TSR-VFD: Generating Temporal Super-Resolution for Unsteady Vector Field Data

Jun Han and Chaoli Wang

Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

A R T I C L E I N F O

Article history:
Received February 8, 2022

Keywords: Temporal super-resolution, unsteady vector field, data reconstruction, deep learning

A B S T R A C T

We present TSR-VFD, a novel deep learning solution that recovers temporal super-resolution (TSR) of three-dimensional vector field data (VFD) for unsteady flow. In scientific visualization, TSR-VFD is the first work that leverages deep neural nets to interpolate intermediate vector fields from temporally sparsely sampled unsteady vector fields. The core of TSR-VFD lies in using two networks: InterpolationNet and MaskNet, that process the vector components of different scales from sampled vector fields as input and jointly output synthesized intermediate vector fields. To demonstrate our approach’s effectiveness, we report qualitative and quantitative results with several data sets and compare TSR-VFD against vector field interpolation using linear interpolation (LERP), generative adversarial network (GAN), and recurrent neural network (RNN). In addition, we compare TSR-VFD with a lossy compression (LC) scheme. Finally, we conduct a comprehensive study to evaluate critical parameter settings and network designs.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Over the past three decades, flow visualization has been a core research area and remains a vibrant one in scientific visualization. Among many methods developed, the integration-based method stands out as the most popular form for visualizing three-dimensional vector field data (VFD). For this method, we place particles or seeds in the domain to trace flow lines (streamlines for steady flow and pathlines for unsteady flow) from the underlying vector fields for visual representation, rendering, and understanding. In this paper, we place our focus on unsteady vector fields as they are the most general output from computational fluid dynamics simulations.

For large-scale scientific simulations, scientists usually could only afford to store a fraction of the simulation data in the reduced form. As high-performance computing systems are often constrained with respect to data movement and storage, deciding what data are the most essential to store for post hoc analysis becomes a prevalent task for many scientists running their simulations. As data reduction becomes inevitable, data reconstruction or restoration provides a necessary means to recover data resolutions and details from the reduced data. We consider a typical scenario for unsteady vector fields where scientists store VFD sparsely (e.g., every tenth time step) during the simulation. Our goal is to restore unsaved intermediate time steps as accurately as possible during postprocessing.

Interpolating temporally resolved vector fields from sparsely sampled ones poses several key challenges. First, unlike images where each of the rgb channels keeps the same value range, VFD could have dramatically different value ranges for each of the uvw components (e.g., $u \in [-40, 30]$, $v \in [-0.1, 0.7]$, and $w \in [-10^{-4}, 10^{-3}]$). Directly stacking these components together and feeding them into convolutional neural networks (CNNs), recurrent neural networks (RNNs), or generative adversarial networks (GANs) would not work. This is because it eliminates the small-range component as the large-range component dominates the values in the convolutional operations. Second, the dynamic change of VFD over time is typically non-linear. Conventional approaches employ standard linear interpolation (LERP) to generate intermediate vector fields. These interpolations are only based on local information around the
interpolated position and, therefore, may not capture the complex, global evolution and nonlinear changes of vectors. Third, synthesizing small-scale values in VFD (e.g., at a scale of 10^{-7}) due to high numerical precision is challenging.

To respond, we propose TSR-VFD, a deep learning solution for unsteady VFD reconstruction. TSR-VFD can learn the data non-linearly in both spatial and temporal aspects among different vector fields for generating high-quality intermediate vector fields. Besides, to solve the dramatically different value ranges in VFD, we include two designs in TSR-VFD. First, we leverage two networks: InterpolationNet and MaskNet to learn the different scales of the vector data. Second, these two networks include three independent neural nets for training u, v, and w components separately. Once TSR-VFD converges, it can interpolate the missing intermediate vector fields conditioned on the given vector fields at both ends.

To demonstrate the effectiveness of TSR-VFD, we show quantitative and qualitative results with several vector field data sets of different characteristics. We compare our approach against LERP and two solutions based on GAN and RNN, respectively. We show that TSR-VFD achieves better reconstruction quality in terms of peak signal-to-noise ratio (PSNR), average angle difference (AAD), root-absolute-error (RAE), pathline distance (PD). It also wins over other methods judged from streamline and pathline visualization, both objectively via learned perceptual image patch similarity (LPIPS) [1] and subjectively via side-by-side comparison of integral line rendering and visualization of derived physical quantities and error. In addition, we compare TSR-VFD against a lossy compression (LC) scheme.

The contributions of this paper are as follows. First, to the best of our knowledge, in scientific visualization, our work is the first that applies deep learning solutions for generating missing intermediate time steps for unsteady flow. Second, to ensure high-quality results, we propose two specific designs for unsteady vector data interpolation, which are different from the designs commonly used in image and volume super-resolution tasks. Third, we investigate several parameter settings and network designs to analyze how they would impact the performance of TSR-VFD.

2. Related Work

Vector field reconstruction. Reconstructing VFD has been studied extensively, starting from the 1990s. Mussa-Ivaldi [2] presented a least-square based method to reconstruct 2D vector fields from samples. Gouesbet and Letellier [3] used a multivariate polynomial approximation for global vector field reconstruction of time-continuous dynamical systems. Another algorithm to reconstruct 2D vector fields was given by Lage et al. [4]. They used a sparse set of samples to first fit a polynomial locally to describe each velocity component and then approximated the vector field globally using partition of unity. Lettellier et al. [5] extracted topological features to characterize and reconstruct 3D vector fields for experimental electrochemical systems. Chen et al. [6] applied triangulation to reconstruct velocities from samples along streamlines and then linearly interpolated the vector field’s grid points from the triangulation. Xu et al. [7] used Shannon’s entropy to compute every voxel’s information content in a vector field to guide the streamline seeding process. Xu and Prince [8] introduced gradient vector flow, which has been used by Tao et al. [9] for vector field reconstruction from a set of representative streamlines.

