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Abstract

Graphs represent general node-link diagrams and have long been utilized in scientific visualization for data

organization and management. However, using graphs as a visual representation and interface for navigating

and exploring scientific data sets has a much shorter history yet the amount of work along this direction is clearly

on the rise in recent years. In this paper, we take a holistic perspective and survey graph-based representations

and techniques for scientific visualization. Specifically, we classify these representations and techniques into four

categories, namely, partition-wise, relationship-wise, structure-wise, and provenance-wise. We survey related

publications in each category, explaining the roles of graphs in related work and highlighting their similarities

and differences. At the end, we reexamine these related publications following the graph-based visualization

pipeline. We also point out research trends and remaining challenges in graph-based representations and

techniques for scientific visualization.

Keywords: graphs, scientific visualization, user interface and interaction, visual analytics

Categories and Subject Descriptors (according to ACM CCS): E.1 [Data]: Data Structures—Graphs and networks
I.3.6 [Computer Graphics]: Methodology and Techniques—Interaction techniques H.5.2 [Information Interface
and Presentation]: User Interfaces—Graphical user interface

1. Introduction

Trees and graphs are well-known structures that use node-
link diagrams to represent data relationships. These visual
mappings and representations are at the heart of informa-
tion visualization techniques. Scientific visualization, on the
other hand, deals with three-dimensional spatial data that are
typically time-varying and multivariate, including scalar and
vector quantities. Trees and graphs have long been used to
organize and manage scientific data sets for processing and
rendering. In these scenarios, they are mostly utilized as an
internal data representation.

Over the past decade, we have witnessed the great mar-
riage of scientific visualization and information visualiza-
tion. Information visualization techniques such as parallel
coordinates and treemaps have been successfully utilized to
assist a number of scientific visualization tasks including
correlation exploration, level-of-detail selection, and trans-
fer function specification. Unlike straightforward applica-
tions of parallel coordinates and treemaps that encode co-
occurrence and hierarchical relationships among data items,

leveraging the more generic and powerful visual means of
graphs often requires a fully integrated pipeline of data trans-
formation, representation, and visual mapping.

Recently, there is a flourishing of works that utilize trees
and graphs as visual mappings and interfaces to help scien-
tific visualization tasks. These solutions extract relationships
from high-dimensional data over space and time, display
these relationships as graphs in a low-dimensional space,
and allow users to perform queries and make connection to
the original data. This transformative way of exploring sci-
entific data holds the promise to address scientific visualiza-
tion problems whose size, complexity, and need for closely
coupled human and machine analysis may make them other-
wise intractable.

We classify related publications in scientific visualization
that use trees and graphs into four categories: partition-wise,
relationship-wise, structure-wise, and provenance-wise rep-
resentations and techniques. Partition-wise graph represen-
tations are concerned with partitioning spatiotemporal data
toward effective organization and rendering. These tech-
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wavelet tree [GWGS02]
temporal hierarchical index tree [She98]
BONO [WVG92]
multi-dimensional trees [WVG94]
TSP tree [SCM99]
WTSP tree [WS04]
multiresolution video [FJS96]
SPT tree [DCS09]
binary swap [MPH94]
2-3 swap [YWM08]
hierarchical navigation interface [WS05]
LOD map [WS06a]
MDMap [PIB*11]
iTree [GW13]
Multifield-Graphs [STS06]
attribute cloud [JBS08]
probability association graph [LS16]
ε-machine [JS09]
TransGraph [GW11]
Flow Web [XS10]
FlowGraph [MWSJ14]
binary connectivity graph [BSL*14]
ontology instance graph [KPM*08]
neuroMap [SBS*13]
VisNEST [NSvA*13]
MobilityGraph [vLBR*16]
TrajGraph [HZY*16]
feature correspondence graph [SSZC94]
Petri Nets [OSBM14]
CompuCell3D [HSS*12]
cavity graph [PTRV12]
propagation graph [WLY*13]
flow graph [NLS11]
access dependency graph [CNLS12]
contour spectrum [BPS97]
contour tree interface [CSvdP04]
skeleton tree [GKHS98]
volume skeleton tree [TTFN05]
topological landscape [WBP07]
cancellation tree [BPH05]
topological spine [CLB11]
empty region graphs [CL11]
topology change graph [SB06]
attributed relational graph [MBB*12]
augmented extremum graph [TN13]
extended BDG [SSW14]
relation graph [CQC*08]
saddle connectors [TWHS03]
joint contour net [CD14]
simplicial chain graphs [RL14]
image graph [Ma99]
spreadsheet-like interface [JKM01]
derivation graph [JKMG02]
volume tree [WS06b]
storyboard [LS08]
event graph [YLRC10]
lineage tree [WWB*14]
VisTrails [BCC*05]
interaction graph [GS06]
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Figure 1: Selected tree and graph representations from the four categories.

niques can be traced back to a large body of early work that
aimed at fast rendering of large data sets with limited mem-
ory available. Relationship-wise graph techniques encom-
pass similarity-based hierarchical data clustering, various re-
lationship graphs based on correlation, transition or corre-
spondence, as well as general- and special-purpose trees and
graphs for parallel and out-of-core visualization algorithms.

Structure-wise graph techniques mainly study topological
structures of data which can be treated as a special case of
relationship-wise graph techniques. We separate them into a
different category due to a variety of topological trees and
graphs applied to scalar, vector and multifield data visual-
ization. Finally, provenance-wise graph representations deal
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Figure 2: Various trees for partition-wise graph represen-

tations and techniques. A solid line with single arrow head

represents a variant, extension, or special case while a solid

line with double arrow heads represents a generalization.

Dashed lines represent a combination.

with visualization history and parameter management, story-
telling, animation creation, and reproducible visualization.

1.1. Scope of Survey

To collect related publications for this survey, we started
with the collection of papers we knew of from our own
research, then scanned through three major visualization
conferences (IEEE Visualization Conference, Eurograph-

ics Conference on Visualization, IEEE Pacific Visualization

Symposium) and two major visualization journals (IEEE

Transactions on Visualization and Computer Graphics,
Computer Graphics Forum) to identify related papers. In ad-
dition, around the periphery of scientific visualization, there
are many applications focusing on visual analytics of biolog-
ical network data and spatiotemporal movement data where
graphs naturally play an important role. We therefore expand
our search to include three related venues (IEEE Symposium

on Biological Data Visualization, Eurographics Workshop

on Visual Computing for Biology and Medicine, and IEEE

Symposium on Visual Analytics Science and Technology).

The criteria for us to select a paper are that the work is rel-
evant to tree and graph based representations and techniques,
and the work is within the context of scientific visualization.
Therefore, the large collection of graph visualization papers
in information visualization is not included. We also omit
the works that transform scientific data into different kinds
of scatterplots or projections using techniques such as princi-
pal component analysis (PCA) and multidimensional scaling
(MDS) since there is no explicit edges defined to construct
the graph view. Furthermore, we do not survey graph draw-
ing and layout algorithms, but focus on their application and
utilization in scientific visualization. We refer readers to the
following survey papers [HMM00,vLKS∗11,BBDW14] for
graph visualization, large graph analysis, and dynamic graph
visualization.

Needless to say, including all relevant publications is be-
yond the scope of this survey. For example, as a general data
structure, the octree has been widely used for partitioning
3D volume data. As such, we only picked a small collection
of representative papers in this direction. Furthermore, we
gave higher priority to new and interesting use of graph tech-
niques for visual representation and navigation than conven-
tional use of well-known tree and graph structures for data

organization and management. Finally, some graph repre-
sentations, such as Reeb graphs, have found a wider variety
of applications in other fields such as computer graphics and
computational geometry instead of scientific visualization.
We therefore briefly mentioned these representations rather
than giving an extensive review.

1.2. Overview of Different Representations

To help readers gain an overview of various trees and graphs
surveyed, we list selected tree and graph representations
from the four categories in Figure 1, pointing out their re-
spective tree or graph types, representation modes, and kinds
of data handled. For partition-wise and structure-wise tech-
niques, we further illustrate the relationships among dif-
ferent trees and graphs in Figures 2 and 3, respectively.
We do not present such an illustration for relationship-wise
or provenance-wise techniques. This is because they ei-
ther have a much broader range of topic (relationship-wise)
which makes the illustration inadequate or have a much nar-
rower scope of focus (provenance-wise) which makes the
illustration unnecessary.

