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Abstract

We present a new approach for streamline-based flow field representation and reduction. Our method can work in
the in situ visualization setting by tracing streamlines from each time step of the simulation and storing compressed
streamlines for post hoc analysis where users can afford longer reconstruction time for higher reconstruction quality
using decompressed streamlines. At the heart of our approach is a deep learning method for vector field reconstruction
that takes the streamlines traced from the original vector fields as input and applies a two-stage process to reconstruct
high-quality vector fields. To demonstrate the effectiveness of our approach, we show qualitative and quantitative
results with several data sets and compare our method against the de facto method of gradient vector flow in terms
of speed and quality tradeoff.
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1 Introduction

Understanding fluid dynamics is critical to many fields of scientific research ranging from aerodynamics to oceanog-
raphy. To meet this need, flow visualization has been a central topic of scientific visualization over the past three
decades. Integral flow lines such as streamlines intuitively demonstrate the flow patterns, and therefore, become the
most widely used visual means to represent and visualize flow fields. Most of the existing works focused on how to
produce informative streamlines from flow fields via seed placement or streamline selection. However, the inverse

problem of reconstructing flow fields as accurate as possible from streamlines is also intriguing but much less explored.
Previous works [1, 17] reconstructed the vector field from a set of streamlines and compared the reconstructed vector
field against the original one to evaluate the reconstruction quality. These works only applied linear reconstruction
techniques, which are simple but often good enough to serve the purpose.

In this paper, we target a more practical and challenging application of flow field representation and reduction
which includes vector field reconstruction as a key step. Using streamlines for such a purpose is handy, especially in
the scenario of in situ visualization. In this scenario, a large number of time steps are generated from the simulation
but only a small number of time steps are stored to disk for space efficiency. Meanwhile, during the simulation,
streamlines are often produced to illustrate the simulation results for visual debugging and steering. Therefore, the
overhead of flow field reduction using the already traced streamlines is minimum: we only need to save the streamlines
in a compressed form to disk in situ so that the underlying vector fields can be recovered with acceptable fidelity for
post hoc analysis. Saving compressed streamlines rather than compressed vector fields is advantageous due to the
relative sparsity of streamlines and the existence of effective ways to compress streamlines as sequential data. As we
will show in the results section, using lossy compression, compressing streamlines is more reliable than compressing
vector fields in terms of quality preservation.

Although handy, using streamlines for data reduction also poses great challenges to vector field reconstruction:
the reconstructed field has to be accurate within a certain error bound so that flow features and properties can be
reasonably preserved. Achieving this goal brings up two major challenges. The first challenge comes from the uneven
distribution of streamline samples: even if the given streamlines pass the neighborhood of a voxel, the streamlines
may not evenly distribute around that voxel. Therefore, simple strategies that estimate the velocity at that voxel
(e.g., computing the weighted average of velocities from the neighboring streamlines) will likely produce a biased
result. The second challenge is that the sample streamlines should maintain a good coverage over the reconstructed
field. While reconstructing a high-resolution field is necessary to preserve small-scale features, it requires a large
number of streamlines (low reduction rate) to cover most of the voxels. Otherwise, the reconstructed velocities at
uncovered voxels cannot be verified using the given streamlines, which will lead to unpredicted results.

To address the aforementioned challenges, we propose a two-stage deep learning framework to reconstruct the
high-resolution vector field using only a reasonable number of streamlines. The main idea of our approach is as follows.
First, instead of interpolating the velocities at voxels based on the ones along sample points on streamlines [1, 17],
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we adopt a different strategy by evaluating whether the reconstructed field produces exactly the same streamlines
as the given ones. This strategy is not sensitive to the distribution of samples in the neighborhood of a voxel, and
therefore, avoids biased results. Second, instead of reconstructing a high-resolution vector field directly, we take
two stages: the first stage estimates a low-resolution field so that the given streamlines have a reasonable coverage
over the voxels; the second stage upscales the low-resolution field using a convolutional neural network to produce a
high-resolution one. To demonstrate the effectiveness of our approach, we show qualitative and quantitative results
with several data sets. We compare our vector field reconstruction method against the de facto method of gradient
vector flow in terms of speed and quality tradeoff. Our results successfully demonstrate an initial step toward in situ
flow field reduction and visualization.