This two-stage algorithm recovers a vector field from streamlines by first estimating velocities for voxels with streamlines passing and then interpolating the missing voxels by minimizing the Laplacian over the whole vector field. Recently, Han et al. [10] reconstructed steady vector fields from streamlines using deep learning. Our work aims to leverage deep learning techniques to reconstruct missing intermediate vector fields for unsteady flow, which has not been attempted previously.

Deep learning in scientific visualization. With deep learning techniques successfully tackling problems in different research areas, they recently found their applications in scientific visualization. Part of these works has tackled problems related to volume visualization. For example, Zhou et al. [11] applied a CNN for volume upsampling. Berger et al. [12] used a GAN to generate volume rendering images conditioned on viewpoint and transfer function. Cheng et al. [13] presented a deep learning approach to assist feature extraction from complex structures for volume visualization. Hong et al. [14] proposed DNN-VolVis that generates novel volume rendering with a given goal effect and a new viewpoint given an original rendering. He et al. [15] presented InSituNet that synthesizes rendering images for parameter space exploration of ensemble simulations. Weiss et al. [16] designed an image-based deep learning solution that generates high-resolution isosurface rendering images from low-resolution ones. Han et al. [17] utilized a GAN to translate a variable sequence to another one. Han and Wang [18, 19] proposed TSR-TVD and SSR-TVD for generating temporal and spatial super-resolution for time-varying volumetric data. Han et al. [20] also presented STNet, an end-to-end framework that generates spatiotemporal super-resolution for time-varying data. Our work is similar to TSR-TVD. However, TSR-TVD focuses on interpolating missing time steps for multivariate time-varying data sets while our work focuses on unsteady vector fields. The solution for TSR-TVD is not suitable for unsteady vector fields due to the different data types and rendering methods.

For flow visualization, Hong et al. [21] leveraged long short-term memory (LSTM) to estimate the access pattern for parallel particle tracing. Xie et al. [22] designed tempoGAN that upscales time-varying flow data in the spatial dimension. Han et al. [10] introduced a two-stage approach to reconstruct steady vector fields from a set of representative streamlines, which was extended by Gu et al. [23] to reconstruct unsteady vector fields. Wiewel et al. [24] proposed an LSTM-based solution to predict the changes of pressure fields for learning the temporal evolution of fluid flows. Kim and Günther [25] extracted steady reference frames from unsteady 2D vector fields through a two-step CNN. Werhahn et al. [26] proposed a generative model that spatially upscals flow data by learning information of the xy-plane then refining along the z axis. Han et al. [27] used deep learning techniques to select and cluster streamlines and sur-
faces by extracting their features in a latent space using autoencoders. Jakob et al. designed a CNN for interpolating flow maps by creating a large 2D fluid flow field as training samples. Guo et al. designed CNNs that generate super-resolution of 3D VFD in the spatial domain with a scaling factor of 4 or 8. Wiewel et al. combined CNN and RNN to predict future time steps of flow data. Sahoo and Berger proposed a deep learning-based spatial super-resolution approach that considers both vector and streamline errors during optimization. Unlike the previous works, which aim to learn representations of flows, reconstruct flow data in the spatial dimension, or predict future time steps, we aim to recover the missing intermediate time steps for unsteady flow data.

CNN for sequence learning. CNN has achieved impressive results in sequence learning tasks. Niklaus et al. introduced a CNN for frame interpolation where the network learns a kernel through the input frames and then applies the learned kernel to generate the missing frames. Nguyen et al. proposed a deep learning model to interpolate the intermediate frames. They transformed each frame into a feature space, then linearly interpolated the intermediate frames in the feature space, and finally recovered the interpolated features to the corresponding frames. Jiang et al. established CNNs to estimate the forward and backward optical flows via two given frames. They then wrapped these optical flows into the frames to generate arbitrary in-between frames. Gehring et al. conducted a solely CNN-based experiment for sequence to sequence learning (e.g., machine translation, abstractive summarization). Yu et al. presented QANet, a CNN and self-attention based solution, that is seven times faster and achieves similar performance compared with RNN in reading comprehension task. Our work differs from these works mentioned above in two ways. First, we leverage CNN for unsteady vector field interpolation in the context of scientific visualization. Second, we take into account the different value ranges in the three vector components for network design.

3. TSR-VFD

3.1. Overview

Let us denote $\mathbf{F}^T = \{\mathbf{F}_1, \cdots, \mathbf{F}_n\}$ as a sequence of n vector fields used for training, and $\mathbf{F}^I = \{\mathbf{F}_n, \mathbf{F}_{n+s+1}, \cdots, \mathbf{F}_{n+m(s+1)}\}$ as a sequence of vector fields used for inference, where s is the interpolation interval. An example is shown in Figure 1 (a). Each \mathbf{F}_i can be decomposed into three velocity components, $\mathbf{F}_{u,i}$, $\mathbf{F}_{v,i}$, and $\mathbf{F}_{w,i}$. Assume L, H, and W are the three spatial dimensions of the vector fields \mathbf{F}; $\theta_{\text{Interpolation}}$ and θ_{Mask} are the learnable parameters of InterpolationNet and MaskNet.

