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Supercomputers’ massive processing power 
drives scienti�c discovery in many areas, 
and their computing power and storage ca-

pacity grow rapidly every year. As scientists gain 
access to more powerful machines, they attempt 
to solve larger, more complex problems. Conse-
quently, the amount of data their scienti�c simula-
tions generate is increasing at an astounding pace. 
Large-scale scienti�c simulations typically output 
time-varying multivariate volumetric data. Such 
data can now easily occupy petabytes of storage 
space. To maximize simulation output’s use, scien-
tists need ef�cient, effective solutions to manage 
and study the ever-growing data volume.

Supercomputer time is a prized commodity. Sci-
entists from various �elds compete for this time at 
national laboratories and universities and must use 
it ef�ciently. So, many scientists employ a batch-
oriented, sequential process to analyze large data 
sets. A common strategy is to dump as much raw 
data during the simulation run as the storage capac-
ity allows. Subsequent data analysis and visualiza-
tion occur of�ine. This of�ine postprocessing can 
involve reducing petabytes of simulation-generated 
data to a more manageable size. Additional postpro-
cessing might be necessary to prepare the data for 
visualization.

Occasionally, scientists directly access visualiza-
tion clusters at supercomputing centers. During the 
simulation run, they can collect measurements that 
provide an overview of the simulation results. With 
help from visualization specialists, the scientists 
then can visually analyze their data. In this scenario, 

all visualization calculations take place on the visu-
alization machine through coprocessing, which can 
occur online or of�ine. The system then delivers the 
visualization results, such as images or animations, 
directly to the scientists’ desktop. If this option isn’t 
available, the scientists could use a separate parallel 
computer to prepare their data for 
visualization.

However, even when coprocess-
ing is available, transferring and 
storing simulation output can 
be formidable. Scientists usually 
don’t have the capability to rou-
tinely transfer and store petabytes 
of data from supercomputer stor-
age devices to their laborato-
ries for study. Transferring that 
much data is time-consuming 
even if suf�cient storage space is 
available. To reduce the amount 
of data to store and transfer, 
the common practice is to store 
selected time steps and study a 
limited range or a coarse-grained temporal reso-
lution of the data. Although convenient, examin-
ing only a limited subset of large-scale data might 
hinder subsequent analysis of the overall phenom-
enon and selected details.

As the petascale-computing era approaches, 
simply transferring raw simulation data to stor-
age devices or visualization machines is increas-
ingly cumbersome. A better solution is to reduce or 
transform the data in situ on the same machine as 

As scienti�c supercomputing 
moves toward petascale 
and exascale levels, in situ 
visualization stands out as a 
scalable way for scientists to 
view the data their simulations 
generate. This full picture 
is crucial particularly for 
capturing and understanding 
highly intermittent transient 
phenomena, such as ignition 
and extinction events in 
turbulent combustion.
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the simulation runs, minimizing the data or infor-
mation requiring storage or transfer.1,2 As Figure 1 
shows, in situ processing doesn’t require transfer-
ring large quantities of raw data over the network, 
so it’s highly scalable for handling the data petascale 
scienti�c simulations produce. (In situ visualiza-
tion isn’t a new concept; see the “Simulation-Time 
Visualization” sidebar.) In this case study of in situ 
visualization for turbulent-combustion simulations, 
we investigate in situ data processing and visualiza-
tion strategies in a massively parallel environment. 
Detailed experimental results demonstrate that in 
situ visualization is a promising direction for ac-
celerating high-performance supercomputing and 
scienti�c discovery.

The Challenges of In Situ Visualization
Researchers seldom perform simulation and visual-
ization on the same parallel computer. Supercom-
puter time is expensive and sometimes dif�cult to 
acquire. So, many scientists are reluctant to use 
their supercomputing time for visualization calcu-
lations. Additionally, not all simulation codes can 
share data seamlessly with the codes that perform 
visualization calculations. Some visualization cal-
culations can also be computationally expensive 
and impractical for in situ processing. Moreover, 
integrating visualization with simulation demands 
that visualization researchers and domain scientists 
collaborate closely over an extended period. Such 
a long-term commitment isn’t always guaranteed.

Compared with traditional postprocessing visual-
ization, in situ visualization has unique challenges.1 

First, the visualization code must interact directly 
with the simulation code. To optimize memory use, 
the simulation and visualization codes must share 
the same data structures to avoid data replication.

Second, balancing the visualization workload is 

more dif�cult because the visualization must com-
ply and tightly couple with the simulation archi-
tecture. For stand-alone processing, researchers can 
parallelize visualization algorithms by partitioning 
and distributing data to best suit their visualiza-
tion needs. In contrast, for in situ visualization, the 
simulation code dictates data partitioning and dis-
tribution. Moving data frequently among proces-
sors isn’t an option for visualization processing. The 
visualization workload must be balanced so that the 
visualization is as scalable as the simulation.

