
720 shows the same effect for the k-means clustering with four sim-
750 ilar isosurfaces selected. In Figure 7 (i), a closer inspection
751 reveals that three of the four surfaces are very similar, with the
752 fourth one being closely related to them.

In contrast, Figure 8 depicts the representative isosurfaces
754 selected by the ISM [2] and k-means clustering [6] approaches
7ss using 128 nearly equally spaced isosurfaces as input instead of
756 the uniformly sampled ones. We use the GT variable of the
757 ionization data set at time step 10. In (a) and (d), the distance
7ss matrices do not show the strong blocking effect, which means
750 that the problem of oversampling certain value ranges could be
70 circumvented. Compared to Figure 7, we can see that there is
761 a shift between the representative surfaces selected, allowing to

753

ex data set at time step 30.

72 further explore previously overseen isosurfaces. For example,
763 the third surface in the second row (pink) in both (c) and (f) has
764 not been discovered previously. This further indicates that an
7es unbiased input may improve the understanding of the underly-
766 ing surfaces.

Comparison of ISM and MCP distances. For a qualitative
study of the impact of distance measures, we first investigate the
error curves using the ISM distance and the MCP distance, as
shown in Figure 9. For each volume, we chose to identify 15
equally spaced isovalues between the minimum and maximum
isovalues. In general, the curves confirm our finding in Table 1
773 that the MCP distance has a slightly smaller average error. The
772 only exception is the vortex data set. Figure 9 (k) and (1) show
775 that the MCP distance converges slower with unstable spikes of
776 the maximum error curve for this data set. Figure 10 shows the
777 distance matrix and a set of selected isosurfaces using the vortex
778 data set for each distance measure. In Figure 10 (a), we can
779 see that the distances between neighbors are actually similar
70 for both measures. However, the two distance measures behave
7s1 differently with this data set: the MCP distance changes in a
782 smoother manner when the isovalues become more different,
7ss while the ISM distance seems to better distinguish isovalues in
7« @ smaller value range. For each distance measure, we evenly
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Figure 10: Comparison of the ISM distance (top row) and the MCP distance (bottom row) using the vortex data set at time step 30. (a) shows the distance matrices
of the selected isosurfaces. (b) to (f) show the two sets of isosurfaces chosen by the respective distance measures.

7ss select five isosurfaces (the second, fifth, eighth, 11th, and 14th)
786 from the set of fifteen isosurfaces, as shown in Figure 10 (b) to
77 (f). We find that the ISM distance identifies more large-scale
7es isosurfaces while the MCP distance selects more small-scale
780 isosurfaces. This is probably because the ISM distance better
70 distinguishes the large isosurfaces and the MCP distance better
701 differentiates the small ones using this data set.

792 We then investigate the combustion data set, for which the
793 average errors are similar using both measures. We show the
704 results of the HR variable in the top two rows of Figure 11. For
7es this variable, although both the error curves in Figure 9 (e) and
796 (f) and the distance matrices in Figure 11 (a) indicate smaller
797 errors using the MCP distance, we find that the isosurfaces se-
70 lected using the two distance measures are actually similar, as
79 shown in the top two rows of Figure 11 (b) to (d). The isosur-
o0 faces are the ninth, 12th, and 14th from the fifteen selected ones.
sor The first nine isosurfaces all demonstrate small-scale structures,
a2 Which are visually similar. For the YOH variable, the distance
s0s matrices and the fourth, eighth, 12th isosurfaces (evenly sam-
sos pled) are shown in the bottom two rows of Figure 11. We can
s0s see that the ISM distance selects more small-scale isosurfaces,
ss Which contradicts our findings with the vortex data set. We ac-
s07 tually find that both measures are sensitive to changes on small-
a0s scale isosurfaces in general. This leads to the conclusion: the
a9 behavior of the two distance measures heavily depends on the
s10 spatial distribution of the isosurfaces. While large isosurfaces
s11 usually have stable spatial distributions, changes (even if they
a2 are tiny) on small isosurfaces may lead to significantly differ-
s1s ent spatial distributions. Therefore, due to the nature of these
s1a two measures, the differences among small isosurfaces are of-
a1s ten emphasized.

