
Published by the IEEE Computer Society 0272-1716/10/$26.00 © 2010 IEEE IEEE Computer Graphics and Applications 45

Ultrascale Visualization

In Situ Visualization for Large-
Scale Combustion Simulations
Hongfeng Yu ■ Sandia National Laboratories

Chaoli Wang ■ Michigan Technological University

Ray W. Grout and Jacqueline H. Chen ■ Sandia National Laboratories

Kwan-Liu Ma ■ University of California, Davis

Supercomputers’ massive processing power
drives scienti�c discovery in many areas,
and their computing power and storage ca-

pacity grow rapidly every year. As scientists gain
access to more powerful machines, they attempt
to solve larger, more complex problems. Conse-
quently, the amount of data their scienti�c simula-
tions generate is increasing at an astounding pace.
Large-scale scienti�c simulations typically output
time-varying multivariate volumetric data. Such
data can now easily occupy petabytes of storage
space. To maximize simulation output’s use, scien-
tists need ef�cient, effective solutions to manage
and study the ever-growing data volume.

Supercomputer time is a prized commodity. Sci-
entists from various �elds compete for this time at
national laboratories and universities and must use
it ef�ciently. So, many scientists employ a batch-
oriented, sequential process to analyze large data
sets. A common strategy is to dump as much raw
data during the simulation run as the storage capac-
ity allows. Subsequent data analysis and visualiza-
tion occur of�ine. This of�ine postprocessing can
involve reducing petabytes of simulation-generated
data to a more manageable size. Additional postpro-
cessing might be necessary to prepare the data for
visualization.

Occasionally, scientists directly access visualiza-
tion clusters at supercomputing centers. During the
simulation run, they can collect measurements that
provide an overview of the simulation results. With
help from visualization specialists, the scientists
then can visually analyze their data. In this scenario,

all visualization calculations take place on the visu-
alization machine through coprocessing, which can
occur online or of�ine. The system then delivers the
visualization results, such as images or animations,
directly to the scientists’ desktop. If this option isn’t
available, the scientists could use a separate parallel
computer to prepare their data for
visualization.

However, even when coprocess-
ing is available, transferring and
storing simulation output can
be formidable. Scientists usually
don’t have the capability to rou-
tinely transfer and store petabytes
of data from supercomputer stor-
age devices to their laborato-
ries for study. Transferring that
much data is time-consuming
even if suf�cient storage space is
available. To reduce the amount
of data to store and transfer,
the common practice is to store
selected time steps and study a
limited range or a coarse-grained temporal reso-
lution of the data. Although convenient, examin-
ing only a limited subset of large-scale data might
hinder subsequent analysis of the overall phenom-
enon and selected details.

As the petascale-computing era approaches,
simply transferring raw simulation data to stor-
age devices or visualization machines is increas-
ingly cumbersome. A better solution is to reduce or
transform the data in situ on the same machine as

As scienti�c supercomputing
moves toward petascale
and exascale levels, in situ
visualization stands out as a
scalable way for scientists to
view the data their simulations
generate. This full picture
is crucial particularly for
capturing and understanding
highly intermittent transient
phenomena, such as ignition
and extinction events in
turbulent combustion.

46 May/June 2010

Ultrascale Visualization

the simulation runs, minimizing the data or infor-
mation requiring storage or transfer.1,2 As Figure 1
shows, in situ processing doesn’t require transfer-
ring large quantities of raw data over the network,
so it’s highly scalable for handling the data petascale
scienti�c simulations produce. (In situ visualiza-
tion isn’t a new concept; see the “Simulation-Time
Visualization” sidebar.) In this case study of in situ
visualization for turbulent-combustion simulations,
we investigate in situ data processing and visualiza-
tion strategies in a massively parallel environment.
Detailed experimental results demonstrate that in
situ visualization is a promising direction for ac-
celerating high-performance supercomputing and
scienti�c discovery.

The Challenges of In Situ Visualization
Researchers seldom perform simulation and visual-
ization on the same parallel computer. Supercom-
puter time is expensive and sometimes dif�cult to
acquire. So, many scientists are reluctant to use
their supercomputing time for visualization calcu-
lations. Additionally, not all simulation codes can
share data seamlessly with the codes that perform
visualization calculations. Some visualization cal-
culations can also be computationally expensive
and impractical for in situ processing. Moreover,
integrating visualization with simulation demands
that visualization researchers and domain scientists
collaborate closely over an extended period. Such
a long-term commitment isn’t always guaranteed.

Compared with traditional postprocessing visual-
ization, in situ visualization has unique challenges.1

First, the visualization code must interact directly
with the simulation code. To optimize memory use,
the simulation and visualization codes must share
the same data structures to avoid data replication.

Second, balancing the visualization workload is

more dif�cult because the visualization must com-
ply and tightly couple with the simulation archi-
tecture. For stand-alone processing, researchers can
parallelize visualization algorithms by partitioning
and distributing data to best suit their visualiza-
tion needs. In contrast, for in situ visualization, the
simulation code dictates data partitioning and dis-
tribution. Moving data frequently among proces-
sors isn’t an option for visualization processing. The
visualization workload must be balanced so that the
visualization is as scalable as the simulation.

Finally, visualization calculations must not in-
cur excessive costs, with decoupled I/O delivering
rendering results while the simulation is running.
Researchers can’t hardware-accelerate visualiza-
tion calculations on the supercomputer because no
graphics hardware is available. To keep costs down,
scientists need an alternative that simpli�es the cal-
culations such that visualization accounts for only
a small fraction of the simulation time. Through our
experiment with a large-scale turbulent-combustion
simulation using S3D, a Sandia DNS (direct numeri-
cal simulation) solver, we show that in situ visual-
ization is exactly such an alternative. (For more on
DNS, see the related sidebar.)

Parallel Rendering
The combustion simulation produces volume and
particle data, so our in situ visualization solution
integrates both volume and particle rendering.

Volume Rendering
Data partitioning for volume rendering comes di-
rectly from the domain decomposition for simu-
lation. Achieving seamless rendering along data
partition boundaries requires duplicating the data
along data region boundaries (two voxels wide).