Finally, visualization calculations must not in-
cur excessive costs, with decoupled I/O delivering 
rendering results while the simulation is running. 
Researchers can’t hardware-accelerate visualiza-
tion calculations on the supercomputer because no 
graphics hardware is available. To keep costs down, 
scientists need an alternative that simpli�es the cal-
culations such that visualization accounts for only 
a small fraction of the simulation time. Through our 
experiment with a large-scale turbulent-combustion 
simulation using S3D, a Sandia DNS (direct numeri-
cal simulation) solver, we show that in situ visual-
ization is exactly such an alternative. (For more on 
DNS, see the related sidebar.)

Parallel Rendering
The combustion simulation produces volume and 
particle data, so our in situ visualization solution 
integrates both volume and particle rendering.

Volume Rendering
Data partitioning for volume rendering comes di-
rectly from the domain decomposition for simu-
lation. Achieving seamless rendering along data 
partition boundaries requires duplicating the data 
along data region boundaries (two voxels wide).

To propagate boundary information in 3D, a 
processor assigned with a data region must com-
municate with its 26 neighboring processors. We 
use diagonal communication elimination3 and 
follow the communication in the x, y, and z direc-
tions, in turn. With this method, a processor need 
communicate with only six neighbors for exchang-
ing boundary information.

After boundary exchange, a processor renders its 
data region using software ray casting and gener-
ates the corresponding partial image for compos-
iting. Because the complete simulation data are 
available for in situ visualization, one ray-casting 
pass can render multiple variables.

Particle Rendering
For particle rendering, we implement a software-
based point sprite technique. With point sprites, 
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Figure 1. Comparing postprocessing, coprocessing, and in situ processing. 
Postprocessing and coprocessing (red arrows) involve transferring raw 
data. In situ processing provides a highly scalable solution for dealing 
with the extreme-scale data that scienti�c simulations produce.
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we simply render a screen-aligned 2D quad cen-
tered at a particle’s vertex.

The quad’s scale is based on the distance between 
the eye and the particle in 3D under perspective 
projection. We use procedural texturing to shade 
each quad. More speci�cally, we look up a pre-
calculated sphere normal map to obtain the nor-
mal for each pixel in the quad. Then, we use the 
normal to calculate the lighting using the Phong 
model and the eye and light directions.

We interpolate each pixel’s depth between the 
particle’s depth (the sphere’s center) and the 
sphere boundary’s depth, which we use to accu-
rately depict the spheres’ intersection in 3D. Be-
cause the system performs all calculations in the 
image space, we can render tens or hundreds of 
thousands of particles more ef�ciently using point 
sprites rather than rendering 3D sphere geometry.

Integrating Volume and Particle Rendering
Our approach draws each particle as a sphere 
with a given radius. So, some particles lie across 

the data region boundary. As Figure 2 shows, we 
must handle these particles and ensure that they 
blend correctly along the boundaries when inte-
grated with volume rendering. Similar to volume 

Researchers have developed several ef�cient methods and 
guidelines for data processing in massively parallel com-

puting environments. One viable approach is simulation-
time visualization: studying data as simulations generate it.

In this scheme, researchers conduct simulation and visu-
alization calculations on the same parallel supercomputer 
so that the two processes can share the data. Such visual-
ization can render images or extract features directly from 
the raw data. These results are generally much smaller than 
the raw data and storable for later examination. Reducing 
both data transfer and storage costs early in the data analy-
sis pipeline optimizes scienti�c discovery’s overall process. 
Many researchers have experimented with this approach. 
Although they demonstrated runtime simulation visual-
ization on parallel computers, the systems and problems 
were fairly small.1–3

Simulation-time visualization also lets scientists visually 
monitor the simulation while it runs. For example, SCIRun 
provided a computational-steering environment that sup-
ported runtime simulation tracking.4 An object-oriented 
data-�ow approach let users control scienti�c simulations 
interactively by varying boundary conditions, model geom-
etries, and computational parameters.