st6 4.3. Discussion

a7 Time-varying data sets. We further experiment possible
s1s solutions to improve the performance of time-varying data sets.
1o In Section 4.1, we demonstrate that the refinement stage con-

e20 verges much faster with the use of the estimation stage, which

better vol. (%) # iter. (%)
data set #vol. | best | 10% diff. | best | 10% diff.
atmosphere | 242 87.6 | 91.3 57.2 | 38.7
climate 151 729 | 99.3 91.4 | 35.20
combustion | 61 0.0 1.6 N/A | 18.93
hurricane 19 79.0 | 84.2 42.6 | 33.7
ionization 25 16.0 | 24.0 573 | 57.2
vortex 45 77.8 | 82.2 21.0 | 184

Table 2: Using the isovalues selected at the previous time step as initial isoval-
ues for the next time step. “# vol.” shows the number of volumes experimented
with. “better vol. (%)” shows the percentage of volumes achieving better re-
sults. “# iter. (%)” shows the percentage of iterations spent to achieve better
results. “best” indicates that the result is better than the best solution obtained
from the normal run, and “10% diff” indicates that the result is within 10%
difference from the best solution of the normal run.

s21 indicates the importance of a good initial set of isovalues. Ob-
s22 serving that the structures of volumes usually change gradually
s23 over the time steps, we hypothesize that using the isovalues se-
a2« lected for the same variable at the previous time step will speed
e2s up the computation. Although this strategy has not been fully
s2s studied, we discuss some preliminary findings. We use a clus-
s27 ter with a shared GPU queue to experiment with the six data
28 sets shown in Table 2. For each variable, we have a normal
s20 Tun that starts from the uniform sampling of the value range for
s each time step, and a run that starts from the isovalues selected
sa1 at the previous time step. Each computation node in the GPU
a2 queue performs one run of a variable. Since the cluster contains
sss computation nodes of different configurations, we compare the
s« performance using the number of iterations instead of the com-
a3 putation time.

836 Our experiment shows that we do not always get better re-
so7 sults by starting from the isovalues at the previous time step.
=s Keeping the isovalues produces better results than the normal
sse run for more than 70% of the volumes with four data sets. How-
ss0 ever, for the combustion and ionization data sets, this strategy
a41 fails to produce better or even similar results. For the volumes
se2 that better results are obtained, it generally takes much fewer it-
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Figure 11: Comparison of the ISM distance and the MCP distance using the heat release (HR) and hydroxyl radical mass fraction (YOH) variables of the combustion
data set at time step 60. Rows from top to bottom show the results using HR with ISM distance, HR with MCP distance, YOH with ISM distance, and YOH with
MCP distance, respectively. (a) shows the distance matrices of the selected isosurfaces. (b) to (d) show the four sets of isosurfaces chosen by the respective

combinations of variable and distance measure.

s erations to achieve the better results (less than 60% for three of
a4 the four data sets). For the vortex data set, it only takes 21% of
as the number of iterations compared to the normal run. For five
as6 Of the data sets, it takes less than 40% of the number of itera-
87 tions to achieve a similar result. However, the conditions under
ss Which this strategy will perform effectively are still not clear.
a0 We further investigate the impact of the overlap percentage of
sso the value ranges at neighboring time steps and the average error
a5t at the previous time step, but none of them exhibits a signifi-
a2 cant impact on the performance. It seems that the performance
sss Of this strategy heavily relies on the nature of the data since for
sss all the data sets shown in Table 2, the percentage of volumes
sss With better results is either higher than 70% or less than 20%.
sse If we can determine in advance that a time-varying data set is
ss7 suitable for this strategy, nearly 2x speedup can be obtained.

Spike treatment. To analyze the impact of the parameter
ss0 Oy, we conduct an experiment using the common setting of <
g0 Op, Og, Op >=< 10,5,20 > but varying & from 0.05 to 0.25 in
ss1 steps of 0.05. Note that the original approach without spike
se2 treatment can be considered as setting d; = o0, meaning that all
ass spikes are tolerated and will not be explicitly treated. Figure 12
s« shows the results for the GT variable of the ionization data set
sss at time step 60. The figure represents typical error curves for