To propagate boundary information in 3D, a
processor assigned with a data region must com-
municate with its 26 neighboring processors. We
use diagonal communication elimination3 and
follow the communication in the x, y, and z direc-
tions, in turn. With this method, a processor need
communicate with only six neighbors for exchang-
ing boundary information.

After boundary exchange, a processor renders its
data region using software ray casting and gener-
ates the corresponding partial image for compos-
iting. Because the complete simulation data are
available for in situ visualization, one ray-casting
pass can render multiple variables.

Particle Rendering
For particle rendering, we implement a software-
based point sprite technique. With point sprites,

Simulation machine

Storage

Scientist’s
desktop

 In situ output

 I
n

si
tu

 o
ut

p
ut

Ra
w

 o
ut

p
ut

Raw output

 I
n

si
tu

 o
ut

p
ut

Storage

Visualization calculations
(in situ processing)

Visualization machine

Ra
w

 o
ut

p
ut

Raw output

Figure 1. Comparing postprocessing, coprocessing, and in situ processing.
Postprocessing and coprocessing (red arrows) involve transferring raw
data. In situ processing provides a highly scalable solution for dealing
with the extreme-scale data that scienti�c simulations produce.

IEEE Computer Graphics and Applications 47

we simply render a screen-aligned 2D quad cen-
tered at a particle’s vertex.

The quad’s scale is based on the distance between
the eye and the particle in 3D under perspective
projection. We use procedural texturing to shade
each quad. More speci�cally, we look up a pre-
calculated sphere normal map to obtain the nor-
mal for each pixel in the quad. Then, we use the
normal to calculate the lighting using the Phong
model and the eye and light directions.

We interpolate each pixel’s depth between the
particle’s depth (the sphere’s center) and the
sphere boundary’s depth, which we use to accu-
rately depict the spheres’ intersection in 3D. Be-
cause the system performs all calculations in the
image space, we can render tens or hundreds of
thousands of particles more ef�ciently using point
sprites rather than rendering 3D sphere geometry.

Integrating Volume and Particle Rendering
Our approach draws each particle as a sphere
with a given radius. So, some particles lie across

the data region boundary. As Figure 2 shows, we
must handle these particles and ensure that they
blend correctly along the boundaries when inte-
grated with volume rendering. Similar to volume

Researchers have developed several ef�cient methods and
guidelines for data processing in massively parallel com-

puting environments. One viable approach is simulation-
time visualization: studying data as simulations generate it.

In this scheme, researchers conduct simulation and visu-
alization calculations on the same parallel supercomputer
so that the two processes can share the data. Such visual-
ization can render images or extract features directly from
the raw data. These results are generally much smaller than
the raw data and storable for later examination. Reducing
both data transfer and storage costs early in the data analy-
sis pipeline optimizes scienti�c discovery’s overall process.
Many researchers have experimented with this approach.
Although they demonstrated runtime simulation visual-
ization on parallel computers, the systems and problems
were fairly small.1–3

Simulation-time visualization also lets scientists visually
monitor the simulation while it runs. For example, SCIRun
provided a computational-steering environment that sup-
ported runtime simulation tracking.4 An object-oriented
data-�ow approach let users control scienti�c simulations
interactively by varying boundary conditions, model geom-
etries, and computational parameters.

Tiankai Tu and his colleagues demonstrated how to
effectively monitor a terascale earthquake simulation run-
ning on a supercomputer’s thousands of processors.5

They performed rendering in situ using the same data-
partitioning scheme they adopted for the simulation. So,
data movement among processors was unnecessary. Over
a wide-area network, they could interactively change

view angles, adjust sampling steps, edit color and opacity
transfer functions, and zoom in and out to visually monitor
the simulation runs.6 These visualization calculations’ time
and storage overhead were almost negligible, making this
approach attractive.

References
1. A. Globus, A Software Model for Visualization of Time Depen-

dent 3-D Computational Fluid Dynamics Results, tech. report

RNR 92-031, NASA Ames Research Center, 1992.

2. K.-L. Ma, “Runtime Volume Visualization of Parallel CFD,”

Proc. Int’l Parallel Computational Fluid Dynamics Conf. (ParCFD

95), Inst. Computer Applications in Science and Eng., 1995,

pp. 307–314.

3. J. Rowlan et al., “A Distributed, Parallel, Interactive Volume

Rendering Package,” Proc. IEEE Visualization Conf. (VIS 94),

IEEE Press, 1994, pp. 21–30.

4. S.G. Parker and C.R. Johnson, “SCIRun: A Scienti�c Program-

ming Environment for Computational Steering,” Proc. ACM/

IEEE Supercomputing Conf. (SC 95), IEEE CS Press, 1995, article

52, doi:10.1145/224170.224354.

5. T. Tu et al., “From Mesh Generation to Scienti�c Visualiza-

tion: An End-to-End Approach to Parallel Supercomputing,”

Proc. 2006 ACM/IEEE Conf. Supercomputing (SC 06), IEEE CS

Press, 2006, article 91, doi:10.1145/1188455.1188551.

6. H. Yu et al., “Remote Runtime Steering of Integrated Tera-

scale Simulation and Visualization,” Proc. 2006 ACM/IEEE

Conf. Supercomputing (SC 06), ACM Press, 2006, article 297,

doi:10.1145/1188455.1188767.

Simulation-Time Visualization

Figure. 2. Handling particles along neighboring data
region boundaries. The processor assigned to the
gray data region must exchange particles along the
boundary with neighboring processors so that the
particles can blend correctly when integrated with
volume rendering. The particles from neighboring
data regions are blue, green, and brown.

48 May/June 2010

Ultrascale Visualization

rendering, data partitioning for particle rendering
follows the domain decomposition for the simula-
tion. Particles exchange similarly for voxels lying
on the boundary.

Our data partitioning for volume and particle ren-
dering follows the scheme the simulation adopted.
Data exchange happens for only boundary re-
gions, minimizing data communication. To inte-
grate volume rendering with particle rendering,
we pay careful attention to their drawing order to
preserve proper blending and depth order. We use
this integration algorithm:

1. Each processor renders the particles in its data
region.

2. Each processors exchanges particles along its
region’s boundaries with particles along the
boundaries of its neighbors’ regions.

