
Computers & Graphics (2022)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

TSR-VFD: Generating Temporal Super-Resolution for Unsteady Vector Field Data

Jun Han and Chaoli Wang

Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

A R T I C L E I N F O

Article history:
Received February 8, 2022

Keywords: Temporal super-resolution,
unsteady vector field, data reconstruc-
tion, deep learning

A B S T R A C T
We present TSR-VFD, a novel deep learning solution that recovers temporal super-
resolution (TSR) of three-dimensional vector field data (VFD) for unsteady flow. In
scientific visualization, TSR-VFD is the first work that leverages deep neural nets to
interpolate intermediate vector fields from temporally sparsely sampled unsteady vec-
tor fields. The core of TSR-VFD lies in using two networks: InterpolationNet and
MaskNet, that process the vector components of different scales from sampled vector
fields as input and jointly output synthesized intermediate vector fields. To demonstrate
our approach’s effectiveness, we report qualitative and quantitative results with several
data sets and compare TSR-VFD against vector field interpolation using linear inter-
polation (LERP), generative adversarial network (GAN), and recurrent neural network
(RNN). In addition, we compare TSR-VFD with a lossy compression (LC) scheme.
Finally, we conduct a comprehensive study to evaluate critical parameter settings and
network designs.

c© 2022 Elsevier B.V. All rights reserved.

1. Introduction1

Over the past three decades, flow visualization has been a2

core research area and remains a vibrant one in scientific vi-3

sualization. Among many methods developed, the integration-4

based method stands out as the most popular form for visualiz-5

ing three-dimensional vector field data (VFD). For this method,6

we place particles or seeds in the domain to trace flow lines7

(streamlines for steady flow and pathlines for unsteady flow)8

from the underlying vector fields for visual representation, ren-9

dering, and understanding. In this paper, we place our focus on10

unsteady vector fields as they are the most general output from11

computational fluid dynamics simulations.12

For large-scale scientific simulations, scientists usually could13

only afford to store a fraction of the simulation data in the re-14

duced form. As high-performance computing systems are of-15

ten constrained with respect to data movement and storage, de-16

ciding what data are the most essential to store for post hoc17

analysis becomes a prevalent task for many scientists running18

their simulations. As data reduction becomes inevitable, data19

reconstruction or restoration provides a necessary means to re-20

cover data resolutions and details from the reduced data. We 21

consider a typical scenario for unsteady vector fields where sci- 22

entists store VFD sparsely (e.g., every tenth time step) during 23

the simulation. Our goal is to restore unsaved intermediate time 24

steps as accurately as possible during postprocessing. 25

Interpolating temporally resolved vector fields from sparsely 26

sampled ones poses several key challenges. First, unlike images 27

where each of the rgb channels keeps the same value range, 28

VFD could have dramatically different value ranges for each 29

of the uvw components (e.g., u ∈ [−40,30], v ∈ [−0.1,0.7], 30

and w ∈ [−10−4,10−3]). Directly stacking these components 31

together and feeding them into convolutional neural networks 32

(CNNs), recurrent neural networks (RNNs), or generative ad- 33

versarial networks (GANs) would not work. This is because it 34

eliminates the small-range component as the large-range com- 35

ponent dominates the values in the convolutional operations. 36

Second, the dynamic change of VFD over time is typically non- 37

linear. Conventional approaches employ standard linear inter- 38

polation (LERP) to generate intermediate vector fields. These 39

interpolations are only based on local information around the 40

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 J. Han and C. Wang / Computers & Graphics (2022)