2. Partition-wise Representations and Techniques

Many of the early research efforts in scientific visualization
leveraged tree-like structures to organize and manage three-
dimensional volumetric data. The main idea is to create a
tree hierarchy by recursively subdividing the domain and
preparing data with different resolutions for compression,
representation and visualization. Such a hierarchical struc-
ture allows us to use low resolution data for regions with
low importance in order to speed up the subsequent process-
ing and rendering. As a matter of fact, the same idea has been
widely used in image and video processing, albeit in lower
dimension. One can build such tree structures in any dimen-
sion while the most common forms are in 1D to 4D: bi-
nary tree (1D), quadtree (2D), octree (3D), and 16-tree (4D).
These trees are normally built from 1D signal or time series,
2D image, 2D video or 3D volume, and 3D time-varying
volume, respectively. For 2D video data, the third dimension
of time t is treated equally as the two spatial dimensions x

and y. Likewise, for 3D time-varying volume data, the fourth
dimension of time t is treated equally as the three spatial di-
mensions x, y and z.

In its simplest form, the domain is evenly partitioned
along each dimension simultaneously and the partitioning
planes are always aligned with the corresponding coordinate
axes. In practice, we often introduce several variations to im-
prove the flexibility, efficiency and effectiveness of such so-
lutions. First of all, the partition could be adaptive. For ex-
ample, we do not partition a region further if the data within
the region meet certain criteria (e.g., the error within the
block is less than a given threshold or the block has reached
the minimum block size). This saves unnecessary partitions
and is thus more efficient. Second, the partition could be un-
even or could follow one axis at a time. For the former case,
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Figure 3: Various trees and graphs for structure-wise graph representations and techniques. The arrow line represents a variant,

extension, or special case.

we can adjust the partition based on data properties and pro-
duce a tighter partitioning, yielding a tree with less hierar-
chical levels. For the latter case, we would produce a parti-
tioning similar to the k-d tree. These strategies are adopted if
we want to have a similar number of data elements or items
in each leaf node of the tree in order to speed up the sub-
sequent searching or indexing. Third, the partition does not
have to be axis-aligned. This leads to binary space partition-

ing trees (BSP trees) which are more general than k-d trees
as partitioning planes may have any orientation rather than
being aligned with the coordinate axes.

2.1. Standard Tree Structures

In volume visualization, standard octree structures have long
been used for data encoding and rendering. An early work of
Meagher [Mea82] uses octree encoding for geometric mod-
els and volumetric data. Levoy [Lev90] utilized a binary oc-
tree to skip empty regions for efficient ray tracing of volume
data. Laur and Hanrahan [LH91] stored the volume data us-
ing an octree, sorted the cells from back to front, and calcu-
lated cell projections for hierarchical splatting. LaMar et al.
[LHJ99] used an octree hierarchy for texture-based volume
rendering where the octree nodes store volume blocks re-
sampled to a fixed resolution and rendered using 3D texture
hardware. Boada et al. [BNS01] presented an octree-based
structure for multiresolution volume visualization where the
hierarchical texture memory representation and management
policy benefits nearly homogeneous regions and regions of
lower interest. Carmona and Froehlich [CF11] designed a
greedy, real-time cut update algorithm based on split-and-
collapse operations for octree-based multiresolution volume
raycasting using GPU.

Different data reduction and compression schemes have
also been incorporated into octree-based volume visual-
ization. Examples include Laplacian pyramids [GY95],
wavelet trees [GWGS02, GWLS05], application-driven
compression [WYM10], and tensor approximation and re-
construction [SIGM∗11, SMP13].

The common way to partition the time dimension is to
iteratively partition the time span into half to build a bi-
nary tree. For instance, the temporal hierarchical index tree

[She98] is a structure for creating the isosurface cell search

indices from a time-varying field. Cells are characterized
based on their extreme values and the variations of the ex-
treme values over time. Cells that have a small amount of
variation over time are placed in a single node of the tree
that covers the entire time span. Cells with a larger variation
are placed in multiple nodes of the tree multiple times, each
for a short time span. The temporal hierarchical index tree
requires much less storage space and significantly reduces
the amount of I/O required to access the indices from the
disk at different time steps.

For time-varying volume data visualization, Ma and Shen
[MS00] used octree encoding and difference encoding for
spatial and temporal domain compression, respectively. Lin-
sen et al. [LPD∗02] presented a four-dimensional multires-
olution approach that supports a hierarchy with spatial and
temporal scalability. In their scheme, temporal and spatial
dimensions are treated equally in a single hierarchical frame-
work. Similar uniform treatments of space and time have
been used for representing and visualizing time-varying 3D
vector fields [YWM07, MWSJ14]. Different from the nor-
mal way of evenly partitioning the space, the branch-on-

need octree (BONO) [WVG92] partitions the dimension
non-uniformly to avoid empty regions. Multi-dimensional

trees [WVG94] extend the BONO to multi-dimensional data
sets, such as spatiotemporal data.

2.2. Hybrid Tree Structures

Applying the 4D tree or 16-tree to organize time-varying
volume data treats time merely as another “spatial” dimen-
sion. Although simple to implement, the 16-tree could be in-
effective for two reasons. First, there could be large discrep-
ancy between the spatial and temporal dimensions, which
makes it difficult to subdivide the spatial and temporal di-
mensions uniformly without over partitioning. Second, in
16-trees, the temporal and spatial domains are tightly cou-
pled in the hierarchical subdivision. This implies that it could
be difficult to choose a flexible combination of spatial and
temporal data resolutions from the 4D hierarchy.

To remove the dependency between spatial and temporal
resolutions, researchers proposed different hybrid tree struc-
tures. Shen et al. [SCM99] introduced the time-space parti-

tioning tree (TSP tree), a time-supplemented octree for or-
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Figure 4: Illustration of TSP and SPT trees. (a) an example

of the TSP tree with four time steps. (b) an example of the

SPT tree with six time steps.

ganizing a time-varying volume data. As sketched in Figure
4 (a), the skeleton of a TSP tree is a standard complete oc-
tree, which recursively subdivides the volume spatially until
all subvolumes reach a predefined minimum size. In each
of the TSP tree nodes, a binary time tree is created, where
each node in the binary time tree represents a spatial subvol-
ume with a different time span. Each time tree node stores
the mean voxel value as well as spatial and temporal errors
of the subvolume in the given time span. These values are
used for tree traversal during the volume rendering process.
The unique advantage of TSP tree is that it allows users to
request spatial and temporal data resolutions independently

with separate error thresholds. In this way, a flexible brows-
ing of data at arbitrary spatiotemporal resolutions becomes
possible. Wang and Shen [WS04] integrated wavelet trans-
form and compression with the TSP tree and presented the
wavelet-based time-space partitioning tree (WTSP tree) for
managing large-scale time-varying data hierarchically.

When partitioning both space and time domains hierar-
chically to explore spatial and temporal coherence in time-
varying data, one could either partition the spatial domain
or the temporal domain first. The TSP tree chooses to parti-
tion the spatial domain first in order to maintain the visibility
order and spatial locality among the subvolumes during the
tree traversal. On the contrary, Finkelstein et al. [FJS96] in-
troduced multiresolution video by partitioning the temporal
domain first, creating the primary binary time tree. For each
time tree node, the spatial domain is then partitioned into
a quadtree. Du et al. [DCS09] studied the open question of
which domain should be partitioned first for a better data
reuse rate. They showed both theoretically and experimen-
tally that partitioning the time domain first is better. They
further presented the space-partitioning time tree (SPT tree)
which has the fully balanced binary time tree as the primary
structure and a standard complete octree as the secondary
structure, as sketched in Figure 4 (b). Compared to the ren-

dering based on the TSP tree, volume rendering based on
the SPT tree has the following advantages. First, it leads to
a higher level of details since the algorithm is more likely to
select smaller but more subvolumes. Second, it has a higher
reuse rate because the algorithm favors higher-level time tree
nodes. Third, the algorithm runs faster thanks to the higher
reuse rate.