3. Each processor renders the particles along its
and its neighbors’ boundaries.

4. We read out the particle rendering’s red, green,
blue, and alpha (RGBA) and depth channels.

5. We perform volume ray casting with depth
lookup of the particle image for correct blending.

The algorithm employs our software-based frame
buffer object (FBO) implementation. First, each pro-
cessor creates an FBO consisting of a color buffer
(RGBA, 32-bit, �oating-point channels) and a depth
buffer (32-bit, �oating-point). It then binds the
FBO as the rendering target. The processor renders
particles in its data region into the FBO, in which
user-speci�ed transfer functions de�ne a particle’s
color and visibility (opaque or transparent). During
rendering, the algorithm selects the visible particles
along the boundaries and buffers them for exchange.

Numerical simulation plays a valuable role in analyzing
and assessing turbulent �ames. As long as the �uids in

question can fall on a continuum, Navier-Stokes equations
provide a useful description of the �ow. When species
transport and energy evolution equations augment the
�ow, the resulting system of differential equations is theo-
retically solvable (assuming a suitable reaction mechanism
is available). This solution would let researchers predict
the performance and emissions of myriad energy conver-
sion devices involving combustion, such as gas turbines
and automotive engines. Frustratingly, this tantalizing
possibility is beyond the scope of computational capa-
bilities now and for the foreseeable future, Moore’s law
notwithstanding.

Solutions to the Navier-Stokes equations are notoriously
chaotic. The smallest scale that affects the overall solu-
tion determines the maximum grid spacing when solving
equations numerically. This scale is typically three to �ve
orders of magnitude smaller than the overall domain size.
When the domain size or the velocity of the �ow’s largest
structure increases, the smallest scales’ size decreases fur-
ther. Chemical reactions add yet smaller scales requiring
resolution. The equations’ direct numerical solution (DNS)
is tractable only for the simplest problems: the Sandia
DNS solver S3D does exactly this, solving the governing
equations for canonical small-laboratory-scale problems.

To solve real-world combustion problems, some engi-
neering models �lter the governing equations in time or
space to give a set of equations for large-scale behavior.
Denis Veynante and Luc Vervisch provided a comprehensive
review.1 These methods require a model for the physical phe-
nomena that are essential to the broader solution. However,
researchers typically resolve on the coarser grids they
normally use. Unique DNS benchmark simulations provide

validation data useful for exploring the reasons for existing
models’ shortcomings and developing of new approaches.

S3D and Combustion Simulation
S3D is a Runga-Kutta integrator that advances the balance
equations for conserving mass, momentum, energy, and
chemically reactive species.2 For example, the conserva-
tion equation for the mass fraction of chemically reactive
species α, Yα, is

∂
∂
=−
∂
∂

−
∂
∂

+
ρ ρ ρ

ωα α α α
α

Y
t

u Y
x

V Y
x

i

i

i

i
.

S3D evaluates the chemical-source term ωα from a reaction
mechanism that couples the equations describing the
thermodynamic state.

Using an eighth-order approximation, S3D approxi-
mates the spatial derivatives at each point on a �nite-
difference grid. Figure A shows the solution loop. The
most rapidly varying quantities limit the maximum time
step. Because S3D solves a fully compressible form of the
Navier-Stokes equations, the acoustic timescale forms an
upper bound on the time step. The practical implication
is that the major species don’t change signi�cantly over a
timescale of 10 to 100 time steps.

However, traditionally, simulation codes save restart
�les even less frequently than this because of storage
requirements and I/O time restrictions. Native restart �les
contain the primary solution variables—pressure, tempera-
ture, velocity, and composition. The species mass fractions
for each molecular species in the chemical mechanism
describe these variables.

In a recent simulation of a lifted �ame that is autoigni-
tion3 stabilized, the necessary resolution is 15 µm over
an overall domain of approximately 2 cm. (Autoignition

Direct Numerical Simulation

IEEE Computer Graphics and Applications 49

Next, processors exchange particles along the
boundaries and ensure that particles from neigh-
bors render and blend correctly using the depth
buffer. We then save the FBO’s color buffer and
depth buffer for integrating with volume rendering.

Finally, we perform regular ray casting on the
volume. However, we also calculate along a ray
each sample’s depth and check it with the depth
buffer. We assume all visible particles are opaque,
so we can stop ray casting for each pixel when
the current depth value exceeds the value in the
depth buffer. We then accumulate the color value
recorded in the color buffer. This way, we perform
a depth-accurate integration of volume and par-
ticle rendering (see Figure 3).

Image Compositing
In choosing an algorithm for parallel image com-

positing for in situ visualization, we narrowed our
choice to 2-3 swap, a generalization of the popular
binary-swap algorithm. (For more on image com-
positing in parallel, see the “Parallel Image Com-
positing” sidebar.)

Binary Swap
Over the past 15 years, binary swap has become
the de facto algorithm for parallel image compos-
iting. Unlike direct send (see the “Parallel Image
Compositing” sidebar), which requires n partici-
pating processors to exchange O(n2) messages,
binary swap requires only O(n log n) messages.
This algorithm involves a multistage process and
pairs up the processors using a binary composit-
ing tree. At any image-compositing stage, a pro-
cessor communicates only with its counterpart in
the pair.

is useful for studying �ame anchoring behavior in a hot
environment.) So, the simulation requires more than 1.3 ×
109 grid points. This simulation’s chemical mechanism
includes 22 species to describe ethylene-air combustion:
the restart �le size is more than 140 Gbytes.

Incorporating Visualization
Three main reasons exist for incorporating visualization
into the solution algorithm. To limit the total I/O time and
data size, the simulation outputs restart �les every 1 µm
(200 time steps). Especially for minor radical species, in-
teresting effects related to stabilization might occur more
rapidly than this.

Also, when a new simulation case is being set up, subtle
interactions between the boundary conditions and the
interior solution during initial start-up transients can produce
errors. Diagnosing these errors can be dif�cult because the
next save of the restart �le can create a large-scale instability
that obscures the event that triggered the original instability.

Once a solution is complete, the work�ow for generating
volume renderings includes reloading each restart �le into
S3D and writing a subsampled representation of the data
to visualize. These steps incur signi�cant I/O overhead; time
series or animations can exacerbate the situation.

References
1. D. Veynante and L. Vervisch, “Turbulent Combustion Modeling,”

Progress in Energy and Combustion Science, vol. 28, nos. 11–12,

2002, pp. 193–266.