As shown in Figure 1 (b), TSR-VFD accepts two sampled vector fields (i.e., \mathbf{F}_i and \mathbf{F}_j) as input. It leverages two modules (i.e., InterpolationNet and MaskNet) to process the different-scale vector components. Each module contains three separate neural nets to interpolate the three vector components individually, and then jointly produces the intermediate vector fields $\hat{\mathbf{F}}$. InterpolationNet serves to estimate the velocity at each voxel for the intermediate vector fields. MaskNet aims to score the confidence of each voxel generated by InterpolationNet. The interpolated velocities and corresponding confidence scores will be fed into the blending block to output the intermediate vector fields. In particular, we aim to seek an interpolation function \mathcal{J} so that $\mathcal{J}(\mathbf{F}_i, \mathbf{F}_{i+s+1}) \approx \{\mathbf{F}_{i+1}, \cdots, \mathbf{F}_{i+s}\}$, where $i \in [n, n+s+1, \cdots, n+(m-1)(s+1)]$. That is, given the vector fields at both ends: \mathbf{F}_i and \mathbf{F}_{i+s+1}, we interpolate s intermediate vector fields: $\hat{\mathbf{F}}_{i+1}$ to $\hat{\mathbf{F}}_{i+s+1}$. Each network contains three individual nets (i.e., u-net, v-net, and w-net) that process u, v, and w components separately. TSR-VFD accepts \mathbf{F}_i and \mathbf{F}_{i+s+1} as input and decomposes each vector into three components: $\mathbf{F}_{u,i}$, $\mathbf{F}_{v,i}$, $\mathbf{F}_{w,i}$, $\mathbf{F}_{u,i+s+1}$, $\mathbf{F}_{v,i+s+1}$, and $\mathbf{F}_{w,i+s+1}$. These six components are processed by six independent neural nets: Interpolation$_{u\rightarrow Net}$, Interpolation$_{v\rightarrow Net}$, Interpolation$_{w\rightarrow Net}$, Mask$_{u\rightarrow Net}$, Mask$_{v\rightarrow Net}$, and Mask$_{w\rightarrow Net}$, and interpolated vector components are produced

$$\left\{\hat{\mathbf{F}}_{u,i+1}, \cdots, \hat{\mathbf{F}}_{u,i+s}\right\} \approx \mathcal{J}_u(\mathbf{F}_{u,i}, \mathbf{F}_{u,i+s+1}), \quad \left\{\hat{\mathbf{F}}_{v,i+1}, \cdots, \hat{\mathbf{F}}_{v,i+s}\right\} \approx \mathcal{J}_v(\mathbf{F}_{v,i}, \mathbf{F}_{v,i+s+1}), \quad \left\{\hat{\mathbf{F}}_{w,i+1}, \cdots, \hat{\mathbf{F}}_{w,i+s}\right\} \approx \mathcal{J}_w(\mathbf{F}_{w,i}, \mathbf{F}_{w,i+s+1}). \quad (1)$$

Finally, we concatenate $\left\{\hat{\mathbf{F}}_{u,i+1}, \cdots, \hat{\mathbf{F}}_{u,i+s}\right\}$, $\left\{\hat{\mathbf{F}}_{v,i+1}, \cdots, \hat{\mathbf{F}}_{v,i+s}\right\}$, and $\left\{\hat{\mathbf{F}}_{w,i+1}, \cdots, \hat{\mathbf{F}}_{w,i+s}\right\}$ into $\hat{\mathbf{F}}_{i+1}, \cdots, \hat{\mathbf{F}}_{i+s}$. To minimize the difference between the interpolated vector field $\hat{\mathbf{F}}$ and ground truth (GT) vector field \mathbf{F}^T, we consider L_2 norm to estimate the difference. The computed difference will be propagated to InterpolationNet and MaskNet for searching the globally optimized solutions of $\theta_{\text{Interpolation}}$ and θ_{Mask}.

Straightforwardly, we can stack u, v, and w components together into one InterpolationNet to produce the intermediate vector fields. However, this practice will bring two problems, as sketched in Figure 2. First, considering a local region of one component (e.g., u component) in a vector field, the large values will dominate the small values in convolutional (Conv) operations, as shown in Figure 2 (a). Second, considering stacking three components together, the large components will dominate the small component, as described in Figure 2 (b). To address
2. In the following, we first describe the details of TSR-VFD, including the architecture of TSR-VFD and the definition of the loss function. Then, we provide optimization details for training TSR-VFD.

3.2. Network Architecture

To guarantee network performance, we leverage two techniques in TSR-VFD: (1) adding residual blocks (RBs) \[37\] to alleviate the gradient vanishing problem (i.e., the gradients are close to zero after several iterations of optimization) and (2) applying skip connection \[38\] to enhance the quality of interpolated vector fields by incorporating temporal information. Residual block and skip connection can increase gradient computation paths, allowing the network to have multiple paths for parameter updates.

The RBs connect the feature maps from earlier layers to later layers so that the gradient can be calculated through multiple paths, which will alleviate the gradient vanishing problem during training. In an RB, the input is convoluted with several layers so that the gradient can be calculated through multiple computation paths, allowing the network to have multiple paths for interpolation. Residual block and skip connection can increase gradient computation paths, allowing the network to have multiple paths for parameter updates.

These problems, we need both InterpolationNet and MaskNet (addressing the first problem) and train \(u\), \(v\), and \(w\) components individually (addressing the second problem).

In the following, we first describe the details of TSR-VFD, including the architecture of TSR-VFD and the definition of the loss function. Then, we provide optimization details for training TSR-VFD.

Table 1: Network architecture parameter details for one neural net. “ker”, “str”, and “out chs” stand for the kernel, stride, and output channels.

<table>
<thead>
<tr>
<th>InterpolationNet</th>
<th>MaskNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>ker</td>
</tr>
<tr>
<td>input</td>
<td>N/A</td>
</tr>
<tr>
<td>Conv+ReLU</td>
<td>4</td>
</tr>
<tr>
<td>Conv+ReLU</td>
<td>4</td>
</tr>
<tr>
<td>Conv+ReLU</td>
<td>4</td>
</tr>
<tr>
<td>Conv+ReLU</td>
<td>4</td>
</tr>
<tr>
<td>3 RBs</td>
<td>3</td>
</tr>
<tr>
<td>DeConv+ReLU</td>
<td>4</td>
</tr>
<tr>
<td>Conv</td>
<td>3</td>
</tr>
</tbody>
</table>

Conv layers without changing its dimension in one path. In the other path, one Conv layer is applied to the input. These two outputs are merged by addition. Skip connection is used to increase gradient computation paths to alleviate gradient vanishing. Besides, it incorporates temporal information from the vector field sequence at different generation stages rather than only paying attention to the two input vector fields’ deep spatial features during interpolation. That is, with the vector fields at both ends as input, the input vector fields’ information will flow into the generation process of the intermediate vector fields at different feature scales by skip connection.