2 Related Work

2.1 Vector Field Reconstruction

Reconstructing vector fields from samples (such as streamlines) has been studied since the 1990s. Mussa-Ivaldi et
al. [11] presented a method for 2D vector field reconstruction through a least-squares scheme. In their method,
the reconstruction is performed by reconstructing the rotational-free and divergence-free parts of the vector field.
Xu and Prince [16] introduced the gradient vector flow (GVF), a two-step algorithm for recovering a vector field
from a set of streamlines. GVF first estimates the velocities at voxels where the streamlines pass. Then it fills the
empty voxels by minimizing the Laplacian over the entire field. Lage et al. [7] proposed an algorithm for 2D vector
field reconstruction from sparse samples. They adapted a polynomial locally for each velocity component and then
obtained the global approximation by a partition of unity. Chen et al. [1] computed the triangulation of streamline
samples. The velocities at samples are estimated using local differences, and the velocities at grid points are linearly
interpolated based on the triangulation.

Our approach differs from the previous work in three aspects. First, instead of linearly combining the samples [1,
16], we apply machine learning techniques to adjust a randomly generated vector field, so that it produces the same
velocities in the vector field as those on sample points along the given streamlines. Second, by reconstructing low-
resolution and high-resolution vector fields in order, our approach captures both large-scale and small-scale features.
Third, to the best of our knowledge, our approach is the first one that leverages the power of deep learning for vector
field reconstruction.

2.2 Scientific Data Reduction

Scientific data reduction is a focused research area in both HPC and visualization communities. A comprehensive
review of scientific data reduction can be found in [9]. To the best of our knowledge, vector field reduction has
not been specially studied. For lossy compression of scalar fields, Lindstrom [10] designed ZFP compression, a
transform-based compressor which transforms the original data into another space through a customized orthogonal
transform, keeping the difference between the original and decompressed data small under a given error bound.
Di and Cappello [2] proposed SZ compression, a prediction-based compressor which fits the data with the best fit
selection of curve fitting methods. If the data can be predicted under a user-specific error bound, then it will be
replaced by a binary code of the corresponding curve-fitting model. Otherwise, a binary representation is stored to
indicate the data.

2.3 CNNs in Image Super-Resolution and Completion

Convolutional neural networks (CNNs) based image super-resolution (SR) algorithms have shown a great success.
Wang et al. [15] encoded a sparse representation as their feed-forward network input based on the learned iterative
shrinkage and thresholding algorithm. Dong et al. [3] used bicubic interpolations to upscale an input image and
trained a three-layer deep fully convolutional network (FCN) to achieve the state-of-the-art SR performance. Ledig
et al. [8] utilized a bicubic kernel to downscale an image and trained a generative adversarial network (GAN) to infer
photorealistic natural images for an upscaling factor of 4× along each dimension.

CNNs have also been utilized for image completing tasks. Iizuka et al. [5] introduced global and local context
discriminators for image completion. The global discriminator looks at the entire image to assess if it is coherent
as a whole, while the local discriminator only looks at a small area centered at the completed region to ensure the
local consistency of the generated patches. Pathak et al. [13] established an encoder-decoder framework to generate
the content of an arbitrary image region conditioned on its surrounding. Yang et al. [18] also proposed a multi-scale
neural patch synthesis approach based on the joint optimization of image content and texture constraints.

Our approach combines the ideas of SR and completion. We use a single network to simultaneously upscale a
low-resolution vector field and fill the gaps between the input streamlines. Unlike the previous SR and completion
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Figure 1: The pipeline of our two-stage vector field reconstruction.

tasks, where deep neural net is designed for a single task, we design a multi-task CNN using residual blocks combined
with a velocity-based loss that encourages the generation of high-fidelity vector fields.