2. J.H. Chen et al., “Terascale Direct Numerical Simulations of

Turbulent Combustion Using S3D,” Computational Science &

Discovery, vol. 2, 2009, article 015001, doi:10.1088/1749-

4699/2/1/015001.

3. C.S. Yoo et al., “DNS of a Turbulent Lifted Ethylene/Air

Jet Flame in an Autoignitive Co�ow—Stabilization and

Flame Structure,” Proc. Int’l Workshop Measurement and

Computation of Turbulent Nonpremixed Flames (TNF 09),

2008, pp. 296–297.

S3D outer time advance loop

Integrate �eld equations in time

Update right-hand side
for all equations

Advance Ranga-Kutta
substages

Update primary
solution vector

Convert primary solution
vector to working form

Compute enthalpy

Compute gradients

Compute diffusive-�ux terms

Compute viscous terms

Assemble diffusive �uxes

Compute reaction rates

Include contributions from
boundary conditions

Impose boundary
conditions

Update intermediate
solution vector

Advance tracer particles

Save restart �les

Perform in situ analysis

Figure A. The S3D time advance loop, showing all the major tasks.

This �gure provides an overview of the S3D execution pipeline for

combustion simulation.

50 May/June 2010

Ultrascale Visualization

However, the number of processors that binary
swap uses isn’t �exible. It works best when the
number of processors is an exact power of two. In

a real network environment, processors are often
down for various reasons, meaning that the opti-
mal processor count can deviate from a power of
two. To apply binary swap in this situation (for ex-
ample, 2k−1 < n < 2k), we send the image data from
n − 2k−1 processors to the remainder of 2k−1 proces-
sors. We then perform binary swap directly on the
2k−1 processors.

Another solution is to use the binary compositing
tree with k + 1 levels. In this scenario, the binary
tree is complete (with 2k leaf nodes), but only valid
leaf nodes participate in the compositing. The com-
positing partner computation requires additional
complexity. However, neither solution provides op-
timal parallelism or compositing ef�ciency.4

2-3 Swap
Hongfeng Yu and his colleagues solved binary
swap’s non-power-of-two cases by introducing the
2-3 swap algorithm.4 It also involves multistage

Parallel rendering comprises �ve stages: data partition-
ing, data distribution, rendering, image compositing,

and image delivery. Steven Molnar and his colleagues
treated it as a sorting problem and introduced the sorting
classi�cation.1 Depending on where the sorting happens
in the graphics pipeline, they de�ned three classes: sort-
�rst, sort-middle, and sort-last.

Over the years, researchers have more widely used sort-
last parallel rendering because of its simple task decompo-
sition for achieving load balancing.2–4 Image compositing
(blending partial images in the correct depth order) in
sort-last rendering demands interprocessor communica-
tion. This requirement can become expensive when using
more than hundreds of processors because of the poten-
tially large quantity of messages the processors exchange.
So, image compositing often becomes a bottleneck affect-
ing sort-last rendering’s ef�ciency.

Since the early 1990s, researchers have developed
various image-compositing methods for parallel visualiza-
tion applications. For sort-last volume rendering, the most
popular and representative solutions are direct send and
binary swap. Direct send is the simplest technique.5 It’s
�exible with network interconnection and the number of
processors it uses. However, it introduces link contention
because it requires all-to-all communication. Aleksander
Stompel and his team optimized direct send for small to
midsize CPU clusters with a precomputed compositing
schedule, but the schedule’s computation doesn’t scale to
thousands of processors.6

Binary swap uses all processors at all compositing
stages.7 Although it perfectly balances the compositing
workload among processors and reduces the number

of messages they exchange, it suffers from restrictions
regarding the number of processors.

Recently, Hongfeng Yu and his colleagues presented the
2-3 swap compositing algorithm, which combines direct
send’s �exibility and binary swap’s optimality.8 They demon-
strated 2-3 swap’s scalability on a supercomputer with thou-
sands of processors. (For more on binary swap and 2-3 swap,
see the section “Image Compositing” in the main article.)

Researchers have also developed hardware-based image-
compositing equipment and solutions, such as Lightning-29

and Sepia-2.10 Although these solutions achieve impressive
performance with high scalability, building a large-scale
visualization system using such hardware can be prohibi-
tively expensive. In response, Jorji Nonaka’s team presented
a hybrid image-compositing method for sort-last rendering
on graphics clusters with the MPC (Mitsubishi Precision Co.)
image compositor.11,12 This method offers high performance
at a reasonable cost.

More recently, Nonaka and Kenji Ono proposed a decom-
position approach for optimizing large-scale parallel image
composition on multicore MPP (massively parallel process-
ing) systems. This approach uses multicore processors for
direct send, leveraging the fast communication speed within
a CPU.13 David Pugmire and his colleagues described using a
network processing unit for hardware-based image compos-
iting in a distributed rendering system.14 With commodity
graphics hardware’s popularity, researchers also explored
using GPU clusters for hardware-accelerated parallel visu-
alization.15 Such a cluster, however, is typically limited to a
small scale.

Software image compositing remains the most widely
used solution in many applications. In a supercomput-

Parallel Image Compositing

(a) (b)

Figure. 3. Integrating volume and particle rendering. The synthesized
volume data set comprises multiple-layer spheres. (a) Not exchanging
and handling the particles along the boundary results in incorrect
rendering along the diagonals. (b) Exchanging those particles results in
correct rendering.

IEEE Computer Graphics and Applications 51

image compositing. However, 2-3 swap partitions
processors into groups, not pairs. This partitioning
allows greater �exibility in the number of proces-
sors in a group. In the compositing tree, a node
has either two or three children, hence the algo-
rithm’s name.

To reduce the number of messages exchanged,
a processor communicates only with the other
processors in its group. Yu’s team showed that the
number of messages any processor exchanges at
any image-compositing stage is bounded by four.
Combining direct send’s �exibility and binary
swap’s optimality, 2-3 swap scales well to thou-
sands of processors. As such, we chose it for in situ
parallel image compositing.

Integrating Visualization with Simulation
To integrate visualization with simulation requires
an interface between the simulation code and the
visualization code.