Tiankai Tu and his colleagues demonstrated how to 
effectively monitor a terascale earthquake simulation run-
ning on a supercomputer’s thousands of processors.5

They performed rendering in situ using the same data-
partitioning scheme they adopted for the simulation. So, 
data movement among processors was unnecessary. Over 
a wide-area network, they could interactively change 

view angles, adjust sampling steps, edit color and opacity 
transfer functions, and zoom in and out to visually monitor 
the simulation runs.6 These visualization calculations’ time 
and storage overhead were almost negligible, making this 
approach attractive.
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Simulation-Time Visualization

Figure. 2. Handling particles along neighboring data 
region boundaries. The processor assigned to the 
gray data region must exchange particles along the 
boundary with neighboring processors so that the 
particles can blend correctly when integrated with 
volume rendering. The particles from neighboring 
data regions are blue, green, and brown.
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rendering, data partitioning for particle rendering 
follows the domain decomposition for the simula-
tion. Particles exchange similarly for voxels lying 
on the boundary.

Our data partitioning for volume and particle ren-
dering follows the scheme the simulation adopted. 
Data exchange happens for only boundary re-
gions, minimizing data communication. To inte-
grate volume rendering with particle rendering, 
we pay careful attention to their drawing order to 
preserve proper blending and depth order. We use 
this integration algorithm:

1. Each processor renders the particles in its data 
region.

2. Each processors exchanges particles along its 
region’s boundaries with particles along the 
boundaries of its neighbors’ regions.

3. Each processor renders the particles along its 
and its neighbors’ boundaries.

4. We read out the particle rendering’s red, green, 
blue, and alpha (RGBA) and depth channels.

5. We perform volume ray casting with depth 
lookup of the particle image for correct blending.

The algorithm employs our software-based frame 
buffer object (FBO) implementation. First, each pro-
cessor creates an FBO consisting of a color buffer 
(RGBA, 32-bit, �oating-point channels) and a depth 
buffer (32-bit, �oating-point). It then binds the 
FBO as the rendering target. The processor renders 
particles in its data region into the FBO, in which 
user-speci�ed transfer functions de�ne a particle’s 
color and visibility (opaque or transparent). During 
rendering, the algorithm selects the visible particles 
along the boundaries and buffers them for exchange.

Numerical simulation plays a valuable role in analyzing 
and assessing turbulent �ames. As long as the �uids in 

question can fall on a continuum, Navier-Stokes equations 
provide a useful description of the �ow. When species 
transport and energy evolution equations augment the 
�ow, the resulting system of differential equations is theo-
retically solvable (assuming a suitable reaction mechanism 
is available). This solution would let researchers predict 
the performance and emissions of myriad energy conver-
sion devices involving combustion, such as gas turbines 
and automotive engines. Frustratingly, this tantalizing 
possibility is beyond the scope of computational capa-
bilities now and for the foreseeable future, Moore’s law 
notwithstanding.

Solutions to the Navier-Stokes equations are notoriously 
chaotic. The smallest scale that affects the overall solu-
tion determines the maximum grid spacing when solving 
equations numerically. This scale is typically three to �ve 
orders of magnitude smaller than the overall domain size. 
When the domain size or the velocity of the �ow’s largest 
structure increases, the smallest scales’ size decreases fur-
ther. Chemical reactions add yet smaller scales requiring 
resolution. The equations’ direct numerical solution (DNS) 
is tractable only for the simplest problems: the Sandia 
DNS solver S3D does exactly this, solving the governing 
equations for canonical small-laboratory-scale problems.

To solve real-world combustion problems, some engi-
neering models �lter the governing equations in time or 
space to give a set of equations for large-scale behavior. 
Denis Veynante and Luc Vervisch provided a comprehensive 
review.1 These methods require a model for the physical phe-
nomena that are essential to the broader solution. However, 
researchers typically resolve on the coarser grids they 
normally use. Unique DNS benchmark simulations provide 

validation data useful for exploring the reasons for existing 
models’ shortcomings and developing of new approaches.

S3D and Combustion Simulation
S3D is a Runga-Kutta integrator that advances the balance 
equations for conserving mass, momentum, energy, and 
chemically reactive species.2 For example, the conserva-
tion equation for the mass fraction of chemically reactive 
species α, Yα, is

∂
∂
=−
∂
∂

−
∂
∂

+
ρ ρ ρ

ωα α α α
α

Y
t

u Y
x

V Y
x

i

i

i

i
.

S3D evaluates the chemical-source term ωα from a reaction 
mechanism that couples the equations describing the 
thermodynamic state.

Using an eighth-order approximation, S3D approxi-
mates the spatial derivatives at each point on a �nite-
difference grid. Figure A shows the solution loop. The 
most rapidly varying quantities limit the maximum time 
step. Because S3D solves a fully compressible form of the 
Navier-Stokes equations, the acoustic timescale forms an 
upper bound on the time step. The practical implication 
is that the major species don’t change signi�cantly over a 
timescale of 10 to 100 time steps.