2.3. Parallel Image Compositing

Ma et al. [MPH94] introduced the classical binary swap

algorithm for parallel image compositing. The algorithm
works in multiple stages. It makes use of all processors in
each stage of composition in a binary tree fashion. For N

processors, the number of stages required is logN. At each
stage, the image space is divided into two partitions and each
processor takes the responsibility for one of the two parti-
tions. A swapping of the partitions between the two proces-
sors is needed, thus the name binary swap. Due to the nature
of binary compositing, the binary swap algorithm may not
work well when the number of processors is not an exact
power of 2. Yu et al. [YWM08] presented a generalized im-
age compositing algorithm called the 2-3 swap which works
with an arbitrary number of processors. This flexibility is
achieved by allowing each node in the compositing tree to
have either two or three children. The resulting 2-3 tree is a
balanced tree, which defines the structure of the compositing
tree and determines the grouping of processors during each
stage of image compositing.

2.4. Visual Mapping and Interface

Most partition-wise representations of volumetric data
record tree structures internally in memory for level-of-
detail (LOD) querying and rendering. Only a few research
works present such a tree externally as a visual mapping
as well as an interface for LOD selection. Examples of
these external tree mappings include the hierarchical navi-
gation interface [WS05] and LOD map [WS06a] presented
by Wang and Shen. Both works utilize the treemap repre-
sentation. The treemap [Shn92] is a space-filling method for
visualizing large hierarchical information (in this case, the
current LOD, or a cut through the tree hierarchy). It works
by recursively subdividing a given display area based on
the hierarchical structure, and alternating between vertical
and horizontal subdivisions. The information of an individ-
ual node is presented through visual attributes, such as color
and size, of its bounding rectangle.

The hierarchical navigation interface [WS05] works with
the WTSP tree representation of a time-varying data set and
has two views. The first view is an overview map illustrating
the tree hierarchy in a triangle shape, the error distribution
among tree nodes, and the current LOD as a cut through the
hierarchy. The second view is the treemap showing the detail
node information in the current LOD in an uncluttered view
which helps users pinpoint the target regions.

The LOD map [WS06a] leverages a treemap to guide mul-
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Figure 5: A zoom to the spine of the visible woman data set

and the corresponding LOD map showing the LOD quality.

In the LOD map, the contribution of a data block to the final

image is mapped to the size of the corresponding rectangle,

while the distortion is mapped to the color (magenta to blue

for large to small distortion). Images courtesy of Wang and

Shen [WS06a] c©2006 IEEE.

tiresolution volume rendering using the wavelet tree repre-
sentation. It supports effective LOD volume visualization
through a suite of functions including LOD comparison,
view comparison, LOD adjustment, and budget control (i.e.,
giving a LOD of similar quality but with a reduced block
budget). An example result of LOD map is shown in Fig-
ure 5. The benefits of these explicit visual representations
are two folds. First, they provide the complete information
about the LOD quality of multiresolution data blocks which
is impossible to get from the rendering due to the projection
of a 3D volume to a 2D image. Second, they also serve as
visual interfaces which enable users to interactively adjust
the LOD in a guided and controllable fashion.

3. Relationship-wise Representations and Techniques

Relationship is a general term that could refer to any kind
of relation among nodes in a tree or graph. Similar to many
other applications, the most common way to form a tree-like
hierarchy in scientific visualization applications is to either
cluster data items from bottom up or partition an object from
top down, based on certain similarity or distance measures.
For time-varying multivariate data, relationships could mean
transition relations, correlation relations, etc. Relationships
could also be domain-specific or application-specific. Fea-
ture extraction and tracking is an important task for time-
varying data visualization and the extracted features are nor-
mally connected through a correspondence graph. In addi-
tion, different tree and graph structures have also been built
for data distribution, task partition, and workload prediction
for parallel and out-of-core visualization algorithms.

3.1. Hierarchical Clustering or Partitioning Trees

Linsen et al. [LLRR08] used a cluster tree to represent the
level-of-detail of the surfaces constructed from multivariate
particle data. They converted the multifield particle volume
data to a high-dimensional feature domain, partitioned the
domain into cells, and derived the cell density. Then they

(1)

(3)

(2)

(4)

(1)

(2)

(3)

(4)

Figure 6: Level-of-detail exploration of the iTree of the com-

bustion data set. Four nodes at different levels of detail in

the tree are selected and their corresponding clusters are

highlighted in the volume. Images courtesy of Gu and Wang

[GW13] c©2013 IEEE.

clustered the cells into to a high density cluster tree where
each cluster corresponds to a surface representing the parti-
cles within the cluster. Finally, they employed 3D star coor-
dinates to visualize nested density clusters as surfaces.

Patro et al. [PIB∗11] designed MDMap that uses a state
transition graph to explore molecular dynamic simulations.
They identified different conformational states by agglom-
erative clustering to depict the intermediate conformations
of the proteins. An inter-cluster distance metric is formu-
lated. During each iteration, the closest clusters are merged
until the specified number of clusters remains. In the transi-
tion graph, a node represents a state, and an edge between
two nodes represents a transition between the two states.
The edge thickness indicates the occurrence frequency of the
transition. The agglomerative clustering naturally provides a
hierarchical structure of clusters. Users can expand a node
corresponding to a coarse cluster to reveal refined states.

Ip et al. [IVJ12] utilized a tree-based representation to
help users explore a 3D intensity field adaptively. They con-
verted the 3D intensity field into a 2D intensity-gradient his-
togram and applied the normalized cut algorithm to partition
the histogram into segments. By iteratively partitioning the
histogram, they created a tree hierarchy which records the
level-of-detail partition process. The tree serves as an inter-
face for users to explore the embedded structures. Günther et
al. [GRT14] also utilized a tree structure to store streamline
clustering information for a 3D vector field. With this tree,
users can set opacities for different streamline segments to
reduce visual occlusion and clutter and highlight regions of
interest. To this end, they first evenly partitioned all stream-
lines into segments, then used a binary tree to cluster stream
segments into a hierarchy. A good streamline visualization
result can be achieved by assigning different opacity values
to subtrees and optimizing the global opacity.

Gu and Wang [GW13] introduced iTree for time-varying
data visualization, which integrates data classifying, index-
ing and compacting into a single framework. They utilized
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Figure 7: Analogue brushing with six variables of the multi-

variate delta wing data set using the attribute cloud. The six

variables are the norm of velocity, pressure, density, x-, y-,

and z-coordinate of position. Images courtesy of Jänicke et

al. [JBS08] c©2008 IEEE.

the symbolic aggregate approximation (SAX) for data com-
pacting and indexable SAX (iSAX) for indexing. Although
iSAX is already stored internally as a tree structure, it is
difficult to visualize and interact due to its wide branching
and high depth. To convert iSAX to a user-friendly user in-
terface, they performed level promoting, sibling grouping,
and sibling reordering to reduce the width and height of the
iSAX tree. The resulting visual interface, iTree, uses a hy-
perbolic layout for focus+context visualization and provides
direct interactions for users to query, search and track the
time-varying volumetric data. An example of level-of-detail
exploration of the iTree is shown in Figure 6.

3.2. Relationship Graph Encoding and Visualization

Graphs can be used to encode the relationships between vari-
ables. In such a graph, a node simply represents a variable
and an edge represents the relationships between variables.
Therefore, these graphs are typically fully connected. For
instance, Qu et al. [QCX∗07] built an undirected weighted
graph to visualize the correlation between variables. Biswas
et al. [BDSW13] leveraged the same kind of graph to en-
code the mutual information between variables. These two
graphs are drawn using a force-directed layout. Wang et
al. [WYG∗11] studied the information transfer between vari-
ables. Since information flow carries directional informa-
tion, they utilized a directed weighted circular graph to
show the information transfer between variables. Oeltze et
al. [OFH∗11] applied graph visualization techniques for vi-
sual analysis of high-dimensional, multi-parameter fluores-
cence microscopy data. They drew a circular graph where
each node represents an affinity reagent while each edge rep-
resents two co-occurring affinity reagent bindings.

Besides using a node to represent a variable in the graph,
other solutions use a node to represent spatiotemporal data
blocks, derived fields, or other quantities. This leads to more
refined results of graph relation since a node now represents
a group of voxels rather than an entire variable or time step.
The graph could be hierarchical so that the relationships can
be shown in a coarse-to-fine manner. Furthermore, the graph

(a) (b)
Figure 8: TransGraph query of the combustion data set. (a)

nodes that are only involved in self-transition are in red and

the rest of nodes at the same time step are in green. (b) vol-

ume highlighting corresponds to the red nodes. Images cour-

tesy of Gu and Wang [GW11] c©2011 IEEE.

could also be compound with different kinds of nodes and
edges encoding more complex data relationships.