The Simulation Side
First, the simulation initializes the visualization
module. The simulation provides the size and co-
ordinates of each processor’s global domain and
local partition. Each processor doesn’t need any
other processor’s partition information. The simu-
lation code also provides the pointer to the buffer
of the local scalar-variable values. In addition, the
visualization code must know the pointer to the
particle data.

Next, the solver updates the scalar variable and
particle data at each time step. At the same time,
the simulation code invokes visualization calcula-
tions at a given rate. We implement all API func-
tions on the visualization side; we modify the
simulation code by adding a few function calls
during initialization and solving.

The Visualization Side
A processor directly takes the data region assigned

ing environment with thousands of processors, dedicated
graphics hardware for image compositing isn’t practical
because of the hardware costs and effort for integration,
upgrades, and maintenance.

References
1. S. Molnar et al., “A Sorting Classi�cation of Parallel Render-

ing,” IEEE Computer Graphics and Applications, vol. 14, no. 4,

1994, pp. 23–32.

2. J.P. Ahrens and J.S. Painter, “Ef�cient Sort-Last Rendering

Using Compression-Based Image Compositing,” Proc.

Eurographics Workshop Parallel Graphics and Visualization

(EGPGV 98), Eurographics, 1998, pp. 145–151.

3. K. Moreland, B. Wylie, and C. Pavlakos, “Sort-Last Parallel

Rendering for Viewing Extremely Large Data Sets on Tile

Displays,” Proc. IEEE Symp. Parallel and Large-Data Visualization

and Graphics (PVG 01), IEEE Press, 2001, pp. 85–92.

4. C. Wang, J. Gao, and H.-W. Shen, “Parallel Multiresolution

Volume Rendering of Large Data Sets with Error-Guided Load

Balancing,” Proc. Eurographics Workshop Parallel Graphics and

Visualization (EGPGV 04), Eurographics, 2004, pp. 23–30.

5. W.M. Hsu, “Segmented Ray Casting for Data Parallel Volume

Rendering,” Proc. IEEE Symp. Parallel Rendering (PRS 93), ACM

Press, 1993, pp. 7–14.

6. A. Stompel et al., “SLIC: Scheduled Linear Image Composi-

ting for Parallel Volume Rendering,” Proc. IEEE Symp. Parallel

and Large-Data Visualization and Graphics (PVG 03), IEEE CS

Press, 2003, pp. 33–40.

7. K.-L. Ma et al., “A Data Distributed, Parallel Algorithm for

Ray-Traced Volume Rendering,” Proc. 1993 IEEE Symp. Parallel

Rendering (PRS 93), IEEE Press, 1993, pp. 15–22.

8. H. Yu, C. Wang, and K.-L. Ma, “Massively Parallel Volume

Rendering Using 2-3 Swap Image Compositing,” Proc. 2008

Conf ACM/IEEE Supercomputing (SC 08), IEEE Press, 2008,

article 48, doi:10.1145/1413370.1413419.

9. G. Stoll et al., “Lightning-2: A High-Performance Display

Subsystem for PC Clusters,” Proc. Siggraph, ACM Press,

2001, pp. 141–148.

10. S. Lombeyda et al., “Scalable Interactive Volume Rendering

Using Off-the-Shelf Components,” Proc. IEEE Symp. Parallel

and Large-Data Visualization and Graphics (PVG 01), IEEE

Press, 2001, pp. 115–121.

11. J. Nonaka et al., “Hybrid Hardware-Accelerated Image

Composition for Sort-Last Parallel Rendering on Graphics

Clusters with Commodity Image Compositor,” Proc. IEEE

Symp. Volume Visualization and Graphics (VolVis 04), IEEE CS

Press, 2004, pp. 17–24.

12. S. Muraki et al., “Next-Generation Visual Supercomputing

Using PC Clusters with Volume Graphics Hardware Devices,”

Proc. 2001 ACM/IEEE Conf. Supercomputing (SC 01), ACM

Press, 2001, p. 44, doi:10.1145/582034.582085.

13. J. Nonaka and K. Ono, “A Decomposition Approach for

Optimizing Large-Scale Parallel Image Composition on

Multi-core MPP Systems,” Proc. Eurographics Workshop

Parallel Graphics and Visualization (EGPGV 09), Eurographics,

2009, pp. 71–78.

14. D. Pugmire et al., “NPU-Based Image Compositing in a

Distributed Visualization System,” IEEE Trans. Visualization

and Computer Graphics, vol. 13, no. 4, 2007, pp. 798–809.

15. X. Cavin, C. Mion, and A. Filbois, “COTS Cluster-Based

Sort-Last Rendering: Performance Evaluation and Pipelined

Implementation,” Proc. IEEE Visualization Conf. (VIS 05), IEEE

Press, 2005, pp. 111–118.

52 May/June 2010

Ultrascale Visualization

to it during initialization and performs volume
and partial rendering during the simulation run.
The processor must calculate the local data re-
gion’s depth and gather the depth values. Then,
visibility sorting of all processors occurs. This
sorting enables the system to build the 2-3 swap
algorithm’s compositing tree, in which the leaf
nodes correspond to the sorted list of processors.
Each processor calculates the compositing tree and
communication schedule by itself, so communica-
tion is unnecessary.

This visibility sorting and scheduling is view
dependent and recomputes whenever the view
changes at runtime. Subsequently, all processors
participate in image compositing. A host processor
gathers the �nal image and saves it to the local
disk or delivers it to the scientists’ desktop.

Results
We tested our approach with a lifted-jet combus-
tion simulation at Sandia National Laboratories.
Our test environment was JaguarPF, the Cray XT5
at Oak Ridge National Laboratory’s National Cen-
ter for Computational Sciences.

We assigned each processor core a 27 × 40 ×
40 region. We tested four numbers of cores: 240,
1,920, 6,480, and 15,360, with core con�gurations
of 15 × 8 × 2, 30 × 16 × 4, 45 × 24 × 6, and 60 × 32 ×
8, respectively.5 (During the XT5 upgrade’s sec-
ond phase, we tested 240, 1,920, and 6,480 cores.
At that time, the XT5 used 20,928 AMD x86 64
Opteron Barcelona quad-core 2.3-GHz processors
connected through a SeaStar 2+ internal inter-
connect. After the XT5 upgrade’s fourth phase,
we performed the tests with 15,360 cores. At that
time, the XT5 used 37,376 AMD x86 64 Opteron
Istanbul six-core 2.6-GHz processors connected
through a SeaStar 2+.)