However, traditionally, simulation codes save restart 
�les even less frequently than this because of storage 
requirements and I/O time restrictions. Native restart �les 
contain the primary solution variables—pressure, tempera-
ture, velocity, and composition. The species mass fractions 
for each molecular species in the chemical mechanism 
describe these variables.

In a recent simulation of a lifted �ame that is autoigni-
tion3 stabilized, the necessary resolution is 15 µm over 
an overall domain of approximately 2 cm. (Autoignition 

Direct Numerical Simulation
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Next, processors exchange particles along the 
boundaries and ensure that particles from neigh-
bors render and blend correctly using the depth 
buffer. We then save the FBO’s color buffer and 
depth buffer for integrating with volume rendering.

Finally, we perform regular ray casting on the 
volume. However, we also calculate along a ray 
each sample’s depth and check it with the depth 
buffer. We assume all visible particles are opaque, 
so we can stop ray casting for each pixel when 
the current depth value exceeds the value in the 
depth buffer. We then accumulate the color value 
recorded in the color buffer. This way, we perform 
a depth-accurate integration of volume and par-
ticle rendering (see Figure 3).

Image Compositing
In choosing an algorithm for parallel image com-

positing for in situ visualization, we narrowed our 
choice to 2-3 swap, a generalization of the popular 
binary-swap algorithm. (For more on image com-
positing in parallel, see the “Parallel Image Com-
positing” sidebar.)

Binary Swap
Over the past 15 years, binary swap has become 
the de facto algorithm for parallel image compos-
iting. Unlike direct send (see the “Parallel Image 
Compositing” sidebar), which requires n partici-
pating processors to exchange O(n2) messages, 
binary swap requires only O(n log n) messages. 
This algorithm involves a multistage process and 
pairs up the processors using a binary composit-
ing tree. At any image-compositing stage, a pro-
cessor communicates only with its counterpart in 
the pair.

is useful for studying �ame anchoring behavior in a hot 
environment.) So, the simulation requires more than 1.3 × 
109 grid points. This simulation’s chemical mechanism 
includes 22 species to describe ethylene-air combustion: 
the restart �le size is more than 140 Gbytes.

Incorporating Visualization
Three main reasons exist for incorporating visualization 
into the solution algorithm. To limit the total I/O time and 
data size, the simulation outputs restart �les every 1 µm 
(200 time steps). Especially for minor radical species, in-
teresting effects related to stabilization might occur more 
rapidly than this.

Also, when a new simulation case is being set up, subtle 
interactions between the boundary conditions and the 
interior solution during initial start-up transients can produce 
errors. Diagnosing these errors can be dif�cult because the 
next save of the restart �le can create a large-scale instability 
that obscures the event that triggered the original instability.

Once a solution is complete, the work�ow for generating 
volume renderings includes reloading each restart �le into 
S3D and writing a subsampled representation of the data 
to visualize. These steps incur signi�cant I/O overhead; time 
series or animations can exacerbate the situation.
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Figure A. The S3D time advance loop, showing all the major tasks. 

This �gure provides an overview of the S3D execution pipeline for 

combustion simulation.
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However, the number of processors that binary 
swap uses isn’t �exible. It works best when the 
number of processors is an exact power of two. In 

a real network environment, processors are often 
down for various reasons, meaning that the opti-
mal processor count can deviate from a power of 
two. To apply binary swap in this situation (for ex-
ample, 2k−1 < n < 2k), we send the image data from 
n − 2k−1 processors to the remainder of 2k−1 proces-
sors. We then perform binary swap directly on the 
2k−1 processors.

Another solution is to use the binary compositing 
tree with k + 1 levels. In this scenario, the binary 
tree is complete (with 2k leaf nodes), but only valid 
leaf nodes participate in the compositing. The com-
positing partner computation requires additional 
complexity. However, neither solution provides op-
timal parallelism or compositing ef�ciency.4

2-3 Swap
Hongfeng Yu and his colleagues solved binary 
swap’s non-power-of-two cases by introducing the 
2-3 swap algorithm.4 It also involves multistage 

Parallel rendering comprises �ve stages: data partition-
ing, data distribution, rendering, image compositing, 

and image delivery. Steven Molnar and his colleagues 
treated it as a sorting problem and introduced the sorting 
classi�cation.1 Depending on where the sorting happens 
in the graphics pipeline, they de�ned three classes: sort-
�rst, sort-middle, and sort-last.

Over the years, researchers have more widely used sort-
last parallel rendering because of its simple task decompo-
sition for achieving load balancing.2–4 Image compositing 
(blending partial images in the correct depth order) in 
sort-last rendering demands interprocessor communica-
tion. This requirement can become expensive when using 
more than hundreds of processors because of the poten-
tially large quantity of messages the processors exchange. 
So, image compositing often becomes a bottleneck affect-
ing sort-last rendering’s ef�ciency.