3 Approach

3.1 Notations

Let us denote S = {s1, s2, · · · , sn} as a set of streamlines, where si = {p1, p2, · · · , pki
} is a set of points on streamline

si, vp and v′
p are, respectively, the original and predicted velocities at point p. We denote V as the original vector

field with size L×W ×H, where L, W , and H stand for length, width, and height, respectively. We also define Vlow

and Vhigh, which will be used for vector field reconstruction. Vlow is a low-resolution reconstructed vector field with
size Llow ×Wlow ×Hlow, where Llow < L, Wlow < W , and Hlow < H. Vhigh is a high-resolution reconstructed vector
field with size Lhigh ×Whigh ×Hhigh, where Lhigh = L, Whigh = W , and Hhigh = H. W are the total parameters in
the CNN model.

3.2 Streamline Selection and Compression

To achieve a good balance between the number of streamlines used for vector field reduction and the quality of
vector field reconstruction, we randomly trace a large number of streamlines and from which we select a subset as
the representatives. In this paper, we select streamlines using three different methods of Tao et al. [14]: p(s), I(s;V ),
and REP. The selected streamlines are compressed and later used to reconstruct the vector field via deep learning.
Given one streamline si = {p1, p2, · · · , pki

}, we compress it to an array {b, ρ} in the binary form and later decompress
{b, ρ} to s′i = {p′1, p

′
2, · · · , p

′
ki
} via SZ compression [2], where b[i] denotes whether pi can be predicted by either of

the three fitting schemes (preceding neighbor fitting, linear-curve fitting, or quadratic-curve fitting), and ρ[i] denotes
the binary form of pi if pi cannot be predicted by either fitting scheme. The goal of compression is to control the
overall error while achieving a good data reduction rate. Compared to ZFP compression [10], SZ compression can
achieve a better compression rate with the same level of peak signal-to-noise ratio.

To measure the error introduced during SZ compression, we compute the difference between si and s′i. Since we
only record discrete sample points along a streamline, we measure the displacements of these sample points. We
define the error of compressing one streamline as

ε(si) = max
1≤j≤ki

||pj − p′j ||, (1)

where || · || denotes the distance between the two sample points, and ε(si) should meet the following condition

ε(si) ≤
(

max
1≤j≤ki

(pjx , pjy , pjz )− min
1≤j≤ki

(pjx , pjy , pjz )
)

× ε, (2)

where pjx , pjy , and pjz are the x, y, and z components of pj , and ε is the user-specified error bound. In the results
section, we specify different error bounds to study the tradeoff between compression rate and reconstruction quality.

3.3 Vector Field Reconstruction

Overview. As shown in Figure 1, we reconstruct a vector field based on a set of streamlines in two stages: low-

resolution initialization and high-resolution refinement. The first stage adopts backpropagation to produce a low-
resolution vector field Vlow that approximates the overall flow patterns of the given set of streamlines. The second
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Figure 2: The distribution of samples leads to inaccurate prediction using existing methods. (a) Original vector field and sample streamlines. (b) and (c) The
sample points together with vx along the x-axis, and vy along the y-axis, respectively.

stage leverages a CNN to upscale Vlow to a high-resolution one Vhigh which preserves the velocity information for
voxels intersected by streamlines while filling the empty voxels based on the low-resolution field.

The rationale for the two-stage design is as follows. The first stage aims to circumvent the problem of insufficient
samples: when reconstructing a high-resolution field directly, the given streamlines only cover a small portion of the
voxels, leaving most of the voxels empty. Since the reconstructed vectors at the empty voxels cannot be evaluated
using the given streamlines, this problem will lead to unexpected reconstruction results. By reconstructing a low-
resolution field, we maintain a reasonable coverage of voxels, which produces more reliable results. Then, the second
stage upscales the low-resolution field and adds extra, previously-uncaptured flow details via deep neural net. Refer
to Figure 4 (d) and (f) for an example.