interpolated position and, therefore, may not capture the com-1

plex, global evolution and nonlinear changes of vectors. Third,2

synthesizing small-scale values in VFD (e.g., at a scale of 10−7)3

due to high numerical precision is challenging.4

To respond, we propose TSR-VFD, a deep learning solution5

for unsteady VFD reconstruction. TSR-VFD can learn the data6

nonlinearly in both spatial and temporal aspects among differ-7

ent vector fields for generating high-quality intermediate vector8

fields. Besides, to solve the dramatically different value ranges9

in VFD, we include two designs in TSR-VFD. First, we lever-10

age two networks: InterpolationNet and MaskNet to learn the11

different scales of the vector data. Second, these two networks12

include three independent neural nets for training u, v, and w13

components separately. Once TSR-VFD converges, it can in-14

terpolate the missing intermediate vector fields conditioned on15

the given vector fields at both ends.16

To demonstrate the effectiveness of TSR-VFD, we show17

quantitative and qualitative results with several vector field data18

sets of different characteristics. We compare our approach19

against LERP and two solutions based on GAN and RNN,20

respectively. We show that TSR-VFD achieves better recon-21

struction quality in terms of peak signal-to-noise ratio (PSNR),22

average angle difference (AAD), root-absolute-error (RAE),23

pathline distance (PD). It also wins over other methods judged24

from streamline and pathline visualization, both objectively via25

learned perceptual image patch similarity (LPIPS) [1] and sub-26

jectively via side-by-side comparison of integral line rendering27

and visualization of derived physical quantities and error. In28

addition, we compare TSR-VFD against a lossy compression29

(LC) scheme.30

The contributions of this paper are as follows. First, to the31

best of our knowledge, in scientific visualization, our work is32

the first that applies deep learning solutions for generating miss-33

ing intermediate time steps for unsteady flow. Second, to ensure34

high-quality results, we propose two specific designs for un-35

steady vector data interpolation, which are different from the36

designs commonly used in image and volume super-resolution37

tasks. Third, we investigate several parameter settings and net-38

work designs to analyze how they would impact the perfor-39

mance of TSR-VFD.40

2. Related Work41

Vector field reconstruction. Reconstructing VFD has been42

studied extensively, starting from the 1990s. Mussa-Ivaldi [2]43

presented a least-square based method to reconstruct 2D vector44

fields from samples. Gouesbet and Letellier [3] used a mul-45

tivariate polynomial approximation for global vector field re-46

construction of time-continuous dynamical systems. Another47

algorithm to reconstruct 2D vector fields was given by Lage et48

al. [4]. They used a sparse set of samples to first fit a poly-49

nomial locally to describe each velocity component and then50

approximated the vector field globally using partition of unity.51

Lettellier et al. [5] extracted topological features to character-52

ize and reconstruct 3D vector fields for experimental electro-53

chemical systems. Chen et al. [6] applied triangulation to re-54

construct velocities from samples along streamlines and then55

linearly interpolated the vector field’s grid points from the tri- 56

angulation. Xu et al. [7] used Shannon’s entropy to compute 57

every voxel’s information content in a vector field to guide the 58

streamline seeding process. Xu and Prince [8] introduced gra- 59

dient vector flow, which has been used by Tao et al. [9] for vec- 60

tor field reconstruction from a set of representative streamlines. 61

This two-stage algorithm recovers a vector field from stream- 62

lines by first estimating velocities for voxels with streamlines 63

passing and then interpolating the missing voxels by minimiz- 64

ing the Laplacian over the whole vector field. Recently, Han 65

et al. [10] reconstructed steady vector fields from streamlines 66

using deep learning. Our work aims to leverage deep learning 67

techniques to reconstruct missing intermediate vector fields for 68

unsteady flow, which has not been attempted previously. 69

Deep learning in scientific visualization. With deep learn- 70

ing techniques successfully tackling problems in different re- 71

search areas, they recently found their applications in scien- 72

tific visualization. Part of these works has tackled problems 73

related to volume visualization. For example, Zhou et al. [11] 74

applied a CNN for volume upscaling. Berger et al. [12] used 75

a GAN to generate volume rendering images conditioned on 76

viewpoint and transfer function. Cheng et al. [13] presented a 77

deep learning approach to assist feature extraction from com- 78

plex structures for volume visualization. Hong et al. [14] pro- 79

posed DNN-VolVis that generates novel volume rendering with 80

a given goal effect and a new viewpoint given an original ren- 81

dering. He et al. [15] presented InSituNet that synthesizes ren- 82

dering images for parameter space exploration of ensemble sim- 83

ulations. Weiss et al. [16] designed an image-based deep learn- 84

ing solution that generates high-resolution isosurface render- 85

ing images from low-resolution ones. Han et al. [17] utilized 86

a GAN to translate a variable sequence to another one. Han and 87

Wang [18, 19] proposed TSR-TVD and SSR-TVD for generat- 88

ing temporal and spatial super-resolution for time-varying vol- 89

umetric data. Han et al. [20] also presented STNet, an end-to- 90

end framework that generates spatiotemporal super-resolution 91

for time-varying data. Our work is similar to TSR-TVD. How- 92

ever, TSR-TVD focuses on interpolating missing time steps for 93

multivariate time-varying data sets while our work focuses on 94

unsteady vector fields. The solution for TSR-TVD is not suit- 95

able for unsteady vector fields due to the different data types 96

and rendering methods. 97

For flow visualization, Hong et al. [21] leveraged long short- 98

term memory (LSTM) to estimate the access pattern for parallel 99

particle tracing. Xie et al. [22] designed tempoGAN that up- 100

scales time-varying flow data in the spatial dimension. Han et 101

al. [10] introduced a two-stage approach to reconstruct steady 102

vector fields from a set of representative streamlines, which was 103

extended by Gu et al. [23] to reconstruct unsteady vector fields. 104

Wiewel et al. [24] proposed an LSTM-based solution to predict 105

the changes of pressure fields for learning the temporal evo- 106

lution of fluid flows. Kim and Günther [25] extracted steady 107

reference frames from unsteady 2D vector fields through a two- 108

step CNN. Werhahn et al. [26] proposed a generative model that 109

spatially upscales flow data by learning information of the xy- 110

plane then refining along the z axis. Han et al. [27] used deep 111

learning techniques to select and cluster streamlines and sur- 112

J. Han and C. Wang / Computers & Graphics (2022) 3

faces by extracting their features in a latent space using autoen-1

coders. Jakob et al. [28] designed a CNN for interpolating flow2

maps by creating a large 2D fluid flow field as training samples.3

Guo et al. [29] designed CNNs that generate super-resolution4

of 3D VFD in the spatial domain with a scaling factor of 4 or5

8. Wiewel et al. [30] combined CNN and RNN to predict future6

time steps of flow data. Sahoo and Berger [31] proposed a deep7

learning-based spatial super-resolution approach that considers8

both vector and streamline errors during optimization. Unlike9

the previous works, which aim to learn representations of flows,10

reconstruct flow data in the spatial dimension, or predict fu-11

ture time steps, we aim to recover the missing intermediate time12

steps for unsteady flow data.13

CNN for sequence learning. CNN has achieved impressive14

results in sequence learning tasks. Niklaus et al. [32] intro-15

duced a CNN for frame interpolation where the network learns16

a kernel through the input frames and then applies the learned17

kernel to generate the missing frames. Nguyen et al. [33] pro-18

posed a deep linear embedding model to interpolate the inter-19

mediate frames. They transformed each frame into a feature20

space, then linearly interpolated the intermediate frames in the21

feature space, and finally recovered the interpolated features to22

the corresponding frames. Jiang et al. [34] established CNNs23

to estimate the forward and backward optical flows via two24

given frames. They then wrapped these optical flows into the25

frames to generate arbitrary in-between frames. Gehring et al.26

[35] conducted a solely CNN-based experiment for sequence to27

sequence learning (e.g., machine translation, abstractive sum-28

marization). Yu et al. [36] presented QANet, a CNN and self-29

attention based solution, that is seven times faster and achieves30

similar performance compared with RNN in reading compre-31

hension task. Our work differs from these works mentioned32

above in two ways. First, we leverage CNN for unsteady vec-33

tor field interpolation in the context of scientific visualization.34

Second, we take into account the different value ranges in the35

three vector components for network design.36

3. TSR-VFD37

3.1. Overview38

Let us denote FT = {F1, · · · ,Fn} as a sequence of n vector39

fields used for training, and FI = {Fn,Fn+s+1, · · · ,Fn+m(s+1)}40

as a sequence of vector fields used for inference, where s is the41

interpolation interval. An example is shown in Figure 1 (a).42

Each Fi can be decomposed into three velocity components,43

Fu,i, Fv,i, and Fw,i. Assume L, H, and W are the three spatial44

dimensions of the vector fields F. θInterpolation and θMask are the45

learnable parameters of InterpolationNet and MaskNet.46

As shown in Figure 1 (b), TSR-VFD accepts two sampled
vector fields (i.e., Fi and F j) as input. It leverages two modules
(i.e., InterpolationNet and MaskNet) to process the different-
scale vector components. Each module contains three sepa-
rate neural nets to interpolate the three vector components in-
dividually, and then jointly produces the intermediate vector
fields F̂. InterpolationNet serves to estimate the velocity at
each voxel for the intermediate vector fields. MaskNet aims

training data testing data

example of inferred
time step (e.g., Fig. 5)

time

……

(a)

Fi

Fj

Fu,i
Fv,i
Fw,i

Fu,j
Fv,j
Fw,j

Fu,i+1

~

…

Fw,j-1

~

Mu,i+1

~

…

Mw,j-1

~

…

Fi+1
^

Fj-1
^

blend

InterpolationNet

MaskNetd
e
c
o
m
p
o
s
ti
o
n

(b)
Fig. 1: (a) The training and testing time steps from the vector field sequence.
(b) Overview of TSR-VFD. Two sampled vectors are each decomposed into
three components. Each component is separately processed by one Interpola-
tionNet and one MaskNet. Finally, the synthesized high-resolution components
are concatenated to generate the intermediate vector fields. In this example,
j = i+ s+1.

to score the confidence of each voxel generated by Interpola-
tionNet. The interpolated velocities and corresponding confi-
dence scores will be fed into the blending block to output the
intermediate vector fields. In particular, we aim to seek an inter-
polation function I so that I (Fi,Fi+s+1) ≈ {Fi+1, · · · ,Fi+s},
where i ∈ [n,n+ s+ 1, · · · ,n+(m− 1)(s+ 1)]. That is, given
the vector fields at both ends: Fi and Fi+s+1, we interpolate
s intermediate vector fields: Fi+1 to Fi+s. Each network con-
tains three individual nets (i.e., u-net, v-net, and w-net) that
process u, v, and w components separately. TSR-VFD accepts
Fi and Fi+s+1 as input and decomposes each vector into three
components: Fu,i, Fv,i, Fw,i, Fu,i+s+1, Fv,i+s+1, and Fw,i+s+1.
These six components are processed by six independent neural
nets: Interpolationu−Net , Interpolationv−Net , Interpolationw−Net ,
Masku−Net , Maskv−Net , and Maskw−Net , and interpolated vector
components are produced

{F̂u,i+1, · · · , F̂u,i+s} ≈Iu(Fu,i,Fu,i+s+1), (1)

{F̂v,i+1, · · · , F̂v,i+s} ≈Iv(Fv,i,Fv,i+s+1), (2)

{F̂w,i+1, · · · , F̂w,i+s} ≈Iw(Fw,i,Fw,i+s+1). (3)

Finally, we concatenate {F̂u,i+1, · · · , F̂u,i+s}, 47

{F̂v,i+1, · · · , F̂v,i+s}, and {F̂w,i+1, · · · , F̂w,i+s} into 48

{F̂i+1, · · · , F̂i+s}. To minimize the difference between the 49

interpolated vector field F̂ and ground truth (GT) vector field 50

FT , we consider L2 norm to estimate the difference. The 51

computed difference will be propagated to InterpolationNet 52

and MaskNet for searching the globally optimized solutions of 53

θInterpolation and θMask. 54

Straightforwardly, we can stack u, v, and w components to- 55

gether into one InterpolationNet to produce the intermediate 56

vector fields. However, this practice will bring two problems, 57

as sketched in Figure 2. First, considering a local region of one 58

component (e.g., u component) in a vector field, the large values 59

will dominate the small values in convolutional (Conv) opera- 60

tions, as shown in Figure 2 (a). Second, considering stacking 61

three components together, the large components will dominate 62

the small component, as described in Figure 2 (b). To address 63

4 J. Han and C. Wang / Computers & Graphics (2022)

2.5

5.7

-4.5

1.7

-2.5

8.4

-2.6 2.3 -3.6

2.1

6.2

-3.4

1.1

-2.8

7.9

-2.1 1.1 -3.0

1.4

-1.7

3.4

-4.5

2.3

-3.1

3.5 9.4 -3.6

0.03

-0.01

0.31

0.78

0.81

0.45

-0.45 0.12 -0.21

u v w

u v w

1.9

-1.5

2.6

-3.4

2.0

-2.9

1.3 8.3 -2.4

1.7

3.1

1.4

2.4

2.8

2.5

-1.2 2.5 -3.0

Conv

-0.02

9.4

1.3

0.3

2.4

5.6

0.1 2.3 4.6

3.5

8.7

1.3

1.4

1.6

6.1

2.5 1.8 3.7

Conv

(a) (b)

Fig. 2: Data distribution leads to inaccurate predictions using Conv operation.
(a) Large values will eliminate small values (highlighted in red) in a local region
in one vector component. (b) Large components will eliminate small compo-
nents (highlighted in blue) if three components are stacked together and fed into
one neural net.

these problems, we need both InterpolationNet and MaskNet1

(addressing the first problem) and train u, v, and w components2

individually (addressing the second problem).3

In the following, we first describe the details of TSR-VFD,4

including the architecture of TSR-VFD and the definition of5

the loss function. Then, we provide optimization details for6

training TSR-VFD.7

2 16 32 64 128 128 128 128 64 64 32 32 16 16 8 s

(a)

2 16 32 64 128 64 64 32 32 16 16 8 s

input Conv ReLU RB DeConv
K

output channels skip connection

(b)
Fig. 3: Network architecture of TSR-VFD. (a) and (b) show one neural net in
InterpolationNet and MaskNet, respectively.