Since the early 1990s, researchers have developed 
various image-compositing methods for parallel visualiza-
tion applications. For sort-last volume rendering, the most 
popular and representative solutions are direct send and 
binary swap. Direct send is the simplest technique.5 It’s 
�exible with network interconnection and the number of 
processors it uses. However, it introduces link contention 
because it requires all-to-all communication. Aleksander 
Stompel and his team optimized direct send for small to 
midsize CPU clusters with a precomputed compositing 
schedule, but the schedule’s computation doesn’t scale to 
thousands of processors.6

Binary swap uses all processors at all compositing 
stages.7 Although it perfectly balances the compositing 
workload among processors and reduces the number 

of messages they exchange, it suffers from restrictions 
regarding the number of processors.

Recently, Hongfeng Yu and his colleagues presented the 
2-3 swap compositing algorithm, which combines direct 
send’s �exibility and binary swap’s optimality.8 They demon-
strated 2-3 swap’s scalability on a supercomputer with thou-
sands of processors. (For more on binary swap and 2-3 swap, 
see the section “Image Compositing” in the main article.)

Researchers have also developed hardware-based image-
compositing equipment and solutions, such as Lightning-29

and Sepia-2.10 Although these solutions achieve impressive 
performance with high scalability, building a large-scale 
visualization system using such hardware can be prohibi-
tively expensive. In response, Jorji Nonaka’s team presented 
a hybrid image-compositing method for sort-last rendering 
on graphics clusters with the MPC (Mitsubishi Precision Co.) 
image compositor.11,12 This method offers high performance 
at a reasonable cost.

More recently, Nonaka and Kenji Ono proposed a decom-
position approach for optimizing large-scale parallel image 
composition on multicore MPP (massively parallel process-
ing) systems. This approach uses multicore processors for 
direct send, leveraging the fast communication speed within 
a CPU.13 David Pugmire and his colleagues described using a 
network processing unit for hardware-based image compos-
iting in a distributed rendering system.14 With commodity 
graphics hardware’s popularity, researchers also explored 
using GPU clusters for hardware-accelerated parallel visu-
alization.15 Such a cluster, however, is typically limited to a 
small scale.

Software image compositing remains the most widely 
used solution in many applications. In a supercomput-

Parallel Image Compositing

(a) (b)

Figure. 3. Integrating volume and particle rendering. The synthesized 
volume data set comprises multiple-layer spheres. (a) Not exchanging 
and handling the particles along the boundary results in incorrect 
rendering along the diagonals. (b) Exchanging those particles results in 
correct rendering.
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image compositing. However, 2-3 swap partitions 
processors into groups, not pairs. This partitioning 
allows greater �exibility in the number of proces-
sors in a group. In the compositing tree, a node 
has either two or three children, hence the algo-
rithm’s name.

To reduce the number of messages exchanged, 
a processor communicates only with the other 
processors in its group. Yu’s team showed that the 
number of messages any processor exchanges at 
any image-compositing stage is bounded by four. 
Combining direct send’s �exibility and binary 
swap’s optimality, 2-3 swap scales well to thou-
sands of processors. As such, we chose it for in situ 
parallel image compositing.

Integrating Visualization with Simulation
To integrate visualization with simulation requires 
an interface between the simulation code and the 
visualization code.

The Simulation Side
First, the simulation initializes the visualization 
module. The simulation provides the size and co-
ordinates of each processor’s global domain and 
local partition. Each processor doesn’t need any 
other processor’s partition information. The simu-
lation code also provides the pointer to the buffer 
of the local scalar-variable values. In addition, the 
visualization code must know the pointer to the 
particle data.

Next, the solver updates the scalar variable and 
particle data at each time step. At the same time, 
the simulation code invokes visualization calcula-
tions at a given rate. We implement all API func-
tions on the visualization side; we modify the 
simulation code by adding a few function calls 
during initialization and solving.

The Visualization Side
A processor directly takes the data region assigned 

ing environment with thousands of processors, dedicated 
graphics hardware for image compositing isn’t practical 
because of the hardware costs and effort for integration, 
upgrades, and maintenance.
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to it during initialization and performs volume 
and partial rendering during the simulation run. 
The processor must calculate the local data re-
gion’s depth and gather the depth values. Then, 
visibility sorting of all processors occurs. This 
sorting enables the system to build the 2-3 swap 
algorithm’s compositing tree, in which the leaf 
nodes correspond to the sorted list of processors. 
Each processor calculates the compositing tree and 
communication schedule by itself, so communica-
tion is unnecessary.