For multivariate data visualization, Sauber et al. [STS06]
developed Multifield-Graphs for a complete visualization of
scalar fields and their correlations so that features associ-
ated with multiple fields can be discovered. In Multifield-
Graphs, a node denotes the correlation field among vari-
ables. An edge connects a parent and its immediate child
if and only if the parent node has one new variable in the
correlation field than that of the child node. The graph al-
lows both correlation overview and focused display of cer-
tain nodes. A limitation of Multifield-Graph is that the num-
ber of nodes in the graph increases exponentially with the
number of dimensions. Jänicke et al. [JBS08] transformed
multivariate data from their high-dimensional attribute space
to a 2D attribute cloud by constructing the minimum span-
ning tree (MST) from sample points in the original high-
dimensional space and utilizing a graph layout algorithm
to minimize edge crossings in 2D. Through brushing and
linking the attribute cloud with the data, users can conve-
niently connect the abstract attribute space with the origi-
nal data space. An example of brushing the attribute cloud
and the corresponding volume highlighting is shown in Fig-
ure 7. Liu and Shen [LS16] used multiple coordinated views
to reveal the relationships among scalar fields in multivari-
ate data sets. They derived multi-scalar informativeness and
uniqueness from the influence-passivity model, which has
been used to analyze social networks. A series of parallel
coordinates plots are provided to discover the relationships
of values, informativeness, uniqueness and probabilities of
each scalar variable. The use of the parallel coordinates plot
view and the probability association graph view allows users
to explore the scalars of interest.

For time-varying data visualization, Jänicke and Scheuer-
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Figure 9: Selecting three L-nodes in the car flow data set

using FlowGraph to capture the main flow structure pass-

ing through the car. Images courtesy of Ma et al. [MWS13]

c©2013 IEEE.

mann [JS09] introduced a directed graph representation
named the ε-machine. Leveraging a light-cone structure,
they defined a causal state as all the required information
in a given position to predict its future. Transition probabili-
ties among states can be derived based on transition frequen-
cies. In the ε-machine, a node represents a causal state and
a directed edge connecting two nodes represents their tran-
sition probability. Gu and Wang [GW11] designed Trans-

Graph to visualize the transition relationships in a time-
varying volumetric data set. In TransGraph, a node denotes
a state, i.e., a spatiotemporal region, and a directed edge be-
tween two nodes indicates their transition probability. Trans-
Graph organizes the states hierarchically and the resulting
hierarchical graph enables relationship overview and detail
exploration of a 4D time-varying volume data set in a sin-
gle 2D graph view. Figure 8 gives such an example. Gu et
al. [GWP∗16] further applied a mining approach to obtain
more insights from TransGraph and the underlying time-
varying volumetric data set. First, they applied a graph sim-
plification scheme to reduce visual clutter by replacing graph
features (fans, connectors and cliques) with symbols. Sec-
ond, they detected communities to recognize node groups
with more frequent connections. Unlike a clique, a commu-
nity of nodes does not require that every pair of nodes is
connected by an edge. Instead, it places a looser restriction,
so that most of the nodes in a community are adjacent to
each other, but few connections exist between nodes from
different communities. Third, they provided visual recom-
mendations to highlight similar nodes or communities when
a node or a community is selected by users.

For flow visualization, Xu and Shen [XS10] introduced
the Flow Web, which provides an overview of the 3D flow
field and help users locate regions of interest. To construct
the Flow Web, they first partitioned the volume into re-
gions using an octree. Then they performed random seed-
ing in each region to trace streamlines. In the Flow Web, a
node represents a region and a weighted edge between two
regions indicates the number of streamlines going through
them. To allow for easy understanding of the underlying flow

(a) (b)
Figure 10: Brain connectivity graphs. (a) the whole-brain

group-level connectivity with the bundled graph. (b) the

comparison between functional (blue) and anatomical (red)

connectivity. Images courtesy of Böttger et al. [BSL∗14]

c©2014 IEEE.

structures, they created hierarchical Flow Webs by splitting
or merging nodes and edges. Rather than only considering
streamline clusters or spatial regions as nodes, FlowGraph

developed by Ma et al. [MWS13] integrates both streamline
clusters or spatial regions as nodes and thus presents a more
complete picture. As a compound graph, FlowGraph consists
of two kinds of nodes (L-nodes and R-nodes) and three kinds
of edges (L-L edges, R-R edges, and L-R edges) where ‘L’
denotes streamline and ‘R’ denotes spatial region. To con-
struct the hierarchical graph, they clustered streamlines hi-
erarchically from bottom up and partitioned spatial regions
recursively from top down. A set of functions is designed to
enable hierarchical exploration of streamline clusters, spatial
regions and their interconnection, detail comparison among
streamline clusters, and close examination of spatial regions.
Figure 9 shows an example of exploring interesting flow
patterns using FlowGraph. Ma et al. [MWSJ14] further ex-
tended FlowGraph to analyze and visualize the relation-
ships between pathlines and spatiotemporal regions in 3D
unsteady flow fields.

3.3. Relationship Graph for Biomedical Data

Studying the anatomical and functional connectivity within
a brain is an important topic in neuroscience. The derived
connectivity graphs are undirected and unweighted. Beyer
et al. [BAAK∗13] presented ConnectomeExplorer, where a
connectivity graph was used to visualize the connections
among axons or dendrites. In the 2D connectivity graph
view, nodes correspond to axons or dendrites, and edges
represent synapses between them. Böttger et al. [BSL∗14]
used a binary graph in conjunction with an edge bundling
technique to show the group-level connectivity information
within a whole brain. In the binary graph, nodes represent
cortical parcels and edges indicate strongly connected nodes.
In Figure 10, two binary bundled graphs show the whole-
brain connectivity information. Unlike previous examples of
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iTree, attribute cloud, TransGraph and FlowGraph shown
in Figures 6 to 9, the connectivity graphs are drawn in the
3D spatial domain so the contextual brain information is re-
tained. The edge bundling technique is applied to produce a
less cluttered view.

Kuß et al. [KPM∗08] proposed an ontology instance

graph for interactive exploration of hierarchical neu-
roanatomical structures. The neuroanatomical atlases are or-
ganized as a hierarchical graph. Users can interact with this
graph to query the corresponding 3D geometries of an atlas.
Instead of displaying only the queried geometries, they ren-
dered all geometries with different transparencies. The trans-
parencies of different geometries represent how important
the structures are, based on their relationships to the queried
structure. The importance value of a geometry is determined
by the depth of its corresponding node in the traversal tree
rooted at the queried node. This provides the queried result
in a focus+context manner, where the queried geometries are
the focus and other geometries provide the context.

Sorger et al. [SBS∗13] designed neuroMap, an interactive
graph in the form of a circuit-style wiring diagram that ren-
ders the brain of a fruit fly and its interconnections. They pre-
sented an anatomical layout to emulate an abstract view of
the fruit fly’s brain. Three different types of nodes, namely,
cell body nodes, arborization nodes, and neuropil nodes, are
designed to represent different structures. To demonstrate
the connection among different elements, they used pro-
jection edges connecting cell body nodes and arborization
nodes as well as overlap edges among arborization nodes.

Nowke et al. [NSvA∗13] introduced VisNEST for users to
inspect connections among brain regions and neural activi-
ties. VisNEST consists of three views: a connectivity view to
visualize how each brain area is connected to others; a flux
view to show the time-dependent neural activities between
brain areas, where the sizes of nodes and edges are used to
encoded the self-flux and flux between areas, respectively;
and a population view to display activities and connectivi-
ties within each area.

3.4. Relationship Graph for Movement Data

Spatiotemporal movement data (e.g., traffic or trajectory
data) are often encoded by graphs as well. For example,
Guo [Guo09] visualized the population migration through
flows using a location-to-location graph. Each node in the
graph represents a location, and an edge indicates the flow
between two locations. A spatially constrained graph parti-
tioning method is applied to construct a hierarchy of spatial
regions, and the flows are then aggregated at the regional
level. Multiple variables are associated with the flow, such
as the number of migrants for different age and income lev-
els. Multivariate clustering is performed for flow clustering.
A separate parallel coordinates visualization is provided, so
that users can brush this view to filter the flows.

von Landesberger et al. [vLBR∗16] proposed Mobility-

Figure 11: Clusters of MobilityGraph showing the flows of

people. (a) the calendar view of temporal clusters. (b) the

interface for obtaining graphs with various levels of detail.