InterpolationNet. As shown in Figure 3 (a), InterpolationNet has three individual neural nets, and each neural net is composed of an encoding path, a refining path, and a decoding path. There are four Conv layers in the encoding path, three RBs in the refining path, and four composites of deconvolutional (DeConv) and Conv layers in the decoding path. In the encoding path, each of the four Conv layers reduces the input dimension by half. In the refining path, several RBs are utilized for refining and cleaning the feature maps from the encoding path. In the decoding path, DeConv layers are utilized to upscale the feature maps’ dimension by two. We also utilize skip connection to fuse the features maps from the encoding and decoding paths. After that, one Conv layer is used to refine the feature maps. Rectified linear unit (ReLU) \[39\] is applied after each Conv and DeConv. Note that there is no activation function in the last Conv layer because the vector field’s data range is unbounded. Refer to Table 1 for parameter details.

MaskNet. The architecture of MaskNet is similar to that of InterpolationNet. The only difference is that there are no RBs in MaskNet since the goal of MaskNet is to estimate a confidence map for the synthesized vector fields, which estimate how accurate each voxel is in InterpolationNet. As shown in Figure 3 (b), MaskNet also has three individual neural nets, which process \(u\), \(v\), and \(w\) components separately. In each neural net, four Conv layers are applied to downscale the input by 16 times. Then four DeConv layers are utilized to upscale the learned feature maps to the original dimension. After each DeConv layer, skip connection and one Conv layer are leveraged to traverse information faster. Finally, sigmoid \((·)\) is added to normalize the data range to \([0, 1]\). Note that the output from MaskNet should not be a binary mask; otherwise, the network is difficult to optimize.
because the gradient cannot be propagated layer by layer. The parameter details are listed in Table 1.

Blending. Once we collect the outputs from InterpolationNet and MaskNet, namely, \(\{ \tilde{F}_{u,i+1}, \tilde{F}_{w,i+1}, \tilde{F}_{r,i+1} \}, \ldots \), \(\{ F_{u,i}, F_{w,i}, F_{r,i} \} \) and \(\{ M_{u,i}, M_{w,i}, M_{r,i} \}, \ldots \), we compute the synthesized vector field \(\tilde{F}_j \) using the following blending equations

\[
\tilde{F}_{u,j} = M_{u,j} \odot F_{u,j} + (1 - M_{u,j}) \odot L_{u,j},
\]

\[
\tilde{F}_{w,j} = M_{w,j} \odot F_{w,j} + (1 - M_{w,j}) \odot L_{w,j},
\]

\[
\tilde{F}_{r,j} = [\tilde{F}_{u,j}, \tilde{F}_{v,j}, \tilde{F}_{w,j}],
\]

where \(\odot \) is voxel-wise multiplication, \(L_j \) is the corresponding linear interpolation result, and \(j \in \{ i + 1, \ldots, i + s \} \). The rationale behind this blending equation is that since deep learning has the numerical precision limitations in predicting extremely small values (e.g., at a scale of \(10^{-7} \)), more confidence should be given for linear interpolation result in these voxels. While in the large value regions, deep learning can achieve better quality; thus, more confidence is supported for the outputs of InterpolationNet.

Loss function. To train TSR-VFD in an end-to-end fashion, we define the loss function as follows

\[
\mathcal{L} = \frac{1}{3 \times k \times L \times H \times W} \sum_{j=1}^{k} \sum_{i \in \{u,v,w\}} \| F_{i,j} - \tilde{F}_{i,j} \|_2^2,
\]

where \(k \) is the number of training samples, \(\| \cdot \| \) denotes \(L_2 \) norm, and \(F_{i,j} \) and \(\tilde{F}_{i,j} \) are, respectively, the GT and synthesized vector component values at the \(i \)-th vector component of the \(j \)-th training sample. \(L, H, \) and \(W \) are the dimensions of the vector fields.

4. Results and Discussion

4.1. Data Sets and Training Details

Table 2 shows the simulation data sets we experimented with. A single NVIDIA TESLA P100 GPU was used for training TSR-VFD. Note that we can apply TSR-VFD to vector fields of arbitrary size as it is fully convolutional. For optimization, we initialized parameters in TSR-VFD using those suggested by He et al. [41] and applied the Adam optimizer [42] to update the parameters (\(\beta_1 = 0.9, \beta_2 = 0.999 \)). We set one training sample per mini-batch and the learning rate to \(1.0 \times 10^{-4} \). All these parameters are determined based on experiments. We sampled 40% data for training, and the rest of the data are used for inference. We train 1,500 epochs for each data set.

<table>
<thead>
<tr>
<th>data set</th>
<th>dimension (r x y x z x t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>half-cylinder</td>
<td>640 x 240 x 80 x 100</td>
</tr>
<tr>
<td>hurricane</td>
<td>256 x 256 x 56 x 48</td>
</tr>
<tr>
<td>solar plume</td>
<td>64 x 64 x 256 x 27</td>
</tr>
<tr>
<td>supernova</td>
<td>128 x 128 x 128 x 100</td>
</tr>
<tr>
<td>tornado</td>
<td>128 x 128 x 128 x 48</td>
</tr>
</tbody>
</table>

4.2. Results

Baselines. We use three baselines for comparison with TSR-VFD:

- LERP: Linear interpolation (LERP) is a common method for interpolating intermediate vector fields.
- GAN: GAN includes a generator and a discriminator. The generator comprises InterpolationNet and MaskNet, and the discriminator follows that of Isola et al. [43]. We optimize GAN through adversarial loss and the loss defined in Equation 8. The weights of these two losses are set to 0.01 and 1, respectively. Such a setting can stabilize the training process and achieve better performance (e.g., higher PSNR). If adversarial loss dominates the whole training process, the training process is unstable, and the model is prone to collapse, which means that results generated by GAN would be unacceptable.