This visibility sorting and scheduling is view 
dependent and recomputes whenever the view 
changes at runtime. Subsequently, all processors 
participate in image compositing. A host processor 
gathers the �nal image and saves it to the local 
disk or delivers it to the scientists’ desktop.

Results
We tested our approach with a lifted-jet combus-
tion simulation at Sandia National Laboratories. 
Our test environment was JaguarPF, the Cray XT5 
at Oak Ridge National Laboratory’s National Cen-
ter for Computational Sciences.

We assigned each processor core a 27 × 40 × 
40 region. We tested four numbers of cores: 240, 
1,920, 6,480, and 15,360, with core con�gurations 
of 15 × 8 × 2, 30 × 16 × 4, 45 × 24 × 6, and 60 × 32 ×  
8, respectively.5 (During the XT5 upgrade’s sec-
ond phase, we tested 240, 1,920, and 6,480 cores. 
At that time, the XT5 used 20,928 AMD x86 64 
Opteron Barcelona quad-core 2.3-GHz processors 
connected through a SeaStar 2+ internal inter-
connect. After the XT5 upgrade’s fourth phase, 
we performed the tests with 15,360 cores. At that 
time, the XT5 used 37,376 AMD x86 64 Opteron 
Istanbul six-core 2.6-GHz processors connected 
through a SeaStar 2+.)

Table 1 lists the volume and particle data sizes 
and timing results. The volume data consist of 
double �oating-point (8 bytes) variables; the par-
ticle data consist of single �oating-point (4 bytes) 
variables. We chose 2,0482, 1,0242, and 5122 im-
age resolutions and used 32-bit �oating-point pre-
cision for the RGBA and depth channels for image 
compositing.

For the simulation, I/O, and visualization, we 
measured timing for one time step. Reaction rate 
evaluation and derivative evaluation (including 
temporal derivative calculation) dominate simu-
lation time, whereas visualization time accounts 
for only a small fraction of it. For example, if we 
perform visualization at each simulation time step 
for 6,480 cores and 1,0242 image resolution, vi-
sualization time is approximately 6.92 percent of 

the simulation time; I/O time is more than four 
times the simulation time. In practice, we usually 
perform in situ visualization less frequently (ev-
ery 10th time step), so the visualization time can 
be two orders of magnitude less than the overall 
simulation time.

Figure 4 shows the timing breakdown for the visu-
alization stages. Image compositing, which requires 
interprocessor communication, dominates the total 
visualization time. In Figure 4a, volume-rendering 
time decreases as the core count increases. The 
data region size and output image resolution are 
�xed, whereas the whole volume size increases as 
the number of cores increases. So, each core gets a 
smaller screen projection and requires less render-
ing time. Compositing time increases as the core 
count increases because we implement only a non-
optimized 2-3 swap algorithm.

In Figure 4b, compositing time decreases as the 
output image resolution decreases, which results 
in a decreased compositing workload. In Figure 4c, 
we use the three data types (8-bit unsigned byte, 
16-bit unsigned short, and 32-bit �oating-point) 
for the image’s RGBA channels. Compositing time 
decreases as image data precision decreases. Users 
can choose different image sizes and types to suit 
their compositing-performance and visualization 
quality needs.

We also rendered multiple images at the same time 
for multivariate-data visualization. Figure 5 shows 
the compositing time for multiple images with two 
compositing modes. The separate-compositing mode 
renders and composites only one image at a time. 
The combined-compositing mode renders and com-
posites n images (corresponding to n variables) at 
the same time so that the number of messages the 
processors exchange for compositing is approxi-
mately 1/n of the separate-compositing mode’s 
messages. However, in practice, the combined-
compositing mode’s performance gain is marginal. 
The XT5 has low message-passing-interface latency 
(approximately 1 µs) for network operations, and 
the processors exchange about the same quantity 
of image data for these two modes.

Figure 6 shows each core’s visualization time, 
for a 240-core simulation run with a 5122 output 
image resolution. As the �gure shows, rendering, 
which includes boundary data exchange and parti-
cle and volume rendering, isn’t balanced. This un-
evenness is due to the domain decomposition we 
inherit from the simulation and the transfer func-
tions we use for volume and particle rendering. 
The overall time, however, is generally balanced 
among all cores because the dominant image-
compositing time is well balanced. We can draw 
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similar conclusions for runs with larger number 
of cores. 

The total visualization time in Figure 6 is less 
than in Table 1. In Table 1, we simply add each 
stage’s maximum time for the total visualization 
time. The result corresponds to the worst-case up-
per bound. In practice, however, these maximum 

times can occur at different cores. For example, a 
core with the maximum compositing time might 
not have the maximum rendering time. So, Figure 
6 reports a smaller visualization time.