Table 1 lists the volume and particle data sizes
and timing results. The volume data consist of
double �oating-point (8 bytes) variables; the par-
ticle data consist of single �oating-point (4 bytes)
variables. We chose 2,0482, 1,0242, and 5122 im-
age resolutions and used 32-bit �oating-point pre-
cision for the RGBA and depth channels for image
compositing.

For the simulation, I/O, and visualization, we
measured timing for one time step. Reaction rate
evaluation and derivative evaluation (including
temporal derivative calculation) dominate simu-
lation time, whereas visualization time accounts
for only a small fraction of it. For example, if we
perform visualization at each simulation time step
for 6,480 cores and 1,0242 image resolution, vi-
sualization time is approximately 6.92 percent of

the simulation time; I/O time is more than four
times the simulation time. In practice, we usually
perform in situ visualization less frequently (ev-
ery 10th time step), so the visualization time can
be two orders of magnitude less than the overall
simulation time.

Figure 4 shows the timing breakdown for the visu-
alization stages. Image compositing, which requires
interprocessor communication, dominates the total
visualization time. In Figure 4a, volume-rendering
time decreases as the core count increases. The
data region size and output image resolution are
�xed, whereas the whole volume size increases as
the number of cores increases. So, each core gets a
smaller screen projection and requires less render-
ing time. Compositing time increases as the core
count increases because we implement only a non-
optimized 2-3 swap algorithm.

In Figure 4b, compositing time decreases as the
output image resolution decreases, which results
in a decreased compositing workload. In Figure 4c,
we use the three data types (8-bit unsigned byte,
16-bit unsigned short, and 32-bit �oating-point)
for the image’s RGBA channels. Compositing time
decreases as image data precision decreases. Users
can choose different image sizes and types to suit
their compositing-performance and visualization
quality needs.

We also rendered multiple images at the same time
for multivariate-data visualization. Figure 5 shows
the compositing time for multiple images with two
compositing modes. The separate-compositing mode
renders and composites only one image at a time.
The combined-compositing mode renders and com-
posites n images (corresponding to n variables) at
the same time so that the number of messages the
processors exchange for compositing is approxi-
mately 1/n of the separate-compositing mode’s
messages. However, in practice, the combined-
compositing mode’s performance gain is marginal.
The XT5 has low message-passing-interface latency
(approximately 1 µs) for network operations, and
the processors exchange about the same quantity
of image data for these two modes.

Figure 6 shows each core’s visualization time,
for a 240-core simulation run with a 5122 output
image resolution. As the �gure shows, rendering,
which includes boundary data exchange and parti-
cle and volume rendering, isn’t balanced. This un-
evenness is due to the domain decomposition we
inherit from the simulation and the transfer func-
tions we use for volume and particle rendering.
The overall time, however, is generally balanced
among all cores because the dominant image-
compositing time is well balanced. We can draw

IEEE Computer Graphics and Applications 53

similar conclusions for runs with larger number
of cores.

The total visualization time in Figure 6 is less
than in Table 1. In Table 1, we simply add each
stage’s maximum time for the total visualization
time. The result corresponds to the worst-case up-
per bound. In practice, however, these maximum

times can occur at different cores. For example, a
core with the maximum compositing time might
not have the maximum rendering time. So, Figure
6 reports a smaller visualization time.

Figure 7 shows the volume-rendering results
for six selected variables; Figure 8 shows detailed
views of integrated volume and particle rendering

Table 1. Timing breakdown for simulation, I/O, and visualization with various con�gurations.

No. of cores

240 1,920 6,480 15,360

Volume rendering

Volume size 405 × 320 × 80 810 × 640 × 160 1,215 × 960 × 240 1,620 × 1,280 × 320

No. of variables 27 27 27 27

Data size (Gbytes) 2.1 16.7 56.3 133.5

Particle rendering

No. of particles (millions) 0.8 5.2 17.4 41.1

No. of variables 118 118 118 118

Data size (Gbytes) 0.3 2.5 8.3 19.5

Simulation time (sec.)

Total 8.1659 8.6680 9.6293 11.867

Reaction rate evaluation 3.8779 3.8924 3.8900 3.3164

Mixture average diffusion calculation 1.2728 1.2948 1.3610 1.3041

Derivative evaluation 0.9246 1.2115 1.6240 3.5597

Other temporal derivative calculation 1.7332 1.8995 2.3677 3.2143

Runge-Kutta integration 0.3472 0.3536 0.3566 0.4052

Tracer advection 0.0102 0.0162 0.0300 0.0668

I/O time (sec.) 8.2675 (101.24%)* 25.611 (295.47%) 42.660 (432.64%) 136.690 (1,151.90%)

Visualization time with 2,0482 image resolution (sec.)

Total 1.7699 (21.67%) 2.0459 (23.60%) 2.6689 (27.72%) 4.3595 (36.74%)

Boundary particle exchange 0.0012 0.0034 0.0041 0.0061

Particle rendering 0.1255 0.1953 0.2710 0.5314

Boundary voxel exchange 0.0023 0.0039 0.0051 0.0080

Volume rendering 0.0834 0.0499 0.0380 0.0230

Image compositing 1.5575 1.7934 2.3507 3.7910

Visualization time with 1,0242 image resolution (sec.)

Total 0.4903 (6.00%) 0.6198 (7.15%) 0.6661 (6.92%) 1.0381 (8.75%)

Boundary particle exchange 0.0015 0.0035 0.0044 0.0063

Particle rendering 0.0387 0.0586 0.0759 0.1438

Boundary voxel exchange 0.0031 0.0042 0.0049 0.0081

Volume rendering 0.0212 0.0125 0.0094 0.0059

Image compositing 0.4258 0.5410 0.5715 0.8740

Visualization with 5122 image resolution (sec.)