The core idea of our approach is that, instead of combining the velocities sampled on the streamlines to construct
a vector field, we verify and adjust our reconstructed field based on the input streamlines. This strategy can estimate
the vectors accurately, regardless of the spatial distribution of sample points. Figure 2 illustrates an example of
predicting the vector at the central grid point (0, 0) in a simple vector field V(x, y) = [x,−y2 + 1]. The existing
techniques use linear combination of samples for prediction (e.g., interpolating the vectors from triangulation [1] and
averaging the samples [16]), which will lead to inaccurate results. Figure 2 (b) plots vx along the x-axis. There
are more samples on the left side with negative vx. Both averaging all the sample points in the neighborhood and
interpolating the three samples highlighted in red will lead to a negative value. For predicting vy, even if there are
similar numbers of samples above and below y = 0, averaging and interpolation still fail to produce the accurate
result, since all sample points have vy values smaller than the expected vy, as shown in Figure 2 (c). In contrast,
our approach does not suffer from this problem: inaccurate predictions will be adjusted since they fail to produce
the vectors on the samples, leading to large losses.

Loss function. For both stages, we use the mean squared error (MSE) to evaluate the loss of the reconstructed
vector field given the streamline samples. The MSE loss at point p is given by the difference between the original
velocity vp and predicted velocity v′

p, and the MSE loss of streamline si is defined as the summation of MSE losses
along all of its sample points

L(si) =
1

ki

ki
∑

j=1

||vpj
− v′

pj
||2, (3)

where || · ||2 is the L2 norm. Our goal is to minimize the total loss, i.e., L =
∑n

i=1 L(si).
Low-resolution initialization. As illustrated on the left side of Figure 1, low-resolution initialization iteratively

updates a low-resolution vector field Vlow until it produces the same velocities as the input streamlines. We denote
Vlow = [v′

i] where v′
i is the predicted velocity at voxel i and 1 ≤ i ≤ Llow × Hlow × Wlow. All v′

i ∈ Vlow are
regarded as learnable parameters. Starting from a randomly initialized Vlow, in each epoch, we first interpolate Vlow

to obtain the predicted velocities on the input streamlines. Given a point p on an input streamline, we estimate its
velocity

v′
p = F (Vlow, p), (4)

where F is a function that trilinearly interpolates v′
p based on the velocities at the eight neighboring voxels of p.

Then, we compare the predicted velocities with the input ones to derive the loss of the current Vlow. Finally, based
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Figure 3: (a) The input to the CNN is a low-resolution vector field, consisting of seven DeConv layers and four residual blocks. (b) An example of a residual block.

Table 1: The dimension of each data set and its corresponding kernel size.

Data
Set

Original
Dimension

Low-Resolution
Dimension

Kernel Size, Stride
(DeCov1-DeCov3)

Kernel Size, Stride
(DeCov4)

Kernel Size, Stride
(DeCov5-DeCov7)

cloud 128× 128× 128 16× 16× 16 64/128/256× 4× 4× 4, 1 128× 4× 4× 4, 5 64/64/64× 3× 3× 3, 1
five critical pts 51× 51× 51 16× 16× 16 64/128/256× 3× 3× 3, 1 128× 3× 3× 3, 2 64/64/64× 3× 3× 3, 1
supercurrent 256× 128× 32 32× 16× 4 64/128/256× 4× 2× 1, 1 128× 4× 2× 2, 6 64/64/64× 5× 7× 5, 1
supernova 100× 100× 100 12× 12× 12 64/128/256× 3× 3× 3, 1 128× 3× 3× 3, 5 64/64/64× 5× 5× 5, 1

on the loss, we update Vlow through backpropagation. Gradient descent is applied to update these velocities, which
means that in each epoch, v′

i is updated based on the following rule

v′
i = v′

i − α
∂L

∂v′
i

, (5)