(c) the cluster overview showing the representative graph

for each cluster. Image courtesy of von Landesberger et al.

[vLBR∗16] c©2016 IEEE.

Graph to visualize mass mobility dynamics. The spatial sit-

uations, i.e., the presence and flows of people at certain
time intervals, are represented by graphs. Similar to the
work of Guo [Guo09], they first simplified the spatial sit-
uations by aggregating neighboring places. Then, they ap-
plied a density-based clustering to group the places into re-
gions based on spatial closeness and flow magnitude. The
clustering parameters can be adjusted interactively to obtain
graphs with various levels of detail. To obtain the common
patterns of situations, they performed a temporal clustering
on the simplified situations based on their similarities. A fea-
ture vector consisting of a set of flow magnitudes is gener-
ated to characterize each situation. The similarity between
two situations is measured by the difference between the cor-
responding feature vectors. For temporal clusters, they em-
ployed a calendar view to show the relationships among situ-
ations along with one representative situation in each cluster.
Figure 11 shows an example of MobilityGraph.

Huang et al. [HZY∗16] designed TrajGraph to study ur-
ban network centralities using taxi trajectory data. Each node
in the graph represents a road segment, and an edge ex-
ists between two nodes if the corresponding road segments
are connected. They applied a graph partitioning method to
generate the region-level graph from the original street-level
graph. Unlike other approaches, a region in this graph in-
dicates a connected set of streets, which is not necessar-
ily a spatial cell. Different partitions can be obtained based
on different vertex weight assignments, including the length
of streets, number of taxis, average travel time, and aver-
age speed. They measured the centrality or betweenness to
characterize the time-varying importance of regions. Three
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Figure 12: Different feature tracking events: continuation,

bifurcation and amalgamation for matched features, and

creation and dissipation for unmatched ones.

different views are provided to visualize the centralities: a
node-link graph view, a map view, and a temporal informa-
tion view.

3.5. Feature Correspondence and Tracking

An important task for time-varying data analysis and visual-
ization is feature extraction and tracking. An early work by
Samtaney et al. [SSZC94] extracts features (i.e., regions that
fulfill certain criteria) and makes correspondence in neigh-
boring time steps. The features are matched through their
attributes such as the centroid, volume and mass. For the
neighboring two time steps, they compared every feature
pair for a possible match. If there is a match, then the two
features are corresponded based on the relation of continua-
tion. After removing all the continuous features, they com-
pared the combination of multiple features to test for bifurca-
tion or amalgamation cases. The remaining unmatched fea-
tures are considered to be dissipation or creation. Figure 12
illustrates these five different events commonly identified in
feature tracking. The evolution of features over time can be
mapped to a directed acyclic graph (DAG) which records
feature correspondence.

A limitation of the work by Samtaney et al. [SSZC94] is
that since all feature combinations need to be considered for
the decision of bifurcation and amalgamation, the computa-
tion cost remains high. To reduce the cost of comparing all
the feature combinations, Silver and Wang [SW97] utilized
octrees to store all the features, which allows fast identifica-
tion of feature overlapping in space. Spatial overlap is used
to determine feature matching. For a selected feature in one
time step, they found out those candidate features in the next
time step which overlap it. Then they applied a normalized
volume difference test to choose the best matching from the
candidates.

Commonly used approaches for feature extraction include
region growing with a certain threshold or extracting the iso-
surfaces with a given isovalue. Woodring and Shen [WS09]
found the features at each time step using a k-means clus-
tering algorithm. For each time step, they first generated k

clusters based on the input time-activity curves within a time
interval. Then they created a directed graph that connects the
clusters over time. To find the links between features, they
estimated the probability of transferring one feature to an-
other by computing the distance of their time histograms.

The recent work of Ozer et al. [OSBM14] advances the
state-of-the-art feature tracking by leveraging Petri Nets to
model and detect activities in scientific visualization. Petri
Nets are graph-based techniques that model and visualize
various types of behaviors. The Petri Nets model includes
places (types of possible object states), transitions (condi-
tions or actions between places), and directed arcs (connec-
tions between places and transitions). Based on the results
of feature extraction and tracking, they utilized Petri Nets to
model the activity of interest and ran the algorithm for hy-
pothesis validation.

For biological data, Heiland et al. [HSS∗12] presented
CompuCell3D, a system that identifies individual cells and
visualizes their connections using a connectivity graph. They
provided multiple example models to perform cell sorting
simulations. Cell sorting is a biological procedure where
cells adhere to one another to varying degrees depending on
their cell types, leading to a certain pattern. During the cell
sorting simulation, the positions of cells may change to re-
flect the adhesion among the cells. CompuCell3D creates a
graph representation for any time step of the simulation and
provides two types of layouts to visualize the graph. Using
the cell’s centers of mass as the positions of nodes, one lay-
out represents the spatial distribution of different types of
cells. Using the other spring layout, the spatial positions of
nodes emphasize the neighboring connectivities of cells.

Parulek et al. [PTRV12] proposed to extract cavities in
molecular simulations and represent them and their connec-
tions using a cavity graph. Unlike most of the graph-based
techniques which generate a 2D layout of the graph, the cav-
ity graph is embedded in the molecular, which provides the
contextual information. For each connected component in
the graph, they computed three graph component measures:
the longest path between any two nodes, the average of the
shortest paths between the nodes, and the average of the de-
grees of all the nodes. For effective exploration, two accom-
panying scatterplots of the graph components are provided
to support brushing and linking. One scatterplot depicts a se-
lected graph component measure against time, and the other
depicts two selected graph component measures against each
other over all time steps of the molecular simulation. Figure
13 demonstrates an example of using these scatterplots to
identify a graph component.

Lindow et al. [LBBH12] presented a dynamic molecular
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Figure 13: The cavity graph that presents the cavities and

their connections in the context of the protein. A graph com-

ponent group of medium maxLength and medium degree val-

ues is selected from the top-left scatterplot. The cavities are

then identified from the top-right scatterplot in three consec-

utive time steps. Image courtesy of Parulek et al. [PTRV12]

c©2012 IEEE.

visualization in the same context as the work by Parulek et
al. [PTRV12]. Similarly, static molecular path components
are identified at each time step and represented by graph
components. But instead of using a scatterplot over time to
brush and link certain static paths, they visualized dynamic
paths consisting of a large number of components that are
accumulated over time. In this way, splits and merges are
shown more clearly since the static paths from different time
steps are displayed together. The dynamic paths color the
components by time, so that the development of paths can
be tracked by following color transition.

For traffic data, Wang et al. [WLY∗13] analyzed traffic
jams and their propagation. They first detected traffic jam
events in the trajectory data and then constructed a propaga-

tion graph, where each node in the graph represents a traffic
jam event. There is a directed link between two events point-
ing from the earlier event to the later one, if they are tempo-
rally overlapping and spatially connected. Other than using
the spatial view to visualize the traffic densities, they pro-
vided multiple views to explore the relationships among the
propagation graphs: the graph list view for showing the traf-
fic jam propagation graphs one-by-one in some sorted man-
ner; the multi-faceted filter view for filtering the propagation
graphs by time and size; and the graph projection view for
demonstrating the relationships among graph clusters, where
graphs in the same cluster share a similar topology.

3.6. Parallel Processing and Visualization

Trees and graphs have also been designed to facilitate data
distribution and task partitioning for high-performance par-
allel visualization applications. For parallel visualization of
3D unsteady flow fields, Yu et al. [YWM07] constructed
a hierarchical 4D representation of the spatiotemporal data
so that pathline tracing can be treated as streamline trac-
ing in 4D. They built an adaptive grid for hierarchical vec-
tor field clustering. The clustering merges neighboring grid
cells of similar patterns and yields a binary cluster tree. At
runtime, they traversed the binary cluster tree to obtain the
seeds from the clustering of the adaptive grid representation.
The streamlines are then traced in parallel in the original 4D
vector data to generate pathline results.