Total 0.1304 (1.60%) 0.1782 (2.06%) 0.1978 (2.05%) 0.2879 (2.43%)

Boundary particle exchange 0.0012 0.0037 0.0046 0.0066

Particle rendering 0.0167 0.0260 0.0345 0.0649

Boundary voxel exchange 0.0023 0.0043 0.0050 0.0083

Volume rendering 0.0053 0.0031 0.0027 0.0015

Image compositing 0.1049 0.1411 0.1510 0.2066

*Percentages represent the ratio of I/O or visualization time to simulation time

54 May/June 2010

Ultrascale Visualization

on some of these variables. Our ability to render
volume and particle data simultaneously lets sci-
entists study their data in greater detail. These in-
situ-visualization results provide valuable visual
feedback to the scientists for monitoring their
simulations on the �y.

Discussion
Both the simulation and visualization codes re-
quire replicating data around the domain decom-
position boundaries. Ideally, the two codes can
also share these boundary data, but in practice,
this isn’t feasible. The simulation code uses four-
voxel-wide boundaries for gradient and derivative
calculations. To lower this memory overhead, it
uses a single buffer to keep the boundary data for
only one variable. That is, at the end of each itera-
tion, the code keeps only one variable’s boundary
data. Although volume rendering uses only two-
voxel-wide boundaries for seamless rendering, that
buffer is unlikely to keep the variable values that
the renderer needs.

Keeping boundary data for all variables on the
simulation side incurs too much memory overhead
and requires modifying the simulation code. So, in
our implementation, the rendering code conducts
an additional boundary exchange among cores to
obtain the needed two-voxel-wide boundary data.
According to our study, this communication over-
head is quite acceptable. Most importantly, this
decision eases the integration of the two codes.

As our test results show, image compositing re-

3.5

3.0

2.5

2.0

1.5

1.0

0

0.5

1 2 4 6
No. of images

Ti
m

e
(s

ec
.)

Separate compositing Combined compositing

Figure 5. Compositing time for rendering multiple images with two
compositing modes on 1,920 cores. The output image resolution is
1,0242, with RGBA �oating-point data. The performance gain for using
the combined-compositing mode is marginal.

(a)

(b)

(c)

0

6,480

1,920

240

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

N
o.

 o
f c

or
es

Time (sec.)

Boundary particle exchange Particle rendering Boundary voxel exchange Volume rendering Image compositing

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

2,0482

1,0242

5122

Time (sec.)

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Floating
point

Unsigned
short

Unsigned
byteIm

ag
e

da
ta

 t
yp

e
Im

ag
e

si
ze

(p
ix

el
s)

Time (sec.)

Figure 4. Timing for in situ visualization stages. (a) This chart shows different core counts with 1,0242 output image resolution and
32-bit �oating-point RGBA image data. Compositing time increases as the core count increases because we use a nonoptimized
2-3 swap algorithm. (b) For three output image resolutions with 1,920 cores and 32-bit �oating-point RGBA image data,
compositing time decreases as output image resolution decreases. The result is a decreased compositing workload. (c) For three
output image data types with 1,920 cores and 1,0242 output image resolution, compositing time decreases with decreased
precision in the image’s RGBA channels. The result is a decreased compositing workload.

IEEE Computer Graphics and Applications 55

mains the bottleneck of parallel rendering at the
scale we consider here. However, the overall render-
ing cost is acceptable for this in-situ-visualization
setting. If the cost became too high in a differ-
ent setting, we could reduce it by optimizing two
aspects of the compositing algorithm. First, we
currently use full-size partial images the proces-
sor cores produce as input. We can improve this
by eliminating background pixel data and con-
sidering only effective pixel data for composit-
ing. Second, our current implementation imposes
synchronization at every compositing-tree level.
This level-by-level synchronization is unnecessary
owing to the 2-3 swap algorithm’s local communi-
cation: as we mentioned before, a core communi-
cates only with other cores in its own group at any
image-compositing stage. This observation suggests a
higher level of parallelism in which nodes at differ-
ent compositing-tree levels can execute composit-
ing tasks concurrently.

We implemented a client program that runs on
a remote user’s desktop or laptop and communi-
cates with a simulation over the network (see Fig-
ure 9). Users can specify and send visualization
con�gurations (such as transfer functions, views,
number of images, and rendered variables) to the
simulation and receive images at runtime. For the
run-in-batch mode, we specify the transfer func-
tions and views of�ine with data that a small set of
sample runs generated. We then use these transfer
functions and viewing parameters for in situ visu-
alization. We recommend further research on in
situ, automatic transfer function design and view
selection5 so that the visualization results better
reveal the essence of simulation data.

With in situ visualization, scientists can cap-
ture features between time steps that the simula-
tion code doesn’t save. In a turbulent-combustion
simulation, the frequency to save restart �les de-
pends on the Kolmogorov timescale—the smallest
mechanical-�ow timescale in a turbulent �ow. For

the lifted-jet simulation, the Kolmogorov time-
scale ranges from 2.5 to 10 µs, depending on the
location in the �ow. So, the restart-�le frequency

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231

Core ID

Ti
m

e
(s

ec
.)

Boundary particle exchange Particle rendering Boundary voxel exchange Volume rendering Image compositing

Figure. 6. The visualization time for each core of a 240-core simulation run with a 5122 output image resolution. The overall time
generally balances among all cores because the dominant image-compositing time is well balanced.

(a) (b) (c)

(d) (e) (f)

Figure 7. Volume rendering for six selected variables involved in the
combustion process: (a) C2H4, (b) CH2O, (c) CH3, (d) H2O2, (e) HO2, and
(f) OH. All six images are generated under the combined-compositing
mode in a single pass.

56 May/June 2010

Ultrascale Visualization

is 2.5 saved �les per Kolmogorov timescale. This
frequency ensures that system can recover Eu-
lerian turbulent statistics from the restart �les,
given a suf�ciently long time series.

However, this interval isn’t necessarily suf�cient
to accurately depict the �ow’s instantaneous evolu-
tion. For example, certain small features might move
rapidly. Ignition kernels upstream of the �ame base
are 0.05 to 0.1 mm in size, and the jet’s center has
a velocity of 204 meters per second. So, the kernels

move approximately their own dimension every
0.245 µs. Thus, rendering the �eld more frequently
than this—for example, four times per restart �le—
will smoothly capture these features’ path. The in
situ techniques enable this frequent rendering.