where α is the learning rate.
High-resolution refinement. As shown on the right side of Figure 1, high-resolution refinement builds a CNN

to upscale Vlow, and at the same time, fills the empty voxels through a nonlinear combination of their neighborhoods.
The input to this network is Vlow which is obtained by low-resolution initialization and the output is Vhigh. We
design seven deconvolutional (DeConv) layers and four residual blocks [4] in the network. We also apply the rectified
linear unit (ReLU) [12] at each DeConv layer except the last DeConv layer. The detailed architecture is shown in
Figure 3 (a). An example of a residual block is shown in Figure 3 (b). It includes three DeConv layers with batch
normalization layers and the ReLU added in between, and one DeConv layer only followed by a batch normalization
layer. The reason for adding the residual block is that it can prevent CNN from overfitting and gradient vanishing.
In this process, we first use the CNN to generate Vhigh, and then estimate velocities of the given streamlines and
compute the MSE between the predicted and original velocities to measure the accuracy of Vhigh.

Training process. Given a low-resolution vector field Vlow and a set of streamlines S, we first upscale Vlow

through CNN to generate Vhigh. Then given a point p from S, we can estimate its velocity

v
′

p = F (Vhigh, p), (6)

where F is a function that trilinearly interpolates ve
p based on the velocities at the eight neighboring voxels of p.

Then, we compare the difference between the predicted and ground truth velocities using Equation 3. Finally, we
update W based on the following formula

W = W − α
∂L

∂W
, (7)

where α is the learning rate.
Verification of two-stage reconstruction. To verify the effectiveness of our two-stage algorithm, we recon-

struct vector fields from the original and low resolutions. We use random and fixed tracing to trace streamlines from
these reconstructed vector fields, as shown in Figure 4 (b) to (f). Random tracing means that the seeding points are
placed randomly in the entire volume while fixed tracing means that the seeding points are placed only on the input
streamlines. Figure 4 (b) and (c) show the streamlines using random and fixed tracing under the original resolution.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Stage-wise comparison of vector field reconstruction results of the vector field V(x, y, z) = [x,−y2 + 1, z]. (a) Input streamlines for vector field
reconstruction. (b) Original resolution with random tracing at the first stage. (c) Original resolution with fixed tracing at the first stage. (d) Low resolution with
random tracing at the first stage. (e) Low resolution with fixed tracing at the first stage. (f) High (original) resolution with random tracing at the second stage.
For (b) to (f), 300 streamlines are traced from the reconstructed field.

The results show that the streamlines are not smooth enough in the regions where no samples pass. This is because
if no streamline passes certain voxels, then the velocities of these voxels are never updated during the first-stage
training process. Figure 4 (d) and (e) show the streamlines using random and fixed tracing under the low resolution.
The results show that the entire vector field can be reconstructed well, although domain coverage is not as good as
the original one shown in Figure 4 (a). This is due to the errors involved in the low-resolution vector field: some
seeding points around the domain boundary cannot be traced to form streamlines. Figure 4 (f) shows randomly
traced streamlines after our two-stage algorithm. It is clear that now the traced streamlines visually match well with
the input streamlines, in terms of both streamline smoothness and domain coverage.

4 Results and Discussion

4.1 Training Details

We tested with our approach using the data sets listed in Table 1. Based on our experience, in a low-resolution
vector field, the voxels passed by streamlines should be more than 80% of the total voxels. We follow this criterion
to decide the resolution for the low-resolution vector field. The deep-learning-based vector field reconstruction was
implemented in PyTorch using one single NVIDIA TITAN Xp 1080 GPU for training. In the first initialization stage,
we initialized Vlow using the uniform distribution U(−0.1, 0.1) and a learning rate of 10−3. We trained 30 epochs.
In the second refinement stage, we initialized all weights using N (0, 0.01) and the learning rate with 10−4. We set
the batch size to 128. We trained 100 epochs. The Adam optimizer [6] was applied in these two stages. However,
we decayed the learning rate by a factor of 10 after every 40 epochs during high-resolution refinement.