For parallel feature extraction and tracking, Wang et al.
[WYM13] presented a solution that extracts local partial fea-
tures at individual processors and then integrates partial fea-
tures based on the connectivity information to extract and
track features in parallel. Specifically, for each block, they
created a local connectivity tree with six children corre-
sponding to its six spatial neighboring blocks. The proces-
sor associated with its assigned block communicates with
its neighbors to exchange the centroids and the minimal and
maximal region boundaries of the features. Such information
is used to match the features with the neighbors in the current
time step. Then, based on the local connectivity trees, they
created a global connectivity graph to store the information
of all the features in that time step. This process repeats for
the subsequent time steps. Since features normally change
little in neighboring time steps, feature movements could be
identified through their movements between processors in
the global connectivity graph.

For parallel streamline generation, Nouanesengsy et al.
[NLS11] designed the flow graph, a directed weighted graph
to estimate the workload for each data block. They followed
the work of Flow Web [XS10] for blockwise data parti-
tioning and random seed placement. While the Flow Web
counts the number of particles traveling through the bound-
aries of blocks, the flow graph calculates the corresponding
probabilities and treats them as edge weights. The result-
ing graph guides the estimation of particle movements. The
flow graph only stores the information of traveling through
blocks. No information of traveling within each block, such
as the lengths of streamlines in the block, is kept. During
each round of tracing, the algorithm also considers the av-
erage number of tracing steps per particle for more accurate
workload estimation and balancing.

3.7. Out-of-Core Field Line Tracing

For out-of-core streamline tracing, Chen et al. [CXLS12] de-
veloped the access dependency graph (ADG) to guide data
reorganization with the goal of reducing the I/O miss ratio.
In an ADG, a node represents a spatial data block, and an
edge connects two blocks if there are particles traveling be-
tween them. Besides spatially adjacent blocks, the ADG also
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considers non-adjacent blocks if they are on the same flow
path of a particle. A linear ordering of data block files is re-
quired for I/O performance optimization so that when a file
is needed and uploaded to main memory for streamline trac-
ing, its neighboring files would also be fetched to reduce the
I/O cost. Therefore, an appropriate reordering of files could
reduce the miss ratio. Unlike the flow graph [NLS11] which
only uses one-hop prediction, the ADG considers N-hop in
the prediction and the final ADG is the union of graphs G1
to GN . They formulated the optimal layout problem as a
graph linear arrangement problem. The miss ratio is mini-
mized when the sum of distances in the file for data blocks
along the same flow paths is minimal.

Chen et al. [CNLS12] further extended the ADG for out-
of-core pathline tracing. Each node in the ADG is called a
time block which consists of the blocks at the same loca-
tion in a time period. A directed edge connects two time
blocks if there exists pathlines passing through them. Each
edge is assigned a weight equal to the probability of seeds
moving from one block to the other. The finite-time Lya-
punov exponent (FTLE) helps users study the existence
of the Lagrangian coherence structures (LCS) by quantify-
ing the separation of flows. However, in order to produce
a high-resolution FTLE field, we need to trace a pathline
from every grid point and at every time step, which is very
time-consuming. Chen and Shen [CS13] presented an out-
of-core solution for efficient FTLE and pathline computa-
tion through reducing I/O cost and maximizing data reusing.
They first utilized the ADG to estimate the tracing prob-
abilities between neighboring blocks and then applied the
discrete-time Markov chains on the ADG to predict the prob-
abilities between all the blocks. Finally, they performed seed
scheduling to select and order the seeds for tracing at each
round to maximize the usage of data blocks.

4. Structure-wise Representations and Techniques

Scientific visualization often deals with discrete data sets
with values sampled at grid points in a volume. Extract-
ing the structural information from discrete data is criti-
cally important toward efficient understanding of the under-
lying data. For instance, there is a large body of work on
the model-based visualization of vascular structures in med-
ical visualization [PO08]. Vasculature is represented and an-
alyzed by means of a branching graph [HPSP01].

Topology refers to a structure imposed upon a data set that
essentially characterizes properties of space such as conver-
gence, connectedness and continuity. Topology-based meth-
ods provide a concise and rigorous description of the over-
all structure and lead to mathematically sound tools for pro-
cessing, exploration and visualization of scientific data sets.
Topological methods based on Morse theory include several
abstract representations for studying scalar fields: contour
trees, Reeb graphs, and Morse-Smale complexes. Morse the-
ory shows that topological changes in scalar field data de-
fined on manifolds occur at distinct isolated points, i.e., criti-

Figure 14: The contour tree with horizontal lines corre-

sponding to level sets (a) to (f) produced at six distinct points

during sweep from high to low isovalue. Note that in (f), con-

tour η is separated into invisible inner (ι) contour and visible

outer (θ) contour. Image courtesy of Carr [Car04].

cal points. The Reeb graph shows the evolution of individual
contours using these critical points and their relationships.
The contour tree is a representation that records changes in
the topology of the level sets (i.e., isocontours) of a scalar
field. It is a special case of the Reeb graph where the graph
forms a tree structure for simply connected domains. The
Morse-Smale complex is a partition of the domain into cells
according to the gradient of the scalar field. In this survey,
we restrict our attention to contour trees since they are most
widely used in scientific visualization applications.

The contour tree captures the topological evolution of an
isosurface as the isovalue changes. Since the domain is sim-
ply connected, it does not contain loops. As shown in Figure
14, in a contour tree, nodes represent critical points where
the number of components varies. Critical points have three
classes: minima, maxima and saddles. Leaf nodes are ex-

trema (i.e., minima and maxima) representing the creation
or deletion of components. Interior nodes are saddles repre-
senting the joining or splitting of two or more components.
An arc represents contours between critical points, i.e., con-
tours which do not change topology as the isovalue varies
between critical values. The value difference of two nodes
along an arc is called persistence which measures the impor-
tance of the corresponding topological features.

The contour tree can be created by first scanning the data
set twice: one pass to create the join tree and the other pass to
create the split tree, and then merging the join and split trees
together [CSA03]. A merge tree (i.e., a join or split tree) is
a substructure of contour trees that tracks either merges or
splits of the isocontours.

4.1. Contour Trees and Reeb Graphs

As an abstraction of a scalar field that encodes the nesting
relationships of isosurfaces, the contour tree has been used to
accelerate isosurface extraction, to identify salient isovalues,
and to guide exploratory visualization.

Bajaj et al. [BPS97] introduced the use of contour spec-
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Figure 15: A flexible isosurface chosen from a simplified

contour tree. The rightmost pane controls the amount of sim-

plification of the contour tree shown immediately to its left.

The interface supports interactive exploration of structures

that are hidden in the conventional view. Image courtesy of

Carr et al. [CSvdP04] c©2004 IEEE.

trum for exploring complex scalar fields. The contour spec-
trum provides an interface which plots properties such as
isosurface area and enclosed volume, along with the con-
tour tree, for users to explore interesting isosurfaces. Carr et
al. [CSvdP04] designed an effective contour tree simplifica-
tion algorithm that computes local geometric measures for
individual contours and uses them to suppress minor topo-
logical features in the data. The contour tree is simplified
with two operations: leaf pruning and vertex reduction. As
shown in Figure 15, they presented a flexible isosurface in-
terface to explore individual contours interactively. Carr et
al. [CSvdP10] presented an interface that allows users to se-
lect an individual contour for manipulation. The contour can
be selected from the contour tree or the isosurface display.
A set of functions such as contour removal, contour evolu-
tion, and contour tracking is provided. These functions are
realized based on the attaching of isosurface seeds (i.e., path
seeds) to each edge of the contour tree so that individual
contours can be extracted on demand.

Galvani et al. [GKHS98] presented a solution for volume
animation using the skeleton tree. They extracted skeletal
voxels and connected them to form a graph based on spa-
tial closeness and value similarity. The minimum spanning
tree is extracted from the graph to yield the skeleton tree,
which suggests the shape of the object. Using line segments
to connect skeletal voxels, one can generate a skeletal struc-
ture that is amenable for intuitive motion and deformation.

Takeshima et al. [TTFN05] utilized the volume skele-

ton tree to define topological attributes as additional in-
put for specifying multidimensional transfer functions. Their
settings of transfer functions are based on fixed topolog-
ical indices, such as depth of topological nesting. Weber
et al. [WDC∗07] generalized the work of Takeshima et al.
[TTFN05] by allowing the user to assign independent trans-
fer functions to topologically distinct features. These fea-

Figure 16: The topological landscape of the fuel data set.