Before in situ visualization, Sandia’s combustion
scientists subsampled the data to reduce both data
movement and computational requirements for
visualization. The procedure involved many steps,
multiple tools and platforms, and enormous I/O
cost. Because of this cumbersome iteration, they
created visualizations mainly for publication or
presentation. With in situ visualization, the scien-
tists can signi�cantly reduce I/O and use visualiza-
tion more conveniently for diagnostics to verify the
simulation’s correct con�guration and operation.

In situ visualization’s integration effort and com-
putational cost make it feasible and practical for

large-scale turbulent-combustion simulation. Be-
yond in situ visualization, however, a broader pos-
sibility is in situ processing, including data packing,
feature extraction, and analysis.

In situ processing could let scientists study the
full extent of the data their simulations generate
and eventually steer simulation at the petascale
level. For example, many scientists we’ve been
working with are convinced that in situ feature
extraction is feasible. They believe this because all

(a)

(b)

Figure 8. Detailed views of the volume and particle data mix rendering. (a) The volume variable is CH2O; the particle variable
is HO2. (b) The volume variable is CH3; the particle variable is OH. Our high-resolution in situ visualization lets the scientists
examine details and monitor the simulation on the �y.

Figure 9. In situ visualization of a combustion simulation. A user in
California remotely steers the visualization of a simulation running on
2,500 cores of Oak Ridge National Laboratory’s Cray XT5 in Tennessee.

IEEE Computer Graphics and Applications 57

relevant data about the simulated �eld are readily
available for analysis during the simulation.

The ability to steer a large-scale simulation lets
scientists close the loop and respond to simulation
results as they occur by interactively manipulating
input parameters. As parameter changes become
more instantaneous, the causal effects become
more evident, thus helping scientists develop in-
tuition, understanding, and insight into their
modeling, algorithms, and data. We’ll continue
studying in situ processing for selected applica-
tions to understand this new method’s impact on
simulations, subsequent visualization tasks, and
scientists’ work processes.

Acknowledgments
Our research sponsors include the US Department of
Energy (DOE), Of�ce of Advanced Scienti�c Comput-
ing Research; the DOE Basic Energy Sciences Division
of Chemical Sciences, Geosciences, and Biosciences;
the DOE through the Scienti�c Discovery through
Advanced Computing program, agreement DE-FC02-
06ER25777; and the US National Science Foundation,
grants OCI-0325934, OCI-0749217, CNS-0551727,
CCF-0811422, CCF-0808896, OCI-0749227, OCI-
0950008, and CCF-0938114. Sandia National Lab-
oratories is a multiprogram laboratory that Sandia
Corp., a Lockheed Martin Company, operates for the
DOE under contract DEAC04-94-AL85000. We also
acknowledge the computing resources of the National
Center for Computational Sciences at Oak Ridge Na-
tional Laboratory, which the DOE supports under con-
tract DE-AC05-00OR22725.

References
1. K.-L. Ma, “In-Situ Visualization at Extreme Scale:

Challenges and Opportunities,” IEEE Computer Graphics
and Applications, vol. 29, no. 6, 2009, pp. 14–19.

2. K.-L. Ma et al., “In-Situ Processing and Visualization
for Ultrascale Simulations,” J. Physics: Conf. Series
(Proc. Scienti�c Discovery through Advanced Computing
Conf.), vol. 78, 2007, article 012043, doi:10.1088/
1742-6596/78/1/012043.

3. C. Ding and Y. He, “A Ghost Cell Expansion Method for
Reducing Communications in Solving PDE Problems,”
Proc. 2001 ACM/IEEE Conf. Supercomputing (SC 01),
ACM Press, 2001, p. 50, doi:10.1145/582034.582084.

4. H. Yu, C. Wang, and K.-L. Ma, “Massively Parallel Volume
Rendering Using 2-3 Swap Image Compositing,” Proc.
2008 ACM/IEEE Conf. Supercomputing (SC 08), IEEE
Press, 2008, article 48, doi:10.1145/1413370.1413419.

5. U.D. Bordoloi and H.-W. Shen, “View Selection for
Volume Rendering,” Proc. IEEE Visualization Conf.
(VIS 05), IEEE Press, 2005, pp. 487–494.

Hongfeng Yu is a postdoctoral researcher at Sandia
National Laboratories. His research interests include
scienti�c visualization, parallel computing, and user
interface design. Yu has a PhD in computer science
from the University of California, Davis. Contact
him at hyu@sandia.gov.

Chaoli Wang is an assistant professor of computer sci-
ence at Michigan Technological University. His research
interests include large-scale data analysis and visualiza-
tion, high-performance computing, and user interfaces
and interaction. Wang has a PhD in computer and in-
formation science from Ohio State University. He’s a
member of the IEEE. Contact him at chaoliw@mtu.edu.

Ray W. Grout is a postdoctoral researcher at Sandia
National Laboratories. His research interests include
combustion processes, high-performance numerical solv-
ers, massively parallel computations, heterogeneous com-
puting, and data analytics tools. Grout has a PhD in
engineering from the University of Cambridge. Contact
him at rwgrout@sandia.gov.

Jacqueline H. Chen is a distinguished member of
technical staff at Sandia National Laboratories, an
adjunct professor of chemical engineering at the Uni-
versity of Utah, and a director on the Combustion
Institute Board of Directors. Her research interests in-
clude terascale simulations of turbulent combustion,
time-varying visualization of terascale simulated data,
combustion feature topology, and parallel feature de-
tection and tracking algorithms for combustion. She’s
a member of the editorial advisory boards for Com-
bustion and Flame, Progress in Energy and Com-
bustion, Proceedings of the Combustion Institute,
and Computational Science and Discovery. Chen
has a PhD in mechanical engineering from Stanford
University. Contact her at jhchen@sandia.gov.

Kwan-Liu Ma is a professor of computer science and the
chair of the Graduate Group in Computer Science at the
University of California, Davis. His research interests
include visualization, high-performance computing, and
user interface design. Ma directs the university’s Visu-
alization and Interface Design Innovation group and
the Scienti�c Discovery through Advanced Computing
Institute for Ultra-Scale Visualization. He’s an associ-
ate editor in chief for IEEE Computer Graphics & Ap-
plications, IEEE Transactions on Visualization and
Computer Graphics, and Computational Science and
Discovery. Ma has a PhD in computer science from the
University of Utah. Contact him at ma@cs.ucdavis.edu.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