4.2 Quality of Streamline Sets

We used the proposed vector field reconstruction method to evaluate the quality of selected streamlines in representing
the underlying flow field. From a pool of 3000 randomly traced streamlines, we selected 100, 200, and 300 streamline
samples using three different methods of Tao et al. [14]: p(s), I(s;V ), and REP. The selected streamlines are the
training data to reconstruct the vector field. The results of 500 streamlines randomly traced from the reconstructed
field are shown in Figure 5 where obvious reconstruction errors are highlighted in black ellipses. We found that when
the number of selected streamlines is small, REP achieves the best performance since the streamlines selected by
REP are representative of the entire domain and can therefore cover different parts of the domain equally well. In
contrast, the streamlines selected by p(s) and I(s;V ) mostly favor the parts where the flow field is complex (e.g., the
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(a) (b) (c)

Figure 5: Comparison of vector field reconstruction results of the five critical points data set under different streamline selection methods. The reconstruction is
based on streamline selection results from the same pool of 3000 streamlines using three different methods of Tao et al. [14]: p(s) (top row), I(s;V ) (middle row),
and REP (bottom row). 100, 200, and 300 streamlines are selected for (a), (b), and (c), respectively. 500 streamlines are randomly traced from the reconstructed
field.

vicinity of critical points), which leads to the difficulty of estimating vectors in under-sampled parts. However, as
the selected streamline samples increase, the quality gaps among these three methods shrink and all three methods
can select streamlines that well represent the underlying flow field. Therefore, we choose REP as our streamline
selection method for the following experiments due to its superior performance in representing the flow field under
a small number of selected streamlines.

4.3 Vector Field Reconstruction and Reduction

Evaluation metric. We use the peak signal-to-noise ratio (PSNR) to evaluate the quality of reconstructed vector
field. PSNR is defined as

PSNR(V,V′) = 20 log10 I(V)− 10 log10 MSE(V,V′), (8)

where V and V′ are, respectively, the original and reconstructed vector fields; I(V) is the difference between the
maximum and minimum values of V

I(V) = max(Vx,Vy,Vz)−min(Vx,Vy,Vz), (9)
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(a) (b) (c)

Figure 6: Comparison of vector field reconstruction results of supercurrent (top row) and supernova (bottom row) data sets under two different methods. (a) input
streamlines for vector field reconstruction (supercurrent: 300 streamlines, supernova: 800 streamlines). (b) GVF with fixed tracing (supercurrent: PSNR = 23.58
db, supernova: PSNR = 19.44 db). (c) our method with fixed tracing (supercurrent: PSNR = 34.20 db, supernova: PSNR = 30.05 db). 150 and 500
streamlines are traced from the reconstructed field for supercurrent and supernova, respectively.

where Vx,Vy,Vz are the velocities at components x, y, and z in V; and MSE(V,V′) is the mean squared error
between V and V′, namely

MSE(V,V′) =
1

3× L×W ×H

L×W×H
∑

i=1

∑

j∈x,y,z

(V[i]j −V′[i]j ])
2, (10)

where V[i] and V′[i] are, respectively, the velocities of V and V′ at voxel i. The error between V[i] and V′[i] is
defined as

ξ(V[i],V′[i]]) =

√

∑

j∈x,y,z

(V[i]j −V′[i]j)2. (11)

Let sV be the space for storing the original, uncompressed vector field, and sL and sL′ be the space for storing
the uncompressed and SZ-compressed streamlines and their corresponding velocities, respectively. We define the
reduction rate as RR = sV /sL and compression rate as CR = sV /sL′ .