- RNN [13]: RNN is a deep learning solution for interpolating time-varying scalar data. Here we modify it for the vector field interpolation task. We leverage RNN to train \(u, v, \) and \(w \) separately, and add MaskNet into RNN to combine LERP and RNN results.

All pathline and streamline visualization results presented in the paper are synthesized by TSR-VFD, which are the inferred results (i.e., the network does not see these vector fields during training). For streamline visualization, these inferred results are from a pair of vector fields far away from the training data. Within the interpolation interval, we select the time step in the middle (i.e., we show the worst possible TSR-VFD results). All visualization results for the same data set use the same setting (i.e., the same set of randomly placed seeds and the same viewing parameters). In reference to the GT, we compare TSR-VFD results against those generated by LERP, GAN, and RNN. Due to the page limit, we only report the interpolation interval evaluation in this paper and leave the study of the other four parameter settings and network designs in the appendix. The appendix also includes additional quantitative comparison and error visualization results.

Evaluation metrics. Following Han et al. [27], we utilize peak signal-to-noise ratio (PSNR) and average angle difference (AAD) to evaluate the quality of synthesized vector fields. In addition, we leverage root-absolute-error (RAE) to measure the relative error between the synthesized vector field \(\hat{F} \) and GT \(F \) vector field. RAE is defined as

\[
\text{RAE}(\hat{F}, \hat{\beta}) = \sqrt{\frac{\sum_{i=1}^{L \times H \times W} \sum_{j \in \{u,v,w\}} \| F_{i,j} - \hat{F}_{i,j} \|_1}{\sum_{i=1}^{L \times H \times W} \sum_{j \in \{u,v,w\}} \| F_{i,j} \|_1}},
\]

where \(\| \cdot \|_1 \) is \(L_1 \) norm. Besides these data-level metrics, we also define pathline distance (PD) to measure the similarity of pathlines traced from GT and synthesized vector fields. PD is defined as follows

\[
\text{PD}(\hat{P}, \hat{\beta}) = \frac{1}{\sqrt{L^2 + H^2 + W^2}} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{n_i} \sum_{j=1}^{n_i} \min_{p \in \hat{P}_{i,j}} \| p - \hat{\beta}_{i,j} \|_2,
\]

where \(\hat{P} \) and \(\hat{\beta} \) are the pathlines traced from GT and synthesized vector fields, \(N \) is the number of pathlines, \(n_i \) is the number of
Fig. 4: Pathline rendering results. Top to bottom: hurricane, solar plume, supernova, and tornado. The numbers of pathlines traced for each data set are 1,000, 1,000, 1,000, and 2,000, respectively.

We also leverage three physical quantities: divergence, vorticity, and acceleration to evaluate the quality of these synthesized vector fields. Divergence represents the volume density of the outward flux of each vector. Vorticity describes the local spinning motion of each vector. Acceleration demonstrates the rate of increase of each vector with respect to time. Divergence is defined as

\[
\text{div}(\mathbf{F}) = \frac{\partial F_u}{\partial x} + \frac{\partial F_v}{\partial y} + \frac{\partial F_w}{\partial z}. \quad (11)
\]

The difference of divergence between the GT and synthesized vector fields is defined as

\[
\text{diff}(\mathbf{F}, \hat{\mathbf{F}}) = \frac{1}{L \times H \times W} \sum_{i=1}^{L \times H \times W} |\text{div}(\mathbf{F})_i - \text{div}(\hat{\mathbf{F}})_i|. \quad (12)
\]

Vorticity is defined as

\[
\omega(\mathbf{F}) = \begin{bmatrix}
\frac{\partial F_w}{\partial y} - \frac{\partial F_v}{\partial z} & \frac{\partial F_u}{\partial z} - \frac{\partial F_v}{\partial x} & \frac{\partial F_u}{\partial x} - \frac{\partial F_w}{\partial y}
\end{bmatrix}^T. \quad (13)
\]

Acceleration is defined as

\[
\text{acc}(\mathbf{F}) = \begin{bmatrix}
\frac{dF_u}{dt} & \frac{dF_v}{dt} & \frac{dF_w}{dt}
\end{bmatrix}^T
\]

\[
= \begin{bmatrix}
F_u \frac{\partial F_u}{\partial x} + F_v \frac{\partial F_u}{\partial y} + F_w \frac{\partial F_u}{\partial z} + \frac{\partial F_u}{\partial t}, \\
F_u \frac{\partial F_v}{\partial x} + F_v \frac{\partial F_v}{\partial y} + F_w \frac{\partial F_v}{\partial z} + \frac{\partial F_v}{\partial t}, \\
F_u \frac{\partial F_w}{\partial x} + F_v \frac{\partial F_w}{\partial y} + F_w \frac{\partial F_w}{\partial z} + \frac{\partial F_w}{\partial t}
\end{bmatrix}^T. \quad (14)
\]

Furthermore, we leverage learned perceptual image patch similarity (LPIPS) [1], an image-space quality metric, to evaluate the quality of rendering images between the synthesized and GT vector fields.
Quantitative and qualitative analysis. In Figure 4, we compare pathline rendering results of the synthesized vector fields generated by LERP, RNN, GAN, and TSR-VFD. For the hurricane data set, compared with LERP and RNN, GAN and TSR-VFD preserve a better flow pattern around the hurricane’s eye. For the solar plume data set, TSR-VFD generates more accurate flow patterns at the central region and the bottom-left corner. For the supernova data set, TSR-VFD leads to more details around the supernova’s center and bottom corner. For instance, the pathlines produced by LERP and RNN around the supernova’s center are squeezed closer compared with GT, and the pathlines produced by GAN at the bottom corner are jaggy. For the tornado data set, LERP, RNN, and GAN do not accurately trace the pathlines at the bottom-right corner. Besides, the pathlines synthesized by LERP and RNN are shifted a little bit around the tornado’s center.