3.2. Network Architecture8

To guarantee network performance, we leverage two tech-9

niques in TSR-VFD: (1) adding residual blocks (RBs) [37] to10

alleviate the gradient vanishing problem (i.e., the gradients are11

close to zero after several iterations of optimization) and (2)12

applying skip connection [38] to enhance the quality of in-13

terpolated vector fields by incorporating temporal information.14

Residual block and skip connection can increase gradient com-15

putation paths, allowing the network to have multiple paths for16

parameter updates.17

The RBs connect the feature maps from earlier layers to later18

layers so that the gradient can be calculated through multiple19

paths, which will alleviate the gradient vanishing problem dur-20

ing training. In an RB, the input is convoluted with several21

Table 1: Network architecture parameter details for one neural net. “ker”, “str”,
and “out chs” stand for the kernel, stride, and output channels.

InterpolationNet MaskNet
ker out ker out

type size str chs type size str chs
input N/A N/A 2 input N/A N/A 2
Conv+ReLU 4 2 16 Conv+ReLU 4 2 16
Conv+ReLU 4 2 32 Conv+ReLU 4 2 32
Conv+ReLU 4 2 64 Conv+ReLU 4 2 64
Conv+ReLU 4 2 128 Conv+ReLU 4 2 128
3 RBs 3 1 128 DeConv+ReLU 4 2 64
DeConv+ReLU 4 2 64 Conv+ReLU 3 1 64
Conv+ReLU 3 1 64 DeConv+ReLU 4 2 32
DeConv+ReLU 4 2 32 Conv+ReLU 3 1 32
Conv+ReLU 3 1 32 DeConv+ReLU 4 2 16
DeConv+ReLU 4 2 16 Conv+ReLU 3 1 16
Conv+ReLU 3 1 16 DeConv+ReLU 4 2 8
DeConv+ReLU 4 2 8 Conv+sigmoid 3 1 s
Conv 3 1 s

Conv layers without changing its dimension in one path. In 22

the other path, one Conv layer is applied to the input. These 23

two outputs are merged by addition. Skip connection is used to 24

increase gradient computation paths to alleviate gradient van- 25

ishing. Besides, it incorporates temporal information from the 26

vector field sequence at different generation stages rather than 27

only paying attention to the two input vector fields’ deep spatial 28

features during interpolation. That is, with the vector fields at 29

both ends as input, the input vector fields’ information will flow 30

into the generation process of the intermediate vector fields at 31

different feature scales by skip connection. 32

InterpolationNet. As shown in Figure 3 (a), Interpolation- 33

Net has three individual neural nets, and each neural net is com- 34

posed of an encoding path, a refining path, and a decoding path. 35

There are four Conv layers in the encoding path, three RBs in 36

the refining path, and four composites of deconvolutional (De- 37

Conv) and Conv layers in the decoding path. In the encoding 38

path, each of the four Conv layers reduces the input dimension 39

by half. In the refining path, several RBs are utilized for re- 40

fining and cleaning the feature maps from the encoding path. 41

In the decoding path, DeConv layers are utilized to upscale the 42

feature maps’ dimension by two. We also utilize skip connec- 43

tion to fuse the features maps from the encoding and decoding 44

paths. After that, one Conv layer is used to refine the feature 45

maps. Rectified linear unit (ReLU) [39] is applied after each 46

Conv and DeConv. Note that there is no activation function in 47

the last Conv layer because the vector field’s data range is un- 48

bounded. Refer to Table 1 for parameter details. 49

MaskNet. The architecture of MaskNet is similar to that of 50

InterpolationNet. The only difference is that there are no RBs in 51

MaskNet since the goal of MaskNet is to estimate a confidence 52

map for the synthesized vector fields, which estimate how accu- 53

rate each voxel is in InterpolationNet. As shown in Figure 3 (b), 54

MaskNet also has three individual neural nets, which process u, 55

v, and w components separately. In each neural net, four Conv 56

layers are applied to downscale the input by 16 times. Then 57

four DeConv layers are utilized to upscale the learned feature 58

maps to the original dimension. After each DeConv layer, skip 59

connection and one Conv layer are leveraged to traverse infor- 60

mation faster. Finally, sigmoid(·) is added to normalize the data 61

range to [0,1]. Note that the output from MaskNet should not 62

be a binary mask; otherwise, the network is difficult to optimize 63

J. Han and C. Wang / Computers & Graphics (2022) 5

because the gradient cannot be propagated layer by layer. The1

parameter details are listed in Table 1.2

Blending. Once we collect the outputs from Inter-
polationNet and MaskNet, namely, {F̄u,i+1, F̄v,i+1, F̄w,i+1},
· · · , {F̄u,i+s, F̄v,i+s, F̄w,i+s} and {M̄u,i+1,M̄v,i+1,M̄w,i+1}, · · · ,
{M̄u,i+s,M̄v,i+s,M̄w,i+s}, we compute the synthesized vector
field F̂ j using the following blending equations

F̂u, j = M̄u, j� F̄u, j +(1−M̄u, j)� L̄u, j, (4)

F̂v, j = M̄v, j� F̄v, j +(1−M̄v, j)� L̄v, j, (5)

F̂w, j = M̄w, j� F̄w, j +(1−M̄w, j)� L̄w, j, (6)

F̂ j = [F̂u, j, F̂v, j, F̂w, j], (7)

where � is voxel-wise multiplication, L̄ j is the corresponding3

linear interpolation result, and j ∈ {i+1, · · · , i+ s}. The ratio-4

nale behind this blending equation is that since deep learning5

has the numerical precision limitations in predicting extreme6

small values (e.g., at a scale of 10−7) [40], more confidence7

should be given for linear interpolation result in these voxels.8

While in the large value regions, deep learning can achieve bet-9

ter quality; thus, more confidence is supported for the outputs10

of InterpolationNet.11

Loss function. To train TSR-VFD in an end-to-end fashion,
we define the loss function as follows

L =
1

3× k×L×H×W

k

∑
j=1

∑
i∈{u,v,w}

||Fi, j− F̂i, j||2, (8)

where k is the number of training samples, || · || denotes L212

norm, and Fi, j and F̂i, j are, respectively, the GT and synthe-13

sized vector component values at the i-th vector component of14

the j-th training sample. L, H, and W are the dimensions of the15

vector fields.16

4. Results and Discussion17

4.1. Data Sets and Training Details18

Table 2 shows the simulation data sets we experimented with.19

A single NVIDIA TESLA P100 GPU was used for training20

TSR-VFD. Note that we can apply TSR-VFD to vector fields21

of arbitrary size as it is fully convolutional. For optimization,22

we initialized parameters in TSR-VFD using those suggested23

by He et al. [41] and applied the Adam optimizer [42] to up-24

date the parameters (β1 = 0.9, β2 = 0.999). We set one training25

sample per mini-batch and the learning rate to 10−4. All these26

parameters are determined based on experiments. We sampled27

40% data for training, and the rest of the data are used for infer-28

ence. We train 1,500 epochs for each data set.29

Table 2: The dimensions of each data set.
data set dimension (x× y× z× t)
half-cylinder 640×240×80×100
hurricane 256×256×56×48
solar plume 64×64×256×27
supernova 128×128×128×100
tornado 128×128×128×48