858

ses the ISM distance measure with different &, settings. We can
se7 see that using a high tolerance value for J;, as seen in (a) the
ses original (s = o), (e) 8 = 0.2, and (f) & = 0.25, yields high
seo spikes in the maximum error, resulting in spikes in the average
e70 error. Dampening those instabilities by reducing the threshold
s translates to fewer negative changes as can be seen in (b) 8 =
a2 0.05, (¢) 6, = 0.1, and (d) &, = 0.15. This further allows us
s73 to achieve a lower average error for the two variations shown
g4 in (c) and (d). Using 8 = 0.05 may easily get trapped in a
a7 local optimum, since this parameter setting is too strict to allow
e7s any drastic changes that could resolve the problem. Setting &
77 t0 0.1 or 0.15 leads to the most stable convergence, showing
e7s that those values offer a good balance between allowing too
a0 little changes (s = 0.05) and allowing too much changes (&, >
ss0 0.2). However, the best average errors achieved by setting & =
ss1 0.1,0.15,0.2,0.25 are similar. We will study the impact of & to
ss2 the best average errors using more data sets later in this section.
ss  Jump treatment. To analyze the impact of jumps and our
ss4 treatment, we experiment our approach with several configura-
sss tions (with and without spike treatment) using the GT variable
sss Of the ionization data set at time step 20. The error curves are
se7 shown in Figure 13. In (a), we can see the original without jump
sss Or spike treatments. The rest shows the different parameter set-
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Figure 12: Comparison of the impact of & on the convergence and the final result using the ISM distance on the GT variable of the ionization data set at time step
60. (a) shows the original error curve over the set of iterations (i.e., ; = ). (b) to (f) show the configurations with d; = {0.05,0.1,0.15,0.2,0.25}, respectively.

s tings for s to treat spikes while handling jumps at the same
a0 time. In our experiments, we encounter at most three jumps
o1 during the refinement stage using this data set. In (c) to (e),
so2 @ strict choice of 8 = 0.05,0.1,0.15 restricts isovalue changes
ass to a degree where it is not possible to detect a single jump in
s« the distance functions. By allowing more drastic changes to
ses the isovalues ((f) &, = 0.20, (g) 8 = 0.25, and (b) &; = =), we
aos can see that jumps appear around strong fluctuation on the er-
a7 Tor curve. Treating these jumps helps to reduce the fluctuation
ses from that point on. In (b), although the error curve still has
a0 strong spikes after treating the first jump, it finds a better so-
w00 lution than the original approach in a later iteration. An even
901 stronger reduction in fluctuation of the error curve can be seen
w2 in (f). Dampened by spike treatment, the first jump is detected
w03 at iteration 70 and its treatment allows the curve to come down
04 further, achieving the best solution for this data set at iteration
os 90. However, jump treatment does not always lead to better
96 convergence or lower average and maximum error values. Fig-
07 ure 13 (g) showcases this. Instantly after the jump around iter-
a0e ation 50, the error function cannot recover, resulting in another
00 jump quickly. This results in multiple fixed isovalues, allowing
a0 fewer changes in the set of isovalues at every iteration, which
o1 hinders the optimization process.

As mentioned previously, it is not always clear beforehand
o1a Whether or not jump treatment improves the best solution due to
o1« multiple reasons. First, we treat each jump when it is detected at
a15 the refinement stage without the knowledge of all jumps. There-
a16 fore, treating one jump may lead to the appearance of an undis-
o17 covered jump. As shown in Figure 13 (g), the treatment may
a1 not be effective when multiple jumps are encountered. Second,
19 pushing an isovalue over a jump does not guarantee that the
o220 distances on the two sides of the jump will be equal, especially
21 when the jump occurs close to the end of the value range. In ad-
o2z dition, this situation is often aggravated when additional jumps
s23 are encountered.

912

Configuration selection. As we have seen before, treating
s2s jumps and spikes can both have a positive or a negative impact
a2 on the achieved solution. In order to recommend an appropri-
927 ate configuration, we run experiments among all time steps of
s different data sets and variables. Figure 14 shows the mean and
o2 standard errors of the best average errors with different config-
w0 urations using four variables from four different data sets.

The top row shows the results collected using all the time
a2 steps. We can see that in most of the cases, one of our conver-
s gence stabilization configurations improves the overall solution
sas or yields a solution similar to the original one. For (a), the CHI
s variable of the combustion data set, our experiment shows that
xs treating the jumps but ignoring spikes outperforms the other
s7 methods by a huge margin. This is likely due to an initial set of
sas isovalues being stuck in a local optimum and can only escape
s it by treating jumps while allowing huge spikes. For (b), the H
a0 Variable of the ionization data set, we witness that a strict pol-
s41 icy for spikes yields the best results. Interestingly, we can see
w2 that all configurations, except for d; = 0.05,0.1 without jump
w3 treatment, and & = 0.2 with jump treatment, have a very high
oas standard error. This indicates that the structure of the volume
us differs heavily between time steps. In contrast, a loose spike
ws treatment (§; = 0.2,0.25) has a small standard error among all
7 configurations using the SALT variable of the climate data set,
ws as shown in (c). Similarly, in (d), the bar chart shows that too
wse strict spike treatment can have a strong negative impact on the
sso performance, using the VEL_MAG variable of the atmosphere
os1 data set.