Figure 7 shows the volume-rendering results 
for six selected variables; Figure 8 shows detailed 
views of integrated volume and particle rendering 

Table 1. Timing breakdown for simulation, I/O, and visualization with various con�gurations.

No. of cores

240 1,920 6,480 15,360

Volume rendering

Volume size 405 × 320 × 80 810 × 640 × 160 1,215 × 960 × 240 1,620 × 1,280 × 320

No. of variables 27 27 27 27

Data size (Gbytes) 2.1 16.7 56.3 133.5

Particle rendering

No. of particles (millions) 0.8 5.2 17.4 41.1

No. of variables 118 118 118 118

Data size (Gbytes) 0.3 2.5 8.3 19.5

Simulation time (sec.)

Total 8.1659 8.6680 9.6293 11.867

Reaction rate evaluation 3.8779 3.8924 3.8900 3.3164

Mixture average diffusion calculation 1.2728 1.2948 1.3610 1.3041

Derivative evaluation 0.9246 1.2115 1.6240 3.5597

Other temporal derivative calculation 1.7332 1.8995 2.3677 3.2143

Runge-Kutta integration 0.3472 0.3536 0.3566 0.4052

Tracer advection 0.0102 0.0162 0.0300 0.0668

I/O time (sec.) 8.2675 (101.24%)* 25.611 (295.47%) 42.660 (432.64%) 136.690 (1,151.90%)

Visualization time with 2,0482 image resolution (sec.)

Total 1.7699 (21.67%) 2.0459 (23.60%) 2.6689 (27.72%) 4.3595 (36.74%)

Boundary particle exchange 0.0012 0.0034 0.0041 0.0061

Particle rendering 0.1255 0.1953 0.2710 0.5314

Boundary voxel exchange 0.0023 0.0039 0.0051 0.0080

Volume rendering 0.0834 0.0499 0.0380 0.0230

Image compositing 1.5575 1.7934 2.3507 3.7910

Visualization time with 1,0242 image resolution (sec.)

Total 0.4903 (6.00%) 0.6198 (7.15%) 0.6661 (6.92%) 1.0381 (8.75%)

Boundary particle exchange 0.0015 0.0035 0.0044 0.0063

Particle rendering 0.0387 0.0586 0.0759 0.1438

Boundary voxel exchange 0.0031 0.0042 0.0049 0.0081

Volume rendering 0.0212 0.0125 0.0094 0.0059

Image compositing 0.4258 0.5410 0.5715 0.8740

Visualization with 5122 image resolution (sec.)

Total 0.1304 (1.60%) 0.1782 (2.06%) 0.1978 (2.05%) 0.2879 (2.43%)

Boundary particle exchange 0.0012 0.0037 0.0046 0.0066

Particle rendering 0.0167 0.0260 0.0345 0.0649

Boundary voxel exchange 0.0023 0.0043 0.0050 0.0083

Volume rendering 0.0053 0.0031 0.0027 0.0015

Image compositing 0.1049 0.1411 0.1510 0.2066

*Percentages represent the ratio of I/O or visualization time to simulation time
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on some of these variables. Our ability to render 
volume and particle data simultaneously lets sci-
entists study their data in greater detail. These in-
situ-visualization results provide valuable visual 
feedback to the scientists for monitoring their 
simulations on the �y.

Discussion
Both the simulation and visualization codes re-
quire replicating data around the domain decom-
position boundaries. Ideally, the two codes can 
also share these boundary data, but in practice, 
this isn’t feasible. The simulation code uses four-
voxel-wide boundaries for gradient and derivative 
calculations. To lower this memory overhead, it 
uses a single buffer to keep the boundary data for 
only one variable. That is, at the end of each itera-
tion, the code keeps only one variable’s boundary 
data. Although volume rendering uses only two-
voxel-wide boundaries for seamless rendering, that 
buffer is unlikely to keep the variable values that 
the renderer needs.

Keeping boundary data for all variables on the 
simulation side incurs too much memory overhead 
and requires modifying the simulation code. So, in 
our implementation, the rendering code conducts 
an additional boundary exchange among cores to 
obtain the needed two-voxel-wide boundary data. 
According to our study, this communication over-
head is quite acceptable. Most importantly, this 
decision eases the integration of the two codes.