4.2. Results 30

Baselines. We use three baselines for comparison with TSR- 31

VFD: 32

• LERP: Linear interpolation (LERP) is a common method 33

for interpolating intermediate vector fields. 34

• GAN: GAN includes a generator and a discriminator. The 35

generator comprises InterpolationNet and MaskNet, and 36

the discriminator follows that of Isola et al. [43]. We opti- 37

mize GAN through adversarial loss and the loss defined in 38

Equation 8. The weights of these two losses are set to 0.01 39

and 1, respectively. Such a setting can stabilize the train- 40

ing process and achieve better performance (e.g., higher 41

PSNR). If adversarial loss dominates the whole training 42

process, the training process is unstable, and the model is 43

prone to collapse, which means that results generated by 44

GAN would be unacceptable. 45

• RNN [18]: RNN is a deep learning solution for interpo- 46

lating time-varying scalar data. Here we modify it for the 47

vector field interpolation task. We leverage RNN to train 48

u, v, and w separately, and add MaskNet into RNN to com- 49

bine LERP and RNN results. 50

All pathline and streamline visualization results presented in 51

the paper are synthesized by TSR-VFD, which are the inferred 52

results (i.e., the network does not see these vector fields dur- 53

ing training). For streamline visualization, these inferred re- 54

sults are from a pair of vector fields far away from the training 55

data. Within the interpolation interval, we select the time step in 56

the middle (i.e., we show the worst possible TSR-VFD results). 57

All visualization results for the same data set use the same set- 58

ting (i.e., the same set of randomly placed seeds and the same 59

viewing parameters). In reference to the GT, we compare TSR- 60

VFD results against those generated by LERP, GAN, and RNN. 61

Due to the page limit, we only report the interpolation interval 62

evaluation in this paper and leave the study of the other four 63

parameter settings and network designs in the appendix. The 64

appendix also includes additional quantitative comparison and 65

error visualization results. 66

Evaluation metrics. Following Han et al. [27], we utilize
peak signal-to-noise ratio (PSNR) and average angle difference
(AAD) to evaluate the quality of synthesized vector fields. In
addition, we leverage root-absolute-error (RAE) to measure the
relative error between the synthesized vector field F̂ and GT F
vector field. RAE is defined as

RAE(F, F̂) =

√√√√∑
L×H×W
i=1 ∑ j∈{u,v,w} ||Fi, j− F̂i, j||1

∑
L×H×W
i=1 ∑ j∈{u,v,w} ||Fi, j||1

, (9)

where || · ||1 is L1 norm. Besides these data-level metrics, we
also define pathline distance (PD) to measure the similarity of
pathlines traced from GT and synthesized vector fields. PD is
defined as follows

PD(P, P̂) =
1√

L2 +H2 +W 2

1
N

N

∑
i=1

1
ni

ni

∑
j=1

min
p∈Pi
||p− p̂i j||2,

(10)
where P and P̂ are the pathlines traced from GT and synthesized 67

vector fields, N is the number of pathlines, ni is the number of 68

6 J. Han and C. Wang / Computers & Graphics (2022)

min

max

v
e
lo

c
it
y
 m

a
g

n
it
u

d
e

(a) LERP (b) RNN (c) GAN (d) TSR-VFD (e) GT

Fig. 4: Pathline rendering results. Top to bottom: hurricane, solar plume, supernova, and tornado. The numbers of pathlines traced for each data set are 1,000, 1,000,
1,000, and 2,000, respectively.

points at the i-th pathline, || · ||2 is L2 norm, p̂i j is the j-th point1

at the i-th pathline traced from the synthesized vector field, and2

Pi is the i-th pathline traced from the GT vector field.3

We also leverage three physical quantities: divergence, vor-
ticity, and acceleration to evaluate the quality of these synthe-
sized vector fields. Divergence represents the volume density
of the outward flux of each vector. Vorticity describes the local
spinning motion of each vector. Acceleration demonstrates the
rate of increase of each vector with respect to time. Divergence
is defined as

div(F) =
∂Fu

∂x
+

∂Fv

∂y
+

∂Fw

∂ z
. (11)

The difference of divergence between the GT and synthesized
vector fields is defined as

diff(F, F̂) =
1

L×H×W

L×H×W

∑
i=1

|div(F)i−div(F̂)i|. (12)

Vorticity is defined as

ω(F) =
[

∂Fw

∂y
− ∂Fv

∂ z
,

∂Fu

∂ z
− ∂Fw

∂x
,

∂Fv

∂x
− ∂Fu

∂y

]T

. (13)

Acceleration is defined as

acc(F) =
[

dFu

dt
,

dFv

dt
,

dFw

dt

]T

=

[
Fu

∂Fu

∂x
+Fv

∂Fu

∂y
+Fw

∂Fu

∂ z
+

∂Fu

∂ t
,

Fu
∂Fv

∂x
+Fv

∂Fv

∂y
+Fw

∂Fv

∂ z
+

∂Fv

∂ t
,

Fu
∂Fw

∂x
+Fv

∂Fw

∂y
+Fw

∂Fw

∂ z
+

∂Fw

∂ t

]T

.

(14)

Furthermore, we leverage learned perceptual image patch 4

similarity (LPIPS) [1], an image-space quality metric, to evalu- 5

ate the quality of rendering images between the synthesized and 6

GT vector fields. 7

J. Han and C. Wang / Computers & Graphics (2022) 7

min

max

v
e
lo

c
it
y
 m

a
g

n
it
u

d
e

(a) LERP (b) RNN (c) GAN (d) TSR-VFD (e) GT

Fig. 5: Streamline rendering results. Top to bottom: hurricane, solar plume, supernova, and tornado. The numbers of streamlines traced for each data set are 500,
100, 500, and 500, respectively.

Quantitative and qualitative analysis. In Figure 4, we com-1

pare pathline rendering results of the synthesized vector fields2

generated by LERP, RNN, GAN, and TSR-VFD. For the hurri-3

cane data set, compared with LERP and RNN, GAN and TSR-4

VFD preserve a better flow pattern around the hurricane’s eye.5

For the solar plume data set, TSR-VFD generates more accu-6

rate flow patterns at the central region and the bottom-left cor-7

ner. For the supernova data set, TSR-VFD leads to more details8

around the supernova’s center and bottom corner. For instance,9

the pathlines produced by LERP and RNN around the super-10

nova’s center are squeezed closer compared with GT, and the11

pathlines produced by GAN at the bottom corner are jaggy. For12

the tornado data set, TSR-VFD yields more details compared13

with LERP, RNN, and GAN. For example, the pathlines gen-14

erated by LERP, RNN, and GAN are cross together at the bot-15

tom corner, while those generated by TSR-VFD and GT are16

still separated. Besides, the pathlines synthesized by LERP and17

RNN are shifted a little bit around the tornado’s center.18

In Figure 5, we compare streamline rendering results of the 19

synthesized vector fields generated by LERP, RNN, GAN, and 20

TSR-VFD. For the hurricane data set, TSR-VFD and GAN pre- 21

serve the flow patterns better around the hurricane’s eye. LERP 22

and RNN do not capture such patterns: the streamlines gener- 23

ated by LERP and RNN exhibit an ellipse shape instead of a 24

circle shape. For the solar plume data set, LERP, RNN, and 25

GAN do not accurately trace the streamlines at the central re- 26

gion, i.e., there are more streamlines traced from the central 27

region compared with those generated by TSR-VFD. For the 28

supernova data set, TSR-VFD yields a better visual result at the 29

top region, while LERP and RNN do not recover these stream- 30

lines, and GAN produces more streamline at the bottom-right 31

corner. For the tornado data set, TSR-VFD yields more details 32

compared with LERP, RNN, and GAN. For example, LERP and 33

RNN produce longer streamlines around the tornado’s center 34

and shorter streamlines at the bottom-right corner, while GAN 35

and TSR-VFD still preserve these details compared with GT 36

8 J. Han and C. Wang / Computers & Graphics (2022)

Table 3: Average PSNR (dB), AAD, RAE, PD, difference of divergence, LPIPS values of streamline rendering (SR) and pathline rendering (PR), training time per
epoch (in second), and inference time (in second) under interpolation interval s = 5. The best ones are highlighted in bold (same for Tables 4 to 7).