In Figure 5, we compare streamline rendering results of the synthesized vector fields generated by LERP, RNN, GAN, and TSR-VFD. For the hurricane data set, TSR-VFD and GAN preserve the flow patterns better around the hurricane’s eye. LERP and RNN do not capture such patterns: the streamlines generated by LERP and RNN exhibit an ellipse shape instead of a circle shape. For the solar plume data set, LERP, RNN, and GAN do not accurately trace the streamlines at the central region, i.e., there are more streamlines traced from the central region compared with those generated by TSR-VFD. For the supernova data set, TSR-VFD yields a better visual result at the top region, while LERP and RNN do not recover these streamlines, and GAN produces more streamline at the bottom-right corner. For the tornado data set, TSR-VFD yields more details compared with LERP, RNN, and GAN. For example, LERP and RNN produce longer streamlines around the tornado’s center and shorter streamlines at the bottom-right corner, while GAN and TSR-VFD still preserve these details compared with GT.

![Streamline rendering results.](image_url)
Table 3: Average PSNR (dB), AAD, RAE, PD, difference of divergence, LPIPS values of streamline rendering (SR) and pathline rendering (PR), training time per epoch (in second), and inference time (in second) under interpolation interval s = 5. The best ones are highlighted in bold (same for Tables 4 to 7).

<table>
<thead>
<tr>
<th>data set</th>
<th>method</th>
<th>PSNR</th>
<th>AAD</th>
<th>RAE</th>
<th>PD</th>
<th>diff of div</th>
<th>LPIPS (SR)</th>
<th>LPIPS (PR)</th>
<th>train</th>
<th>infer</th>
</tr>
</thead>
<tbody>
<tr>
<td>hurricane</td>
<td>LERP</td>
<td>38.26</td>
<td>0.060</td>
<td>0.429</td>
<td>0.0413</td>
<td>7.03×10⁻⁵</td>
<td>0.293</td>
<td>0.362</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>GAN</td>
<td>40.45</td>
<td>0.049</td>
<td>0.389</td>
<td>0.0342</td>
<td>8.21×10⁻⁵</td>
<td>0.274</td>
<td>0.322</td>
<td>126.08</td>
<td>23.2</td>
</tr>
<tr>
<td></td>
<td>RNN</td>
<td>38.46</td>
<td>0.061</td>
<td>0.428</td>
<td>0.0534</td>
<td>6.03×10⁻⁴</td>
<td>0.285</td>
<td>0.349</td>
<td>130.05</td>
<td>63.1</td>
</tr>
<tr>
<td></td>
<td>TSR-VFD</td>
<td>41.70</td>
<td>0.043</td>
<td>0.362</td>
<td>0.0274</td>
<td>7.38×10⁻⁵</td>
<td>0.269</td>
<td>0.299</td>
<td>55.61</td>
<td>23.2</td>
</tr>
<tr>
<td>solar plume</td>
<td>LERP</td>
<td>40.75</td>
<td>0.006</td>
<td>0.367</td>
<td>0.0013</td>
<td>1.48×10⁻²</td>
<td>0.392</td>
<td>0.137</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>GAN</td>
<td>42.65</td>
<td>0.051</td>
<td>0.386</td>
<td>0.0045</td>
<td>1.88×10⁻²</td>
<td>0.449</td>
<td>0.222</td>
<td>23.97</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>RNN</td>
<td>41.78</td>
<td>0.008</td>
<td>0.352</td>
<td>0.0015</td>
<td>2.45×10⁻²</td>
<td>0.149</td>
<td>0.113</td>
<td>0.045</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>TSR-VFD</td>
<td>45.39</td>
<td>0.010</td>
<td>0.302</td>
<td>0.0012</td>
<td>1.06×10⁻²</td>
<td>0.386</td>
<td>0.113</td>
<td>8.81</td>
<td>0.08</td>
</tr>
<tr>
<td>supernova</td>
<td>LERP</td>
<td>43.84</td>
<td>0.0047</td>
<td>0.0933</td>
<td>0.0043</td>
<td>6.78×10⁻²</td>
<td>0.227</td>
<td>0.142</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>GAN</td>
<td>46.84</td>
<td>0.0056</td>
<td>0.1144</td>
<td>0.0038</td>
<td>1.36×10⁻²</td>
<td>0.229</td>
<td>0.149</td>
<td>91.06</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>RNN</td>
<td>43.83</td>
<td>0.0047</td>
<td>0.0933</td>
<td>0.0043</td>
<td>9.50×10⁻²</td>
<td>0.227</td>
<td>0.134</td>
<td>88.83</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>TSR-VFD</td>
<td>48.43</td>
<td>0.0039</td>
<td>0.0086</td>
<td>0.0038</td>
<td>1.62×10⁻²</td>
<td>0.223</td>
<td>0.134</td>
<td>38.20</td>
<td>0.20</td>
</tr>
<tr>
<td>tornado</td>
<td>LERP</td>
<td>51.03</td>
<td>0.0031</td>
<td>0.0498</td>
<td>0.0006</td>
<td>3.22×10⁻⁷</td>
<td>0.039</td>
<td>0.029</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>GAN</td>
<td>51.24</td>
<td>0.00184</td>
<td>0.0850</td>
<td>0.00012</td>
<td>3.18×10⁻⁷</td>
<td>0.043</td>
<td>0.030</td>
<td>36.06</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>RNN</td>
<td>51.04</td>
<td>0.00030</td>
<td>0.0498</td>
<td>0.0006</td>
<td>3.24×10⁻⁷</td>
<td>0.039</td>
<td>0.029</td>
<td>34.95</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>TSR-VFD</td>
<td>53.77</td>
<td>0.00026</td>
<td>0.0425</td>
<td>0.00003</td>
<td>1.86×10⁻⁷</td>
<td>0.016</td>
<td>0.004</td>
<td>15.45</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Cross-dataset and ensemble evaluation. To evaluate the generalization of TSR-VFD, we consider two training cases: cross-dataset and ensemble data set. For cross-dataset, we perform joint training using the hurricane and tornado data sets. The number of epochs is the same as the one used in separate training. The pathline rendering results are shown in Figure 9. For the hurricane data set, the pathlines generated from joint training are worse than those generated from separate training. For example, the joint model does not capture the flow pattern at the hurricane’s eye. For the tornado data set, the joint model performs poorly: it leads to jaggy pathlines everywhere and does not accurately recover the velocity magnitude information. We can also observe that separate training leads to higher PSNR, lower AAD, and lower RAE values, as reported in Table 5. For the ensemble data set, we use the half-cylinder data set with different Reynolds numbers to train TSR-VFD jointly. As shown in Figure 10, the streamlines generated by our results are closer to the GT compared with these generated by LERP. For example, for the Reynolds number of 320, LERP produces two swirls at the domain’s center while TSR-VFD and GT only yield one swirl. As for pathline rendering, LERP leads to fewer pathlines at the middle-right corner. For vorticity of the Reynolds number of 6,400, TSR-VFD produces more details. For quantitative results, TSR-VFD achieves higher PSNR values and lower AAD, RAE, and PD values compared with LERP under different Reynolds numbers, as shown in Table 6.