As our test results show, image compositing re-
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mains the bottleneck of parallel rendering at the 
scale we consider here. However, the overall render-
ing cost is acceptable for this in-situ-visualization 
setting. If the cost became too high in a differ-
ent setting, we could reduce it by optimizing two 
aspects of the compositing algorithm. First, we 
currently use full-size partial images the proces-
sor cores produce as input. We can improve this 
by eliminating background pixel data and con-
sidering only effective pixel data for composit-
ing. Second, our current implementation imposes 
synchronization at every compositing-tree level. 
This level-by-level synchronization is unnecessary 
owing to the 2-3 swap algorithm’s local communi-
cation: as we mentioned before, a core communi-
cates only with other cores in its own group at any 
image-compositing stage. This observation suggests a 
higher level of parallelism in which nodes at differ-
ent compositing-tree levels can execute composit-
ing tasks concurrently.

We implemented a client program that runs on 
a remote user’s desktop or laptop and communi-
cates with a simulation over the network (see Fig-
ure 9). Users can specify and send visualization 
con�gurations (such as transfer functions, views, 
number of images, and rendered variables) to the 
simulation and receive images at runtime. For the 
run-in-batch mode, we specify the transfer func-
tions and views of�ine with data that a small set of 
sample runs generated. We then use these transfer 
functions and viewing parameters for in situ visu-
alization. We recommend further research on in 
situ, automatic transfer function design and view 
selection5 so that the visualization results better 
reveal the essence of simulation data.

With in situ visualization, scientists can cap-
ture features between time steps that the simula-
tion code doesn’t save. In a turbulent-combustion 
simulation, the frequency to save restart �les de-
pends on the Kolmogorov timescale—the smallest 
mechanical-�ow timescale in a turbulent �ow. For 

the lifted-jet simulation, the Kolmogorov time-
scale ranges from 2.5 to 10 µs, depending on the 
location in the �ow. So, the restart-�le frequency 
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Figure 7. Volume rendering for six selected variables involved in the 
combustion process: (a) C2H4, (b) CH2O, (c) CH3, (d) H2O2, (e) HO2, and 
(f) OH. All six images are generated under the combined-compositing 
mode in a single pass.
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is 2.5 saved �les per Kolmogorov timescale. This 
frequency ensures that system can recover Eu-
lerian turbulent statistics from the restart �les, 
given a suf�ciently long time series.

However, this interval isn’t necessarily suf�cient 
to accurately depict the �ow’s instantaneous evolu-
tion. For example, certain small features might move 
rapidly. Ignition kernels upstream of the �ame base 
are 0.05 to 0.1 mm in size, and the jet’s center has 
a velocity of 204 meters per second. So, the kernels 

move approximately their own dimension every 
0.245 µs. Thus, rendering the �eld more frequently 
than this—for example, four times per restart �le—
will smoothly capture these features’ path. The in 
situ techniques enable this frequent rendering.

Before in situ visualization, Sandia’s combustion 
scientists subsampled the data to reduce both data 
movement and computational requirements for 
visualization. The procedure involved many steps, 
multiple tools and platforms, and enormous I/O 
cost. Because of this cumbersome iteration, they 
created visualizations mainly for publication or 
presentation. With in situ visualization, the scien-
tists can signi�cantly reduce I/O and use visualiza-
tion more conveniently for diagnostics to verify the 
simulation’s correct con�guration and operation.

In situ visualization’s integration effort and com-
putational cost make it feasible and practical for 

large-scale turbulent-combustion simulation. Be-
yond in situ visualization, however, a broader pos-
sibility is in situ processing, including data packing, 
feature extraction, and analysis.

In situ processing could let scientists study the 
full extent of the data their simulations generate 
and eventually steer simulation at the petascale 
level. For example, many scientists we’ve been 
working with are convinced that in situ feature 
extraction is feasible. They believe this because all 

(a)

(b)

Figure 8. Detailed views of the volume and particle data mix rendering. (a) The volume variable is CH2O; the particle variable 
is HO2. (b) The volume variable is CH3; the particle variable is OH. Our high-resolution in situ visualization lets the scientists 
examine details and monitor the simulation on the �y.

Figure 9. In situ visualization of a combustion simulation. A user in 
California remotely steers the visualization of a simulation running on 
2,500 cores of Oak Ridge National Laboratory’s Cray XT5 in Tennessee.
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relevant data about the simulated �eld are readily 
available for analysis during the simulation.

The ability to steer a large-scale simulation lets 
scientists close the loop and respond to simulation 
results as they occur by interactively manipulating 
input parameters. As parameter changes become 
more instantaneous, the causal effects become 
more evident, thus helping scientists develop in-
tuition, understanding, and insight into their 
modeling, algorithms, and data. We’ll continue 
studying in situ processing for selected applica-
tions to understand this new method’s impact on 
simulations, subsequent visualization tasks, and 
scientists’ work processes.
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