data set method PSNR AAD RAE PD diff of div LPIPS (SR) LPIPS (PR) train infer

hurricane

LERP 38.26 0.060 0.429 0.0413 7.03×10−5 0.293 0.362 — —
GAN 40.45 0.049 0.389 0.0342 8.21×10−4 0.274 0.322 126.08 23.2
RNN 38.46 0.061 0.428 0.0534 6.03×10−4 0.285 0.349 130.05 63.1
TSR-VFD 41.70 0.043 0.362 0.0274 7.38×10−5 0.269 0.299 55.61 23.2

solar plume

LERP 40.75 0.006 0.367 0.0013 1.48×10−7 0.392 0.137 — —
GAN 42.65 0.051 0.386 0.0045 1.88×10−5 0.449 0.222 23.97 0.08
RNN 41.78 0.008 0.352 0.0015 2.35×10−6 0.419 0.113 19.74 0.23
TSR-VFD 45.39 0.010 0.302 0.0012 1.79×10−7 0.386 0.113 8.81 0.08

supernova

LERP 43.84 0.0047 0.0933 0.0043 6.78×10−8 0.227 0.142 — —
GAN 46.84 0.0056 0.1144 0.0038 1.36×10−5 0.229 0.149 91.06 0.20
RNN 43.83 0.0047 0.0933 0.0043 9.50×10−7 0.227 0.134 88.83 0.57
TSR-VFD 48.43 0.0039 0.0806 0.0038 1.62×10−7 0.223 0.134 38.20 0.20

tornado

LERP 51.03 0.00031 0.0498 0.00006 3.22×10−7 0.039 0.029 — —
GAN 51.24 0.00184 0.0850 0.00012 3.18×10−6 0.043 0.030 36.06 0.20
RNN 51.04 0.00030 0.0498 0.00006 3.24×10−7 0.039 0.029 34.95 0.57
TSR-VFD 53.77 0.00026 0.0425 0.00003 1.86×10−7 0.016 0.004 15.45 0.20

streamlines.1

In Table 3, we report the average PSNR (higher is better),2

AAD (lower is better), and RAE (lower is better) values over the3

entire vector field sequence for LERP, GAN, RNN, and TSR-4

VFD. Overall, TSR-VFD performs the best in all except for one5

case (where LERP performs the best in terms of AAD for the6

solar plume data set). In addition, Table 3 reports PD values7

for LERP, GAN, RNN, and TSR-VFD. TSR-VFD achieves a8

PD of 0.0274 for the hurricane data set, while LERP achieves a9

PD of 0.0413. As for the tornado data set, TSR-VFD reports a10

PD of 0.00003, while LERP reports a PD of 0.00006. Overall,11

TSR-VFD produces the lowest PD values for all the data sets.12

The average divergence values are also reported in Table 3. In13

general, LERP can achieve the lowest divergence values except14

for the tornado data set.15

Table 3 also shows the average training time per epoch and16

average inference time. In terms of training time, we can ob-17

serve that TSR-VFD takes the shortest time compared with18

RNN and GAN since RNN needs to unroll the recurrent layer s19

times, and GAN needs to go through two networks during train-20

ing. For TSR-VFD, the entire training times for the hurricane,21

solar plume, supernova, and tornado data sets are 23.17, 3.67,22

15.92, and 6.44 hours, respectively. Regardless of different data23

sizes, the model size of TSR-VFD is 84 MB, while that of RNN24

is 117 MB. In terms of inference time, TSR-VFD is 3× faster25

compared with RNN. Therefore, TSR-VFD achieves the best26

quality in terms of speed and performance. In Table 3, we also27

report LPIPS values of streamline rendering and pathline ren-28

dering images. TSR-VFD achieves the lowest LPIPS values of29

both rendering images across all four data sets, producing the30

closest visual results compared with GT.31

In summary, TSR-VFD achieves the highest PSNR values32

and lowest AAD, RAE, and PD values, and LERP achieves the33

lowest PSNR values and highest AAD, RAE, and PD values34

among all approaches. This is because LERP only assumes that35

unsteady flow changes linearly. Therefore, it does not capture36

the dynamic flow patterns as time step goes, especially for com-37

plex flows (e.g., the hurricane and supernova data sets). RNN38

achieves similar results compared with LERP and still does not39

produce high-quality vector fields since RNN runs into gradient40

vanishing when the interpolation step is large. GAN does not41

generate high-fidelity vector fields either and performs unstably42

on evaluation metrics. For example, GAN achieves a 51.24 dB 43

PSNR value but with a 0.00184 AAD value for the tornado data 44

set. This is because using adversarial loss will disturb the direc- 45

tion and magnitude of velocity, and this small disturbance will 46

significantly hurt the performance. 47

In Figures 6 and 7, we compare volume rendering results of 48

vorticity magnitude and acceleration magnitude of the synthe- 49

sized vector fields generated by LERP, RNN, GAN, TSR-VFD, 50

and GT. In Figure 6, for the hurricane data set, compared with 51

LERP, RNN, and GAN, the vorticity magnitude produced by 52

TSR-VFD around the hurricane’s eye is closer to the GT. For 53

the solar plume data set, TSR-VFD produces closer features at 54

the center of the solar plume (i.e., the purple part) compared 55

with LERP, RNN, and GAN. In Figure 7, for the solar plume 56

data set, TSR-VFD produces smoother acceleration magnitude 57

results at the boundary of the solar plume (i.e., the blue part) 58

compared with LERP, RNN, and GAN. For the supernova data 59

set, TSR-VFD and GAN produce more similar results at the 60

supernova’s core compared with those generated by LERP and 61

RNN. 62

Comparison against compression. In Figure 8, we com- 63

pare the rendering results of streamlines and pathlines traced 64

from the synthesized vector fields generated by TSR-VFD and 65

the vector fields compressed then decompressed using a lossy 66

compression (LC) scheme [44]. We choose this LC scheme 67

as it can effectively control data distortion while significantly 68

reducing data size. For a fair comparison, we consider two sce- 69

narios: (1) keeping the same PSNR value (i.e., 45.5 dB) for the 70

solar plume data set and (2) controlling the same compression 71

ratio (i.e., 9×) for the supernova data set. For the first scenario, 72

LC does not preserve the flow patterns around the solar plume’s 73

boundary. The top table of Table 4 reports the compression ra- 74

tios, average AAD and RAE values for both methods. Under the 75

same PSNR value, although LC achieves a much higher com- 76

pression ratio, TSR-VFD achieves lower AAD and RAE values 77

for the synthesized vector fields compared with those recovered 78

from LC. For the second scenario, LC does not preserve the 79

flow patterns well around the supernova’s center, and the path- 80

lines are rather jaggy upon closer examination. The bottom ta- 81

ble of Table 4 reports average PSNR, AAD, and RAE values for 82

both methods. Under the same compression ratio, TSR-VFD 83

achieves higher PSNR, lower AAD and RAE values. 84

J. Han and C. Wang / Computers & Graphics (2022) 9

(a) LERP (b) RNN (c) GAN (d) TSR-VFD (e) GT

Fig. 6: Volume rendering results of vorticity magnitude of the synthesized vector fields using the hurricane (top) and solar plume (bottom) data sets.

(a) LERP (b) RNN (c) GAN (d) TSR-VFD (e) GT

Fig. 7: Volume rendering results of acceleration magnitude of the synthesized vector fields using the solar plume (top) and supernova (bottom) data sets.

(a) LC (b) TSR-VFD (c) GT

Fig. 8: Zoom-in streamline (top row) and pathline (bottom row) rendering re-
sults using the solar plume and supernova data sets, respectively. 100 stream-
lines and 1,000 pathlines are traced from the respective vector fields recovered
from lossy compression (LC) and synthesized by TSR-VFD.

Cross-dataset and ensemble evaluation. To evaluate the1

generalization of TSR-VFD, we consider two training cases:2

cross-dataset and ensemble data set. For cross-dataset, we per-3

form joint training using the hurricane and tornado data sets.4

The number of epochs is the same as the one used in separate5

training. The pathline rendering results are shown in Figure 9.6

For the hurricane data set, the pathlines generated from joint7

training are worse than those generated from separate training.8

For example, the joint model does not capture the flow pattern9

at the hurricane’s eye. For the tornado data set, the joint model10

Table 4: Comparison of lossy compression (LC) and TSR-VFD. Top: average
AAD and RAE values under the same PSNR value (i.e., 45.5 dB). Bottom:
average PSNR (dB), AAD, and RAE values under the same compression ratio
(i.e., 9×).

data set method comp. ratio AAD RAE

solar plume LC 36× 0.492 0.547
TSR-VFD 5× 0.010 0.302

data set method PSNR AAD RAE

supernova LC 35.31 0.0249 0.2954
TSR-VFD 45.32 0.0053 0.0967

performs poorly: it leads to jaggy pathlines everywhere and 11

does not accurately recover the velocity magnitude informa- 12

tion. We can also observe that separate training leads to higher 13

PSNR, lower AAD, and lower RAE values, as reported in Ta- 14

ble 5. For the ensemble data set, we use the half-cylinder data 15

set with different Reynolds numbers to train TSR-VFD jointly. 16

As shown in Figure 10, the streamlines generated by our re- 17

sults are closer to the GT compared with these generated by 18

LERP. For example, for the Reynolds number of 320, LERP 19

produces two swirls at the domain’s center while TSR-VFD and 20

GT only yield one swirl. As for pathline rendering, LERP leads 21

to fewer pathlines at the middle-right corner. For vorticity of 22

the Reynolds number of 6,400, TSR-VFD produces more de- 23

tails. For quantitative results, TSR-VFD achieves higher PSNR 24

values and lower AAD, RAE, and PD values compared with 25

LERP under different Reynolds numbers, as shown in Table 6. 26

Evaluation of interpolation interval. To investigate the 27

interpolation ability of TSR-VFD, we conduct an experiment 28

10 J. Han and C. Wang / Computers & Graphics (2022)

(a) joint training (b) separate training (c) GT

Fig. 9: Different ways of training the hurricane (top row) and tornado (bottom
row) data sets. 1,000 and 1,500 pathlines are traced, respectively.