As there is no clear favorite among all data sets, we sam-
ss3 ple the first five time steps of a data set to see if we can pre-
o5« dict a good configuration for the full run. These results are
oss demonstrated in the bottom row of Figure 14. In (a) and (b),
oss our method performs consistently over the time steps, showing
ss7 the possibility to predict the best variation from the first couple
sss Of time steps. In (c), although we mispredict the best configura-
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Figure 13: Error curves generated with different configurations using the GT

(2)

variable of the ionization data set at time step 20. (a) shows the original approach

without jump and spike treatments. (b) shows a configuration with only jump treatment. (c) to (g) show configurations with both jump and spike treatments while

&, increases from 0.05 to 0.25 in steps of 0.05. Dots on the curves indicate the

ss0 tion, the predicted one still shows significant improvement over
a0 the original. However, in (d), the bar chart indicates that a bad
61 configuration is recommended based on the results using the
o2 first five time steps. Although the recommended configuration
93 (8; = 0.15 with jump treatment) performs similarly as the orig-
s inal approach, we fail to spot the best configuration (§; = 0.15
s Without jump treatment). In this example, the high standard er-
96 Tors among the first five time steps may indicate that the inter-
o7 mediate favorite is not a stable one for all the time steps. Over-
ss all, we cannot always predict the exact configuration that yields
a0 the best result for a given data set. However, when considering
a70 the first couple of time steps, we often identify a configuration
71 of the convergence stabilization that outperforms the original.

o2 5. Conclusions

We have presented a solution for identifying nearly equally
74 spaced isosurfaces for volumetric data sets. Motivated by find-
o7 ing a small set of isosurfaces to better represent the underly-
o7 ing volume data in the spatial domain, we design a two-stage
77 approach to seeking an approximated solution that maintains
a7s @ good balance between quality and performance. The result-
a7 ing surfaces are nearly equally spaced, and the user can freely
0 choose the number of surfaces. Our study demonstrates the ef-
se1 fectiveness of the proposed approach and leads to valuable feed-
se2 back. To conclude, we summarize our key findings and major
s recommendations as follows.

First, our two-stage strategy is effective for achieving the
ses best solution in a small number of iterations. Our experiment
s shows that both stages are necessary: without the estimation
se7 stage the refinement stage would require a lot more iterations to
s converge, and the estimation stage may never achieve a solution
ss0 With a similar error as the refinement stage does.

Second, our approach can produce nearly equally spaced
901 isosurfaces for most of the data sets, although some error may

973

984

990

iterations when jumps are detected.

se2 be introduced by jump discontinuities in the distance functions.
sss These points may divide the entire range of isovalues into mul-
s tiple segments and prevent the isovalues from moving between
95 neighboring segments, resulting in unequal distances among the
segments. Our convergence stabilization scheme alleviates this
situation by treating spikes and jumps explicitly, although the
effectiveness depends on the specific data set.

Finally, our approach is independent of the choice of the
distance measure. This provides great flexibility for users to
apply a suitable distance measure according to their own needs.
1002 Our experiment performs effectively using both the ISM and
100s MCP distance measures with a common parameter setting of
1006 < Op, 07,0, > =< 10,5,20 > for all the data sets. To ensure
100s Smoother convergence without a strong restriction, we recom-
1006 mend using &, = 0.2 and ignoring jumps, as these settings either
1007 outperform or show similar results as the original across all data
1008 SEtS.

996
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Figure 14: Comparison of the best average errors with different settings using (a) the CHI variable of the combustion data set, (b) the H variable of the ionization
data set, (c) the salinity (SALT) variable of the climate data set, and (d) the velocity magnitude (VEL_MAG) variable of the atmosphere data set. The top row shows
the results using all the time steps and the bottom row shows the results using only the first five time steps. In each chart, a bar represents the mean of the average
errors achieved over the respective time steps of the corresponding data set (lower is better). The bars from left to right correspond to the original (§; = ), spike
treatment with & = 0.05,0.1,0.15,0.2,0.25, and jump and spike treatments with § = ,0.05,0.1,0.15,0.2,0.25, respectively. The error bars in red indicate the
standard error of the mean. The bars in green represent the best settings.
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