Table 4: Comparison of lossy compression (LC) and TSR-VFD. Top: average AAD and RAE values under the same PSNR value (i.e., 45.5 dB). Bottom: average PSNR (dB), AAD, and RAE values under the same compression ratio (i.e., $9\times$).

<table>
<thead>
<tr>
<th>data set</th>
<th>method</th>
<th>comp. ratio</th>
<th>AAD</th>
<th>RAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>solar plume</td>
<td>LC</td>
<td>$36\times$</td>
<td>0.492</td>
<td>0.547</td>
</tr>
<tr>
<td></td>
<td>TSR-VFD</td>
<td>$5\times$</td>
<td>0.010</td>
<td>0.302</td>
</tr>
<tr>
<td>supernova</td>
<td>LC</td>
<td>35.31</td>
<td>0.0249</td>
<td>0.2954</td>
</tr>
<tr>
<td></td>
<td>TSR-VFD</td>
<td>45.32</td>
<td>0.0053</td>
<td>0.0967</td>
</tr>
</tbody>
</table>

Evaluation of interpolation interval. To investigate the interpolation ability of TSR-VFD, we conduct an experiment...
that trains TSR-VFD with different interpolation intervals. As shown in Figure 11, we render the pathlines and streamlines from the vector fields synthesized from different interpolation intervals. For the hurricane data set, under $s = 9$ and $s = 13$, the hurricane’s eye cannot be recovered well, especially for the eye’s shape. Moreover, under $s = 13$, the pathlines do not capture the pattern of the hurricane’s eye. However, under $s = 5$, this feature can be preserved much better in streamline and pathline rendering results. For the supernova and tornado data sets, all results are similar to GT. But taking a closer look, we can observe that several streamlines of the supernova data set are missed at the top-left corner. Several pathlines of the tornado data set are shifted in the central region. Therefore, the appropriate value for s is 5 for complex data sets, where the flow pattern moves as the time step goes (e.g., the hurricane data set). For simple data sets where the flow pattern is localized (e.g., the tornado and the supernova data sets), s could be 9. Average PSNR, AAD, and RAE values under different interpolation intervals are reported in Table 7. We can observe that TSR-VFD produces higher PSNR, lower AAD, and lower RAE values for different data sets compared to LERP. The only exception is AAD for the solar plume data set. Note that for the solar plume data set, only 12 training samples are offered. Therefore, setting s to 13 is not an option.

4.3. Discussion

Our approach assumes that the intermediate time steps do not exhibit flow characteristics that are not observed in the two ending time steps. Our approach cannot capture such patterns if a flow pattern appears and disappears only in the interpolated time steps. Compared with LERP, TSR-VFD offers two advantages. First, it achieves better quantitative and qualitative results, including physics-based measurements, such as vorticity and acceleration. Second, it preserves important flow patterns more accurately, such as the supernova’s core and the hurricane’s eye. However, TSR-VFD requires some successive time steps for training. TSR-VFD better interpolates the flows with complex patterns, such as turbulence (e.g., Reynolds number of 6,400).

5. Conclusions and Future Work

We have presented TSR-VFD, a novel deep learning solution for interpolating missing vector fields for VFD analysis and visualization. Leveraging InterpolationNet and MaskNet, TSR-VFD can produce high-quality unsteady vector fields given vector fields at both ends as input. Compared to LERP, RNN, and
GAN, TSR-VFD yields synthesized vector fields of better visual quality, both qualitatively and quantitatively. We also compare TSR-VFD against a lossy compression scheme. TSR-VFD can be applied to the in-situ situation. In this scenario, at simulation time, we can store the early time steps for TSR-VFD training while saving the later time steps sparsely (e.g., storing one time step for every ten time steps simulated) for storage saving. During postprocessing, the network is trained with the early time steps only. Once trained, we can recover the missing intermediate vector fields with high fidelity, given the sparsely-output later time steps.

In the future, we would improve TSR-VFD in two aspects. (1) Few-shot learning. The current version of TSR-VFD requires 40% data for training, which could hinder its utilization in real applications. With few-shot learning techniques [45], we can significantly reduce the training samples while preserving the quality of interpolated vector fields. (2) Incorporating physical constraints. So far, TSR-VFD is purely a data-driven solution for VFD. We want to incorporate physical constraints into optimization, which can further improve the quality of synthesized vector fields.