Table 5: Average PSNR (dB), AAD, and RAE values under s= 5 using different
ways of training.

data set way PSNR AAD RAE

hurricane joint 41.20 0.045 0.373
separate 41.70 0.043 0.362

tornado joint 29.45 0.08532 0.5306
separate 53.77 0.00026 0.0425

that trains TSR-VFD with different interpolation intervals. As1

shown in Figure 11, we render the pathlines and streamlines2

from the vector fields synthesized from different interpolation3

intervals. For the hurricane data set, under s = 9 and s = 13,4

the hurricane’s eye cannot be recovered well, especially for the5

eye’s shape. Moreover, under s = 13, the pathlines do not cap-6

ture the pattern of the hurricane’s eye. However, under s = 5,7

this feature can be preserved much better in streamline and8

pathline rendering results. For the supernova and tornado data9

sets, all results are similar to GT. But taking a closer look, we10

can observe that several streamlines of the supernova data set11

are missed at the top-left corner. Several pathlines of the tor-12

nado data set are shifted in the central region. Therefore, the13

appropriate value for s is 5 for complex data sets, where the14

flow pattern moves as the time step goes (e.g., the hurricane15

data set). For simple data sets where the flow pattern is local-16

ized (e.g., the tornado and the supernova data sets), s could be17

9. Average PSNR, AAD, and RAE values under different in-18

terpolation intervals are reported in Table 7. We can observe19

that TSR-VFD produces higher PSNR, lower AAD, and lower20

RAE values for different data sets compared to LERP. The only21

exception is AAD for the solar plume data set. Note that for22

the solar plume data set, only 12 training samples are offered.23

Therefore, setting s to 13 is not an option.24

Table 6: Average PSNR (dB), AAD, RAE, and PD values under s = 5 (1st and
2nd rows) and s = 3 (3rd row).

Reynolds number method PSNR AAD RAE PD

160 LERP 49.07 0.005 0.107 0.00071
TSR-VFD 53.36 0.003 0.090 0.00032

320 LERP 42.25 0.009 0.163 0.00232
TSR-VFD 47.22 0.007 0.143 0.00217

6,400 LERP 33.63 0.014 0.259 0.00367
TSR-VFD 47.90 0.002 0.135 0.00145

(a) LERP (b) TSR-VFD (c) GT

Fig. 10: Ensemble evaluation of TSR-VFD using the half-cylinder data set with
Reynolds numbers of 320 (1st row), 160 (2nd row), and 6,400 (3rd row). 1st
row: 1,000 streamlines, 2nd row: 2,000 pathlines, and 3rd row: vorticity.

Table 7: Average PSNR (dB), AAD, and RAE values under different interpola-
tion intervals s.

PSNR AAD RAE
data set s LERP TSR-VFD LERP TSR-VFD LERP TSR-VFD

hurricane
5 38.26 41.70 0.060 0.043 0.429 0.362
9 36.05 39.07 0.076 0.060 0.488 0.427
13 34.30 37.67 0.086 0.070 0.529 0.464

solar plume 5 40.75 45.39 0.006 0.010 0.367 0.302
9 38.79 43.47 0.010 0.014 0.430 0.354

supernova
5 43.84 48.43 0.0047 0.0039 0.0933 0.0806
9 40.49 45.32 0.0064 0.0053 0.1143 0.0967
13 38.69 43.37 0.0081 0.0066 0.1287 0.1086

tornado
5 51.03 53.77 0.00031 0.00026 0.0498 0.0425
9 48.55 53.54 0.00082 0.00038 0.0723 0.0502
13 46.62 51.71 0.00142 0.00067 0.0932 0.0614

4.3. Discussion 25

Our approach assumes that the intermediate time steps do 26

not exhibit flow characteristics that are not observed in the two 27

ending time steps. Our approach cannot capture such patterns 28

if a flow pattern appears and disappears only in the interpolated 29

time steps. Compared with LERP, TSR-VFD offers two advan- 30

tages. First, it achieves better quantitive and qualitative results, 31

including physics-based measurements, such as vorticity and 32

acceleration. Second, it preserves important flow patterns more 33

accurately, such as the supernova’s core and the hurricane’s eye. 34

However, TSR-VFD requires some successive time steps for 35

training. TSR-VFD better interpolates the flows with complex 36

patterns, such as turbulence (e.g., Reynolds number of 6,400). 37

5. Conclusions and Future Work 38

We have presented TSR-VFD, a novel deep learning solu- 39

tion for interpolating missing vector fields for VFD analysis and 40

visualization. Leveraging InterpolationNet and MaskNet, TSR- 41

VFD can produce high-quality unsteady vector fields given vec- 42

tor fields at both ends as input. Compared to LERP, RNN, and 43

J. Han and C. Wang / Computers & Graphics (2022) 11

(a) s = 13 (b) s = 9 (c) s = 5 (d) GT

Fig. 11: Pathline (1,000, 1st and 2nd rows) and streamline (500, 3rd and 4th rows) rendering results under different interpolation intervals. Top to bottom: hurricane,
supernova, hurricane, and tornado.