Qualitative and quantitative analysis. We qualitatively and quantitatively compare our method against
GVF [16]. The baseline method of GVF is a linear model for vector field reconstruction. First, we compare visual
results in terms of streamlines traced from reconstructed vector fields and errors introduced in vector field recon-
struction. In Figure 6, we can see that our method achieves a better reconstruction quality than GVF: it generates
streamlines that are closer to the input streamlines (obvious reconstruction errors made by GVF are highlighted in
black ellipses) while yields a much higher PSNR. In Figure 7, we can see that the vector field reconstruction errors (as
defined in Equation 11) introduced by our method are smaller than those introduced by GVF. The visual differences
for the supercurrent and supernova data sets are greater than that of the cloud data set as the PSNR differences get
larger.

Second, we compare the performance with different numbers of selected streamlines as input. Our approach
outperforms GVF in all cases, except for the cloud data set using 100 streamlines, as shown in the left part of
Table 2. We find that GVF achieves a similar PSNR when the flow field is simple (e.g., for the synthesized five
critical points data set). However, our approach shows significant improvement when the flow is relatively complex.
The PSNR difference could reach 10 in the supercurrent data set using 300 samples and in the supernova data set
using 800 samples. In these data sets, GVF does not benefit from extra streamlines, but our approach is able to
incorporate additional information. In the supernova data set, when the number of samples increases from 100 to
800, the PSNR of our approach improves from 19.58 to 30.05, but that of GVF only raises from 16.25 to 19.44. We
believe that GVF fails to estimate the complex non-linear flow patterns using a linear technique (minimizing the
Laplacian). In terms of reduction rate (without considering compression for vector fields and selected streamlines),
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(a) (b) (c)

Figure 7: Visualization of errors introduced in vector field reconstruction using (a) 800 streamlines for cloud, (b) 300 streamlines for supercurrent, and (c) 800
streamlines for supernova. Top row: GVF (cloud: PSNR = 26.96 db, supercurrent: PSNR = 23.58 db, supernova: PSNR = 19.44 db). Bottom row: Our
method (cloud: PSNR = 30.26 db, supercurrent: PSNR = 34.20 db, supernova: PSNR = 30.05 db).

storing uncompressed streamlines instead of the original vector field reduces the data by 3.16× to 82.76×. Among
the four data sets, the lowest and highest reduction rates are achieved for the supercurrent and cloud data sets,
respectively.

Third, we compare the performance under different error bounds. From the right part of Table 2, we can see that
adding SZ compression would bring us an impressive compression rate ranging from 25.17× to 572×. Among the
four data sets, the lowest and highest reduction rates are achieved for the five critical points and supernova data sets,
respectively. Clearly, the larger the error bound, the higher the compression rate and the lower the PSNR. We also
observe that the PSNR difference under error bounds 0.001 and 0.01 is small, while that under error bounds 0.01
and 0.1 is much larger. This is because under ε = 0.1, SZ aggressively compresses several points and their velocities
into a single one, which leads to a much lower PSNR. As an exception, when applying GVF to the supernova data
set, the PSNR under ε = 0.01 is larger than that under ε = 0.001. This is possibly because that GVF is sensitive to
the distribution of samples. Still, our method beats GVF in terms of PSNR under different error bounds, by a large
margin for the supernova data set and a small margin for the five critical points data set. This may due to the fact
that, unlike the five critical points data set, there exist abrupt changes of velocities among different regions in the
supernova data set. This causes unreliable estimation of these changes through minimizing the Laplacian by GVF.

4.4 Discussion

Why not compress vector field directly? We use SZ compression to compress selected streamlines to representing
the underlying flow field in a reduced form. An alternative is to compress the original vector field directly using
SZ which compresses each vector component separately. In Figure 8, we compare (a) the ground truth streamlines
traced from the original vector field, (b) the streamlines traced from the SZ compressed then decompressed vector
field, and (c) the streamlines traced from the reconstructed vector field using our method. Note that for a fair
comparison, both (b) and (c) take similar compression rates (even though (b) achieves a higher PSNR than (c)).
The five seeding points are randomly placed, not on the selected streamlines as used in our approach to reconstruct
the vector field. The result shows that compared to our method, the streamlines traced from the directly compressed
then decompressed vector field are less similar to the ground truth streamlines. This renders direct SZ compression
of vector field less reliable than our method. The reason is that direct compression of vector field only controls the
error of vector field, not the resulting streamlines. Moreover, small changes in the vector field during the direct
compression-decompression process could lead to large differences in the streamlines.
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Table 2: Comparison of reduction/compression rate and reconstruction PSNR for each data set. Left: comparison across different numbers of streamlines. Right:
comparison across different error bounds.