Acknowledgements

This research was supported in part by the U.S. National Science Foundation through grants IIS-1455886, CNS-1629914, DUE-1833129, IIS-1955395, IIS-2101696, OAC-2104158, and the NVIDIA GPU Grant Program. The authors would like to thank the anonymous reviewers for their insightful comments.

References

Fig. 11: Pathline (1,000, 1st and 2nd rows) and streamline (500, 3rd and 4th rows) rendering results under different interpolation intervals. Top to bottom: hurricane, supernova, hurricane, and tornado.

Appendix

1. Network Parameter and Design Study

To evaluate TSR-VFD, we analyze the following parameter settings and network designs: the number of training epochs, crop size for large vector fields, architecture design, and impact of MaskNet. A detailed discussion is as follows.

Training epochs. We study how the quality of the synthesized vector field using TSR-VFD evolves with the increase of training epochs. Streamline rendering results of the tornado data set after different numbers of training epochs are shown in Figures 1. For a clear comparison, we display a difference image at the top-left corner. The difference image is computed in the CIELUV color space \(\Delta L^* \geq 6 \), where pixels with \(\Delta L^* \geq 6 \) are mapped to non-white colors. As we can see, there is little visual difference at either the central or the bottom region of the tornado. Nevertheless, the average PSNR and AAD values can be improved with more training epochs, as shown in Figure 2. Moreover, we observe that after 1,500 epochs, there is no significant difference among synthesized results when increasing the number of epochs further. Therefore, we choose 1,500 epochs to train all the data sets.

Crop size. TSR-VFD cannot afford enough memory to process the entire vector field simultaneously if a larger interpolation interval is required or larger vector fields are provided. Therefore, we crop subvolumes to train TSR-VFD. We perform training with subvolume sizes of \(32^3 \), \(64^3 \), and \(96^3 \) using the supernova data set under \(s = 5 \). The average PSNR and AAD curves are shown in Figure 2(b). We can observe that training TSR-VFD benefits from a larger subvolume size since an enlarged receptive field helps the network capture more information of the vector fields. As for visual quality, from Figure 3 we can see that under the subvolume size of \(32^3 \), several streamlines are shifted around the supernova’s center, and one streamline is not traced into the center. However, we do not observe a significant difference in the streamline rendering results under the subvolume size of \(64^3 \) and \(96^3 \), compared with GT. However, a larger subvolume size takes more time to train. Hence, we suggest that using a \(64^3 \) subvolume size to train TSR-VFD could achieve a good tradeoff.

Architecture design. To investigate the effectiveness of TSR-VFD, we conduct an experiment that trains TSR-VFD without separating the three components using different data sets. As shown in Figure 4, we render the streamlines and pathlines from the synthesized vector fields generated by these two different architectures using the solar plume data set. Compared with TSR-VFD without separation, TSR-VFD better captures the flow features in the surrounding region for pathline rendering and in the central region for streamline rendering. For a clearer comparison, we compute PSNR and RAE values for each component as well as AAD, as shown in Table 1. As we can see, separating the vector field brings higher PSNR values and lower RAE values for each vector component for both the solar plume and supernova data sets. In addition, the benefit reduces for small components. For example, for the solar plume data set, the PSNR value of the \(w \) component increases from 41.28 dB to 43.29 dB, and the RAE value of the \(w \) component decreases from 0.233 to 0.215 due to separation training.

Impact of MaskNet. To study the impact of MaskNet, we design an experiment that trains TSR-VFD with and without MaskNet using the solar plume data set. As shown in Figure 5, we render streamlines and pathlines from the vector fields generated from these two models. As we can see, adding MaskNet into TSR-VFD improves visual quality in terms of traced streamlines and pathlines. For example, the streamlines
and pathlines traced from vector fields synthesized by TSR-VFD without MaskNet do not capture the surrounding flow pattern. This is because the surrounding region’s velocities have smaller values compared with those in the central region. Without MaskNet, TSR-VFD could not capture these small-scale velocities due to numerical precision in deep learning. These results indicate the effectiveness of MaskNet in improving the quality of reconstructed unsteady vector fields.

2. Additional Evaluation

Quantitative comparison. In Figure 6, we quantitatively compare TSR-VFD results against those generated by LERP, GAN, and RNN using PSNR (higher is better), AAD (lower is better), and RAE (lower is better). TSR-VFD generally achieves the best performance compared with LERP, GAN, and RNN in terms of the highest PSNR, lowest AAD, and lowest RAE at each interpolated time step. We also observe that, except for the hurricane data set, GAN achieves the worst results in terms of AAD and RAE. This may be due to the adversarial loss, which does not train GAN as an AAD- and RAE-driven model.

Error visualization. In Figure 7, we compare volume rendering results of errors introduced by the synthesized vector fields generated by LERP, RNN, GAN, and TSR-VFD. These error volumes are calculated based on the synthesized and GT vector fields. We define the error e_i at the i-th voxel as

$$e_i(F, \hat{F}) = \sqrt{\sum_{j \in \text{ voxel}} (F_{i,j} - \hat{F}_{i,j})^2}. \quad (1)$$

For the hurricane data set, compared with LERP and RNN, TSR-VFD and GAN introduce fewer errors around the hurricane’s eye. For the solar plume and tornado data sets, compared with LERP, RNN, and GAN, TSR-VFD leads to fewer errors in the plume’s inner body and at the tornado’s vortex core. For the supernova data set, TSR-VFD produces fewer errors at the core and boundary compared with LERP, RNN, and GAN.
Fig. 6: PSNR, AAD, and RAE of synthesized vector fields using LERP, GAN, RNN, and TSR-VFD. Top to bottom: hurricane, solar plume, supernova, and tornado. For the supernova and tornado data sets, PSNR, AAD, and RAE values of LERP and RNN are rather close. Therefore, the curves are overlapped.
Fig. 7: Volume rendering results of errors introduced by the synthesized vector fields. Top to bottom: hurricane, solar plume, supernova, and tornado.