GAN, TSR-VFD yields synthesized vector fields of better vi-1

sual quality, both qualitatively and quantitatively. We also com-2

pare TSR-VFD against a lossy compression scheme. TSR-VFD3

can be applied to the in-situ situation. In this scenario, at sim-4

ulation time, we can store the early time steps for TSR-VFD5

training while saving the later time steps sparsely (e.g., storing6

one time step for every ten time steps simulated) for storage7

saving. During postprocessing, the network is trained with the8

early time steps only. Once trained, we can recover the missing9

intermediate vector fields with high fidelity, given the sparsely-10

output later time steps.11

In the future, we would improve TSR-VFD in two aspects.12

(1) Few-shot learning. The current version of TSR-VFD re-13

quires 40% data for training, which could hinder its utilization14

in real applications. With few-shot learning techniques [45],15

we can significantly reduce the training samples while preserv-16

ing the quality of interpolated vector fields. (2) Incorporating17

physical constraints. So far, TSR-VFD is purely a data-driven 18

solution for VFD. We want to incorporate physical constraints 19

into optimization, which can further improve the quality of syn- 20

thesized vector fields. 21

Acknowledgements 22

This research was supported in part by the U.S. National Sci- 23

ence Foundation through grants IIS-1455886, CNS-1629914, 24

DUE-1833129, IIS-1955395, IIS-2101696, OAC-2104158, and 25

the NVIDIA GPU Grant Program. The authors would like to 26

thank the anonymous reviewers for their insightful comments. 27

References 28

[1] Zhang, R, Isola, P, Efros, AA, Shechtman, E, Wang, O. The unreason- 29

able effectiveness of deep features as a perceptual metric. In: Proceedings 30

of IEEE Conference on Computer Vision and Pattern Recognition. 2018, 31

p. 586–595. 32

12 J. Han and C. Wang / Computers & Graphics (2022)

[2] Mussa-Ivaldi, FA. From basis functions to basis fields: Vector field ap-1

proximation from sparse data. Biological Cybernetics 1992;67(6):479–2

489.3

[3] Gouesbet, G, Letellier, C. Global vector-field reconstruction by using4

a multivariate polynomial L2 approximation on nets. Physical Review E5

1994;49(6):4955–4972.6

[4] Lage, M, Petronetto, F, Paiva, A, Lopes, H, Lewiner, T, Tavares,7

G. Vector field reconstruction from sparse samples with applications. In:8

Proceedings of Brazilian Symposium on Computer Graphics and Image9

Processing. 2006, p. 297–306.10

[5] Letellier, C, Le Sceller, L, Dutertre, P, Gouesbet, G, Fei, Z, Hudson, J.11

Topological characterization and global vector field reconstruction of an12

experimental electrochemical system. The Journal of Physical Chemistry13

1995;99(18):7016–7027.14

[6] Chen, Y, Cohen, J, Krolik, J. Similarity-guided streamline placement15

with error evaluation. IEEE Transactions on Visualization and Computer16

Graphics 2007;13(6):1448–1455.17

[7] Xu, L, Lee, TY, Shen, HW. An information-theoretic framework for18

flow visualization. IEEE Transactions on Visualization and Computer19

Graphics 2010;16(6):1216–1224.20

[8] Xu, C, Prince, JL. Gradient vector flow: A new external force for21

snakes. In: Proceedings of IEEE Conference on Computer Vision and22

Pattern Recognition. 1997, p. 66–71.23

[9] Tao, J, Ma, J, Wang, C, Shene, CK. A unified approach to streamline24

selection and viewpoint selection for 3D flow visualization. IEEE Trans-25

actions on Visualization and Computer Graphics 2013;19(3):393–406.26

[10] Han, J, Tao, J, Zheng, H, Guo, H, Chen, DZ, Wang, C. Flow field27

reduction via reconstructing vector data from 3D streamlines using deep28

learning. IEEE Computer Graphics and Applications 2019;39(4):54–67.29

[11] Zhou, Z, Hou, Y, Wang, Q, Chen, G, Lu, J, Tao, Y, et al. Volume up-30

scaling with convolutional neural networks. In: Proceedings of Computer31

Graphics International. 2017, p. 38:1–38:6.32

[12] Berger, M, Li, J, Levine, JA. A generative model for volume ren-33

dering. IEEE Transactions on Visualization and Computer Graphics34

2019;25(4):1636–1650.35

[13] Cheng, HC, Cardone, A, Jain, S, Krokos, E, Narayan, K, Subramaniam,36

S, et al. Deep-learning-assisted volume visualization. IEEE Transactions37

on Visualization and Computer Graphics 2019;25(2):1378–1391.38

[14] Hong, F, Liu, C, Yuan, X. DNN-VolVis: Interactive volume visualiza-39

tion supported by deep neural network. In: Proceedings of IEEE Pacific40

Visualization Symposium. 2019, p. 282–291.41

[15] He, W, Wang, J, Guo, H, Wang, KC, Shen, HW, Raj, M, et al. InSi-42

tuNet: Deep image synthesis for parameter space exploration of ensemble43

simulations. IEEE Transactions on Visualization and Computer Graphics44

2020;26(1):23–33.45

[16] Weiss, S, Chu, M, Thuerey, N, Westermann, R. Volumetric isosurface46

rendering with deep learning-based super-resolution. IEEE Transactions47

on Visualization and Computer Graphics 2021;27(6):3064–3078.48

[17] Han, J, Zheng, H, Xing, Y, Chen, DZ, Wang, C. V2V: A deep learning49

approach to variable-to-variable selection and translation for multivariate50

time-varying data. IEEE Transactions on Visualization and Computer51

Graphics 2021;27(2):1290–1300.52

[18] Han, J, Wang, C. TSR-TVD: Temporal super-resolution for time-varying53

data analysis and visualization. IEEE Transactions on Visualization and54

Computer Graphics 2020;26(1):205–215.55

[19] Han, J, Wang, C. SSR-TVD: Spatial super-resolution for time-varying56

data analysis and visualization. IEEE Transactions on Visualization and57

Computer Graphics 2020;Accepted.58

[20] Han, J, Zheng, H, Chen, DZ, Wang, C. STNet: An end-to-end59

generative framework for synthesizing spatiotemporal super-resolution60

volumes. IEEE Transactions on Visualization and Computer Graphics61

2022;28(1):270–280.62

[21] Hong, F, Zhang, J, Yuan, X. Access pattern learning with long short-63

term memory for parallel particle tracing. In: Proceedings of IEEE Pacific64

Visualization Symposium. 2018, p. 76–85.65

[22] Xie, Y, Franz, E, Chu, M, Thuerey, N. tempoGAN: A temporally coher-66

ent, volumetric GAN for super-resolution fluid flow. ACM Transactions67

on Graphics 2018;37(4):95:1–95:15.68

[23] Gu, P, Han, J, Chen, DZ, Wang, C. Reconstructing unsteady flow69

data from representative streamlines via diffusion and deep learning based70

denoising. IEEE Computer Graphics and Applications 2021;41(6):111–71

121.72

[24] Wiewel, S, Becher, M, Thuerey, N. Latent-space physics: Towards 73

learning the temporal evolution of fluid flow. Computer Graphics Forum 74

2019;38(2):71–82. 75

[25] Kim, B, Günther, T. Robust reference frame extraction from unsteady 76

2D vector fields with convolutional neural networks. Computer Graphics 77

Forum 2019;38(3):285–295. 78

[26] Werhahn, M, Xie, Y, Chu, M, Thuerey, N. A multi-pass GAN for fluid 79

flow super-resolution. Proceedings of the ACM on Computer Graphics 80

and Interactive Techniques 2019;2(2):1–21. 81

[27] Han, J, Tao, J, Wang, C. FlowNet: A deep learning framework for 82

clustering and selection of streamlines and stream surfaces. IEEE Trans- 83

actions on Visualization and Computer Graphics 2020;26(4):1732–1744. 84

[28] Jakob, J, Gross, M, Günther, T. A fluid flow data set for machine 85

learning and its application to neural flow map interpolation. IEEE Trans- 86

actions on Visualization and Computer Graphics 2021;27(2):1279–1289. 87

[29] Guo, L, Ye, S, Han, J, Zheng, H, Gao, H, Chen, DZ, et al. SSR-VFD: 88

Spatial super-resolution for vector field data analysis and visualization. 89

In: Proceedings of IEEE Pacific Visualization Symposium. 2020, p. 71– 90

80. 91

[30] Wiewel, S, Kim, B, Azevedo, VC, Solenthaler, B, Thuerey, N. Latent 92

space subdivision: stable and controllable time predictions for fluid flow. 93

Computer Graphics Forum 2020;39(8):15–25. 94

[31] Sahoo, S, Berger, M. Integration-Aware Vector Field Super Resolution. 95

In: Proceedings of Eurographics Visualization Conference (Short Papers). 96

2021, p. 49–53. 97

[32] Niklaus, S, Mai, L, Liu, F. Video frame interpolation via adaptive 98

convolution. In: Proceedings of IEEE Conference on Computer Vision 99

and Pattern Recognition. 2017, p. 670–679. 100

[33] Nguyen, AD, Kim, W, Kim, J, Lee, S. Video frame interpola- 101

tion by plug-and-play deep locally linear embedding. arXiv preprint 102

arXiv:180701462 2018;. 103

[34] Jiang, H, Sun, D, Jampani, V, Yang, MH, Learned-Miller, E, Kautz, 104

J. Super SloMo: High quality estimation of multiple intermediate frames 105

for video interpolation. In: Proceedings of IEEE Conference on Computer 106

Vision and Pattern Recognition. 2018, p. 9000–9008. 107

[35] Gehring, J, Auli, M, Grangier, D, Yarats, D, Dauphin, YN. Convo- 108

lutional sequence to sequence learning. In: Proceedings of International 109

Conference on Machine Learning. 2017, p. 1243–1252. 110

[36] Yu, AW, Dohan, D, Luong, MT, Zhao, R, Chen, K, Norouzi, M, 111

et al. QANet: Combining local convolution with global self-attention for 112

reading comprehension. In: Proceedings of International Conference for 113

Learning Representations. 2018,. 114

[37] He, K, Zhang, X, Ren, S, Sun, J. Deep residual learning for image 115

recognition. In: Proceedings of IEEE Conference on Computer Vision 116

and Pattern Recognition. 2016, p. 770–778. 117

[38] Ronneberger, O, Fischer, P, Brox, T. U-Net: Convolutional networks for 118

biomedical image segmentation. In: Proceedings of International Confer- 119

ence on Medical Image Computing and Computer-Assisted Intervention. 120

2015, p. 234–241. 121

[39] Nair, V, Hinton, GE. Rectified linear units improve restricted Boltz- 122

mann machines. In: Proceedings of International Conference on Machine 123

Learning. 2010, p. 807–814. 124

[40] Gupta, S, Agrawal, A, Gopalakrishnan, K, Narayanan, P. Deep learn- 125

ing with limited numerical precision. In: Proceedings of International 126

Conference on Machine Learning. 2015, p. 1737–1746. 127

[41] He, K, Zhang, X, Ren, S, Sun, J. Delving deep into rectifiers: Sur- 128

passing human-level performance on ImageNet classification. In: Pro- 129

ceedings of IEEE International Conference on Computer Vision. 2015, p. 130

1026–1034. 131

[42] Kingma, D, Ba, J. Adam: A method for stochastic optimization. In: 132

Proceedings of International Conference for Learning Representations. 133

2015,. 134

[43] Isola, P, Zhu, JY, Zhou, T, Efros, AA. Image-to-image translation with 135

conditional adversarial networks. In: Proceedings of the IEEE Confer- 136

ence on Computer Vision and Pattern Recognition. 2017, p. 1125–1134. 137

[44] Liang, X, Di, S, Tao, D, Chen, Z, Cappello, F. An efficient trans- 138

formation scheme for lossy data compression with point-wise relative er- 139

ror bound. In: Proceedings of IEEE International Conference on Cluster 140

Computing. 2018, p. 179–189. 141

[45] Finn, C, Abbeel, P, Levine, S. Model-agnostic meta-learning for fast 142

adaptation of deep networks. In: Proceedings of International Conference 143

on Machine Learning. 2017, p. 1126–1135. 144

J. Han and C. Wang / Computers & Graphics (2022) 1

Appendix

1. Network Parameter and Design Study

To evaluate TSR-VFD, we analyze the following parameter
settings and network designs: the number of training epochs,
crop size for large vector fields, architecture design, and impact
of MaskNet. A detailed discussion is as follows.