Peaks correspond to maxima and valleys correspond to min-

ima. The main mountain is presented in a semi-transparent

gray to facilitate the visualization of deep valleys and its

center is marked by a flag. Images courtesy of Weber et

al. [WBP07] c©2007 IEEE.

tures do not need to share the same topological indices. They
segmented a volume into regions where each region corre-
sponds to a branch of a hierarchical contour tree decomposi-
tion, and applied a separate transfer function to each region.
Zhou and Takatsuka [ZT09] used the contour tree as a visual
index to volume segments and utilized topological attributes
for automatic transfer function specification. They employed
the opacity residue flow model to contour tree branches and
provided user interfaces for generating the transfer function.

Pascucci et al. [PSBM07] proposed an approach to com-
pute Reeb graphs for simplicial complexes of any dimen-
sion. In practice, this kind of approach is usually applied to
3D meshes for geometry modeling. In a Reeb graph, nodes
represent the critical points, i.e., maxima, minima and sad-
dles. Edges indicate the connection of these critical points.
The Reeb graph can be considered as a representation where
the contours of a function are contracted into points. They
described an online noise removal method to deal with the
often noisy real-world data. This procedure removes the
extremum-saddle pairs based on the persistence values of a
series of arcs connecting them. They further simplified the
Reeb graph to provide a coarse-to-fine hierarchy.

Weber et al. [WBP07] introduced the topological land-

scape, a 2D terrain with the same topology as a given high-
dimensional data set for easy understanding the topologi-
cal structure. They first extracted the contour tree from a
scalar function, then constructed its branch decomposition
[PCMS05], and finally recursively created a terrain with the
same topological structure as the original data. The topolog-
ical landscape also preserves the persistence and volume of
each feature. It provides a powerful interface to complement
existing contour tree based techniques. Figure 16 shows an
example of topological landscape. Based on the topological
landscape metaphor, Harvey and Wang [HW10] presented
topological landscape ensembles, a collection of 2D terrain
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Figure 17: The topological spine of the neghip data set.

The spine preserves the symmetry and cyclic structure of the

molecule. Images courtesy of Correa et al. [CLB11] c©2011

IEEE.

models which preserves the contour tree of the input high-
dimensional scalar field. They leveraged the treemap lay-
out [Shn92] to construct the terrain layout and provided a
simple interface for users to explore the terrain model.

Doraiswamy et al. [DFD∗14] formalized the relationship
of regions in traffic data using topological persistence over
a scalar function. The scalar function is usually but not con-
strained to the densities of traffic over a spatial domain. In
their graph, each node is a critical point of the scalar func-
tion. Considering a sweep of the function in the decreasing
order of function value, both the nodes and their connectiv-
ities vary according to the sweep. They captured the sub-
level and super-level changes of connectivity using the split
tree and join tree, respectively. In addition, the minima and
maxima of the function are used to represent the events in
the data. Each minimum or maximum corresponds to a sub-
graph, and their relationships are measured by subgraph sim-
ilarities. They grouped the events based on the similarities
for querying using the event group index.

4.2. Neighborhood Graphs

Neighborhood graphs connect points based on their proxim-
ity information to create a geometric structure of the data.
Well-known examples of neighborhood graphs include the
k-NN graph, relative neighborhood graph [JT92], and De-

launay triangulation.

Bremer et al. [BPH05] presented the cancellation tree

which simplifies a Morse-Smale complex of a function’s
topology by successively canceling pairs of critical points.
Through effective encoding the cancellations, they produced
an adaptive topology-based multiresolution representation
of the function. This leads to a concise subset of the Morse-
Smale complex that connects maxima or minima in a tree.
Gyulassy et al. [GNP∗06] proposed a topological approach
to simplify Morse-Smale complexes derived from 3D scalar
functions. This approach is based on the cancellation as well.
They descried two types of cancellation to remove critical
point pairs between two saddles, or between a saddle and

an extremum. They ordered the pairs of critical points by
the persistence values, so that those with smaller persistence
values will be canceled first. The persistence value of a pair
of critical points is defined as the absolute difference of the
scalar values of the corresponding critical points.

Correa et al. [CLB11] introduced topological spines, a vi-
sual representation that preserves both topological and struc-
tural properties of a scalar field. Topological spines are based
on extremum graphs that describe the connectivity of the
spine by connecting critical points along steepest ascend-
ing (or descending) lines. Topological spines are enhanced
visual representations of extremum graphs with geometric
and contour nesting information. They not only abstract the
shape and structure of complex 3D scalar data, but also
present 2D maps to facilitate feature selection and tracking.
As shown in Figure 17, compared with other representations
such as the contour tree and Morse-Smale complex, topolog-
ical spines are better suited for spatial reasoning due to the
preservation of the topology and locality of extrema and the
nesting structure of the surrounding contours.

Correa and Lindström [CL11] studied the empty region

graphs (ERGs) to improve the robustness of neighborhood-
based analysis methods. In an ERG, two points are con-
nected if a canonical region around them does not contain
any other point. Examples of ERGs are the nearest neigh-

bor graph, relative neighborhood graph, Gabriel graph, di-

amond graph, and β-skeletons [CL11]. They generalized
ERGs to natural ERGs (which guarantee certain neighbor-
hood and space partitioning properties), relaxed ERGs (a
variation which is less sensitive to the sparsity and distribu-
tion of samples), and stochastic ERGs (a generalization that
introduces the likelihood of samples being neighbors).

4.3. Topological Feature Tracking

Soho and Bajaj [SB06] applied the contour tree for time-
varying contour tracking. They first constructed the contour
tree at every time step and computed the correspondence in-
formation among contour trees across time steps given an
isovalue. The topology change graph is constructed by cre-
ating a node for every intersection point and connecting each
pair of intersection points where their representative con-
tours correspond to each other. This graph allows detection
of significant topological and geometric changes in time-
varying isosurfaces. It also serves as an interface for users to
segment, track and visualize the evolution of selected con-
tour components over time.

Bremer et al. [BWT∗11] constructed a hierarchical merge

tree for each time step with augmented attributes using a
streaming algorithm and then created tracking graphs to cap-
ture the temporal evolution of features. As shown in Figure
18, a linked-view interface is provided to explore the time
evolution of the graph along with segmented data features.
Widanagamaachchi et al. [WCB12] built a compact meta-

graph to store the sequence of feature families and to en-
code all possible tracking graphs and relevant attributes. At
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Figure 18: (I) 3D display of the segmentation of burning cells from the turbulent combustion data set with various interface con-

trols (II to IV). (V) interactive display of the tracking graph. A selected node is highlighted in (VI) and its attribute information

is displayed in (VII). (VIII) is for subsection of segments based on attribute values. Image courtesy of Bremer et al. [BWT∗11]

c©2011 IEEE.

run time, they interactively extracted, filtered and simplified
a dynamic tracking graph from the meta-graph to explore
the temporal evolution of features. The tracking graph also
provides a user interface that is integrated into the 3D view
of current feature sets for brushing and linking.

For multivariate feature tracking, Bennett et al. [BKL∗11]
encoded the set of all possible flow features by pre-
computing merge trees augmented with attributes. The re-
sulting multiresolution feature hierarchy enables flexible and
interactive feature analysis, allowing the exploration of the
entire feature family without accessing the original data.
McLendon et al. [MBB∗12] developed an attributed rela-

tional graph (ARG) to capture the structural relationships
defined by multiple variables. In the ARG, nodes represent
features defined by an arbitrary number of variables, and
edges encode the relationship between these features both
within and across time steps. They presented a query-based
search interface for users to identify events of interest char-
acterized by subgraph-isomorphism search heuristics.

4.4. Symmetry Detection and Structure Comparison

Thomas and Natarajan [TN11, TN13] studied the symme-
try in scalar field topology. Symmetry in scalar fields refers
to different parts of the data that are invariant in the scalar
field distribution. In [TN11], they analyzed the topology of
level sets in a scalar field using the contour tree to detect
symmetric patterns. With a similarity measure for compar-
ing subtrees, they identified subtrees in the contour tree that
are similar for grouping and extracted regions corresponding
to a common group as symmetric components. In [TN13],
they presented the augmented extremum graph and designed
a symmetry detection algorithm based on robust distance es-

timation. The augmented extremum graph is based on the
extremum graph [CLB11]. It captures both topological and
geometric information of the scalar field and enables compu-
tationally efficient detection of symmetry. This method im-
proves the previous work [TN11] in that it is aware of the
underlying geometry and can detect global symmetry even
in the presence of significant noise.