PSNR (db) PSNR (db)
Data Set sV (MB) # Lines sL (MB) RR GVF Ours # Lines ε sL′ (MB) CR GVF Ours

cloud 24
100 0.29 82.76 22.07 22.04

800
0.001 0.37 64.86 26.95 30.02

500 1.4 17.14 25.78 27.56 0.01 0.17 141.18 26.42 29.44
800 2.2 10.91 26.96 30.26 0.1 0.05 480 19.65 21.02

five critical pts 1.51
100 0.13 11.62 23.03 25.19

300
0.001 0.06 25.17 30.62 30.94

200 0.23 6.57 28.02 29.19 0.01 0.02 75.5 30.60 30.71
300 0.39 3.87 30.62 31.33 0.1 0.01 151 17.10 18.50

supercurrent 12
100 1.3 9.23 20.86 26.41

300
0.001 0.37 32.43 23.56 32.57

200 2.6 4.62 22.39 30.01 0.01 0.15 80 20.83 30.14
300 3.8 3.16 23.58 34.20 0.1 0.04 300 17.38 23.46

supernova 11.44
100 0.15 76.27 16.25 19.58

800
0.001 0.18 63.55 19.44 29.31

500 0.67 17.07 18.34 26.51 0.01 0.08 143 19.54 27.82
800 1.1 10.4 19.44 30.05 0.1 0.02 572 15.59 18.34

(a) (b) (c)

Figure 8: Streamline visualization of the supercurrent data set. (a) Ground truth streamlines. (b) Streamlines traced from the SZ compressed then decompressed
vector field (ε = 0.03, CR = 32.17, PSNR = 41.14 db). (c) Streamlines traced from the reconstructed vector field using our method with 300 input streamlines
(ε = 0.001, CR = 32.43, PSNR = 32.57 db). All show five streamlines traced from the same seeding points (denoted as green spheres).

Toward in situ flow field reduction. We need to consider the following in order to make our current solution
practical for in situ flow field reduction. First, there are several key parameters to set (e.g., the number of input
streamlines, the low-resolution flow field size, and the error bound for compression). Based on our results, we rec-
ommend setting these parameters according to the complexity exhibited by the flow field or the selected streamlines.
More streamlines and lower error bounds should be used for more complex data sets. Second, deep learning requires
long training time (in our cases, hours on a single GPU) even though this happens during post hoc analysis. We need
to accelerate the training speed by speeding up low-resolution initialization using multiple devices and high-resolution
refinement using model parallelism. Third, nontrivial extensions are needed for handling large unsteady flow fields
(e.g., 10003) with hundreds of time steps. Efficient out-of-core computation for large data sets and learning across
time steps should be considered.

5 Conclusion

As an emerging research direction, applying deep learning techniques to solve challenging scientific visualization
problems is on the rise. We have presented a new approach for streamline-based flow field representation and
reduction. The main algorithm lies in the deep-learning-based algorithm for vector field reconstruction. Inspired by
recent advances in image super-resolution and completion, our approach enables high-quality reconstruction of vector
fields from streamlines, which outperforms the de facto method of GVF for vector field reconstruction. Along with
SZ compression, we achieve impressive data compression rates while keeping PSNRs higher than those obtained using
GVF. This work is our first step toward deep learning for in situ flow field reduction and visualization. Our next
step is to leverage multiple GPUs and model parallelism for acceleration, and to implement out-of-core computation
and efficient learning for large unsteady flow fields.
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