(a) 500 (b) 1,000

(c) 1,500 (d) GT

Fig. 1: Streamline rendering results under different training epochs using the
tornado data set. The best match with GT is the result with 1,500 epochs. 500
streamlines are traced.

Training epochs. We study how the quality of the synthe-
sized vector field using TSR-VFD evolves with the increase of
training epochs. Streamline rendering results of the tornado
data set after different numbers of training epochs are shown
in Figures 1. For a clear comparison, we display a difference
image at the top-left corner. The difference image is computed
in the CIELUV color space [?], where pixels with ∆≥ 6.0 are
mapped to non-white colors. As we can see, there is little vi-
sual difference at either the central or the bottom region of the
tornado. Nevertheless, the average PSNR and AAD values can
be improved with more training epochs, as shown in Figure 2
(a). Moreover, we observe that after 1,500 epochs, there is no
significant difference among synthesized results when increas-
ing the number of epochs further. Therefore, we choose 1,500
epochs to train all the data sets.

Crop size. TSR-VFD cannot afford enough memory to pro-
cess the entire vector field simultaneously if a larger interpo-
lation interval is required or larger vector fields are provided.
Therefore, we crop subvolumes to train TSR-VFD. We perform
training with subvolume sizes of 323, 643, and 963 using the
supernova data set under s = 5. The average PSNR and AAD
curves are shown in Figure 2 (b). We can observe that train-
ing TSR-VFD benefits from a larger subvolume size since an

(a) tornado

(b) supernova
Fig. 2: Comparison of parameter settings. (a) Average PSNR and AAD under
different training epochs. (b) Average PSNR and RAE under different crop
sizes.

enlarged receptive field helps the network capture more infor-
mation of the vector fields. As for visual quality, from Figure 3,
we can see that under the subvolume size of 323, several stream-
lines are shifted around the supernova’s center, and one stream-
line is not traced into the center. However, we do not observe a
significant difference in the streamline rendering results under
the subvolume size of 643 and 963, compared with GT. How-
ever, a larger subvolume size takes more time to train. Hence,
we suggest that using a 643 subvolume size to train TSR-VFD
could achieve a good tradeoff.

Architecture design. To investigate the effectiveness of
TSR-VFD, we conduct an experiment that trains TSR-VFD
without separating the three components using different data
sets. As shown in Figure 4, we render the streamlines and path-
lines from the synthesized vector fields generated by these two
different architectures using the solar plume data set. Compared
with TSR-VFD without separation, TSR-VFD better captures
the flow features in the surrounding region for pathline ren-
dering and in the central region for streamline rendering. For
a clearer comparison, we compute PSNR and RAE values for
each component as well as AAD, as shown in Table 1. As we
can see, separating the vector field brings higher PSNR values
and lower RAE values for each vector component for both the
solar plume and supernova data sets. In addition, the benefit re-
duces for small components. For example, for the solar plume
data set, the PSNR value of the w component increases from
41.28 dB to 43.29 dB, and the RAE value of the w component
decreases from 0.233 to 0.215 due to separation training.

Impact of MaskNet. To study the impact of MaskNet, we
design an experiment that trains TSR-VFD with and without
MaskNet using the solar plume data set. As shown in Fig-
ure 5, we render streamlines and pathlines from the vector
fields generated from these two models. As we can see, adding
MaskNet into TSR-VFD improves visual quality in terms of
traced streamlines and pathlines. For example, the streamlines

2 J. Han and C. Wang / Computers & Graphics (2022)

Table 1: Average PSNR (dB), AAD, and RAE values under different architectures.
TSR-VFD without separated neural nets TSR-VFD with separated neural nets

data set PSNRu PSNRv PSNRw PSNR AAD RAEu RAEv RAEw RAE PSNRu PSNRv PSNRw PSNR AAD RAEu RAEv RAEw RAE
solar plume 38.73 38.19 41.28 43.35 0.013 0.478 0.480 0.233 0.331 40.76 40.64 43.29 45.39 0.010 0.425 0.421 0.215 0.302
supernova 46.68 45.66 45.73 46.88 0.0046 0.085 0.084 0.095 0.095 48.71 47.52 46.78 48.43 0.0039 0.068 0.069 0.082 0.081

(a) 323 (b) 643

(c) 963 (d) GT

Fig. 3: Zoomed-in streamline rendering results with different crop sizes using
the supernova data set. 500 streamlines are traced.

and pathlines traced from vector fields synthesized by TSR-
VFD without MaskNet do not capture the surrounding flow pat-
tern. This is because the surrounding region’s velocities have
smaller values compared with those in the central region. With-
out MaskNet, TSR-VFD could not capture these small-scale
velocities due to numerical precision in deep learning. These
results indicate the effectiveness of MaskNet in improving the
quality of reconstructed unsteady vector fields.

2. Additional Evaluation

Quantitative comparison. In Figure 6, we quantitatively
compare TSR-VFD results against those generated by LERP,
GAN, and RNN using PSNR (higher is better), AAD (lower
is better), and RAE (lower is better). TSR-VFD generally
achieves the best performance compared with LERP, GAN, and
RNN in terms of the highest PSNR, lowest AAD, and lowest
RAE at each interpolated time step. We also observe that, ex-
cept for the hurricane data set, GAN achieves the worst results
in terms of AAD and RAE. This may be due to the adversarial
loss, which does not train GAN as an AAD- and RAE-driven
model.

Error visualization. In Figure 7, we compare volume ren-
dering results of errors introduced by the synthesized vector
fields generated by LERP, RNN, GAN, and TSR-VFD. These
error volumes are calculated based on the synthesized and GT

(a) w/o separation (b) w separation (c) GT

Fig. 4: Zoomed-in streamline (top row) and pathline (bottom row) rendering
results under different TSR-VFD architecture designs using the solar plume
data data set. 100 streamlines and 1,000 pathlines are traced, respectively.

(a) w/o MaskNet (b) w MaskNet (c) GT

Fig. 5: Zoomed-in streamline (top row) and pathline (bottom row) rendering
results under different TSR-VFD models using the solar plume data set. 100
streamlines and 1,000 pathlines are traced, respectively.

vector fields. We define the error ei at the i-th voxel as

ei(F, F̂) =
√

∑
j∈u,v,w

(Fi, j− F̂i, j)2. (1)

For the hurricane data set, compared with LERP and RNN,
TSR-VFD and GAN introduce fewer errors around the hurri-
cane’s eye. For the solar plume and tornado data sets, compared
with LERP, RNN, and GAN, TSR-VFD leads to fewer errors in
the plume’s inner body and at the tornado’s vortex core. For the
supernova data set, TSR-VFD produces fewer errors at the core
and boundary compared with LERP, RNN, and GAN.

J. Han and C. Wang / Computers & Graphics (2022) 3

(a) PSNR (b) AAD (c) RAE

Fig. 6: PSNR, AAD, and RAE of synthesized vector fields using LERP, GAN, RNN, and TSR-VFD. Top to bottom: hurricane, solar plume, supernova, and tornado.
For the supernova and tornado data sets, PSNR, AAD, and RAE values of LERP and RNN are rather close. Therefore, the curves are overlapped.

4 J. Han and C. Wang / Computers & Graphics (2022)

(a) LERP (b) RNN (c) GAN (d) TSR-VFD

Fig. 7: Volume rendering results of errors introduced by the synthesized vector fields. Top to bottom: hurricane, solar plume, supernova, and tornado.

	paper
	Introduction
	Related Work
	TSR-VFD
	Overview
	Network Architecture

	Results and Discussion
	Data Sets and Training Details
	Results
	Discussion

	Conclusions and Future Work

	appendix
	Network Parameter and Design Study
	Additional Evaluation