Schneider et al. [SWC∗08] presented a solution for inter-
active comparison of scalar fields using isosurfaces. They
defined features as the largest contour segmentation after
topological simplification and compared features based on
their spatial overlap. They designed the similarity browser

to show the similarities between features and used the con-
tour trees for navigation. They also combined the contour
tree with the λ2 algorithm to detect and compare features in
fluid-flow related scalar fields. Saikia et al. [SSW14] stud-
ied the topological structures defined by their sub-level or
super-level sets for identifying repeating structures. They in-
troduced the extended branch decomposition graph (eBDG)
which represents a forest of branch decomposition trees

(BDTs) [PCMS05] where each of the BDTs is computed
from a subtree of the merge tree. The eBDG is leveraged
to finding similar structures in the same data set, detecting
periodic patterns in different time steps, and comparing the
topology in different data sets.

Chan et al. [CQC∗08] presented a relation-aware pipeline
for volume exploration. They employed region connection
calculus (RCC) to define relations between structures in a
volume and represented these relations as a relation graph

for understanding and navigation. In their relation graph,
nodes represent segments (i.e., homogenous regions) and
links represent the spatial relations between segments. Un-
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Figure 19: Visualization of the topological skeleton along

with saddle connectors. A double flow ribbon approach is

applied to visualize the orientation of the separation sur-

faces in the neighborhood of the saddle connector. Image

courtesy of Theisel et al. [TWHS03] c©2003 IEEE.

like the contour tree which focuses on the nesting relations
of isosurfaces, the relation graph focuses on structure seg-
ments and considers a more complete set of spatial relations
(separate, touch, overlap and enclose).

4.5. Vector Field Topology

Topological analysis of vector fields is based on the critical
points and their connections through integration of special
streamlines called separatrices [HH89]. The resulting topo-
logical skeletons enable users to visually comprehend the
structure of the vector field by partitioning the domain into
subregions of uniform flow behaviors.

Visualization of the topological skeleton of a 3D vector
field requires simultaneous display of a large number of
streamsurfaces, which easily leads to visual clutter. To ad-
dress this issue, Theisel et al. [TWHS03] presented saddle

connectors that create sparse visual representations by rep-
resenting separation surfaces as a finite number of stream-
lines. These streamlines are the intersection curves of sep-
aration surfaces, and start and end in saddle points. Figure
19 shows an example of the topological skeleton with saddle
connectors.

Based on Morse decompositions, Chen et al. [CML∗07]
presented the Morse connection graphs (MCGs) and their
refinement entity connection graphs (ECGs) to extract and
visualize boundary flow topology on surfaces. MCG aug-
ments the vector field skeleton by addressing periodic or-

bits. Szymczak and Sipeki [SS13] presented an algorithm
for drawing the MCG for topologically rich vector fields.
The proposed visual representation of the MCG preserves
the spatial relationships between its arcs and nodes and high-
lights the coherence between connecting trajectories.

The transition graph [SZ12] and super-transition graph

[Szy11] have been proposed for robust and stable Morse de-
compositions for piecewise constant vector fields. The dif-

ference between these two graphs is that a transition graph
represents trajectories of a single piecewise linear vector
field, while a super-transition graph represents trajectories
of all feasible vector fields.

4.6. Multifield Topology

Compared with univariate scalar field topology, much less
work has been done on topological analysis and visualiza-
tion of multivariate scalar fields. Carr and Duke [CD14] in-
troduced joint contour nets (JCNs) which generalize the con-
tour tree analysis for univariate scalar fields to multifields.
The JCN is an approximation of the Reeb space of an arbi-
trary number of variables. The quantized contour trees of the
single fields can be extracted from the JCN using a quotient
graph algorithm. Before the entire concept of JCN was pub-
lished, Duke et al. [DCK∗12] also described an application
of using graph-based techniques to visualize the JCN and
analyze simulation data from nuclear physics, which leads
to the insights into the detection of nuclear scission. Using
multiple examples, they discussed practical methods for vi-
sualizing the JCN from many aspects, including effective-
ness and aesthetic criteria. Huettenberger et al. [HHC∗13]
extended the topological structures from single scalar field
to multifields using the concepts of Pareto optimality and
Pareto dominance. For multivariate point clouds, Riech et
al. [RL14] introduced the simplicial chain graphs as a vi-
sual metaphor of the inhomogeneous topological structure.
They calculated the persistent homology of the data set and
derived a localized description of simplicial chains, from
which a graph structure was created to obtain the structural
information.

5. Provenance-wise Representations and Techniques

Provenance refers to the lineage of an item. In the context of
scientific workflow, it refers to all the information necessary
to reproduce a certain piece of data. Although not a great
deal of work relating to provenance- or history-wise graph
representations and techniques has been done, this direction
of research has its distinct foci and unique purposes. It dates
back to the concept of “visualizing visualizations” [Ma00]
which aims at better managing and exploring visualization
processes and results. Later works extended this idea to sto-
rytelling generation, animation creation, and simulation pa-
rameter space exploration. For provenance visualization, the
graphs produced resemble flowcharts widely used in design-
ing and documenting complex processes or programs.

5.1. Visualizing Visualizations

The process of visual data exploration contains a wealth of
information: parameters, results, history, as well as relation-
ships among them. To learn lessons and share experiences,
the process itself can be stored, tracked and analyzed. It can
also be incorporated into, and thus becomes a part of the
user interface of a visualization system. The work of image

graphs by Ma [Ma99] was the first that visualizes the vi-
sualization process. As shown in Figure 20, image graphs
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Figure 20: Image graph for exploring the furnace data set.

The user first searches for an appropriate color transfer

function before deriving the desirable visualization shown in

the lower right image. Image courtesy of Ma [Ma99] c©1999

IEEE.

represent not only the results but also the process of data vi-
sualization. Each node in an image graph records an image
and the corresponding visualization parameters used to pro-
duce it. Each edge in the graph shows the change in render-
ing parameters (e.g., color, opacity, rotation, zoom, shading,
sampling, etc.) between the two nodes it connects.

Jankun-Kelly and Ma [JKM01] introduced a spreadsheet-

like interface for visualization exploration. The interface dis-
plays the visualization parameter space and presents a clear
correspondence between parameters and results through tab-
ular organization. Jankun-Kelly et al. [JKMG02] further for-
malized a general model of the visualization exploration pro-
cess. They designed the derivation graph, a collection of di-
rected acyclic graphs to represent relationships between pa-
rameter value derivations. Each node in the graph represents
a single session result. A directed edge exists between two
nodes if and only if the node with the outgoing edge derives
the node with the incoming edge.

Woodring and Shen [WS06b] proposed a volume shader
for users to easily select and operate on many data volumes
to create comparative visualization. They showed the con-
textual visualization of the volume shader by converting it
to a volume tree. In a volume tree, nodes are operators and
input data fields, and edges are input and output connections
between operators. The visualization result is the root, and
all input fields are leaves. One operational step forward in
forming the final result is indicated by one level of the tree.
The context is defined as the suboperations (i.e., subtrees of
the volume tree) that form the final result.

Mayerich et al. [MBTR11] formulated a metric to com-
pare hierarchical trees generated by different tracking and
segmentation algorithms using neuron and microvascular
data sets. In the context of neuron data sets, nodes in

Figure 21: A storyboard of the time-varying five jets data

set. Blue to green to red are for early to middle to later time

steps. Image courtesy of Lu and Shen [LS08] c©2008 IEEE.

this kind of trees represent end points or branch points of
fibers, and edges represent fiber filaments. The metric evalu-
ates both geometry differences and connectivity differences.
These difference values are mapped to colors of nodes and
edges for visual tracking.

5.2. Storytelling, Animation and Simulation

Storytelling provides a powerful means for exploration and
communication of data. Ma et al. [MLF∗12] referred to sci-

entific storytelling as telling stories using scientific data.
Wohlfart and Hauser [WH07] introduced a story model that
includes story nodes and story transitions. Story nodes are
major steps or milestones in which a story briefly halts (for
interactive exploration by the story consumer, for exam-
ple) and then resumes. Story transitions connect story nodes
smoothly leading from one node to the next.

Lu and Shen [LS08] presented an interactive storyboard

for time-varying data visualization. As shown in Figure 21,
the storyboard displays sample images and line drawings
in a clear 2D layout to summarize complex data dynamics,
such as relevancies and differences, in a concise and effec-
tive manner. Yu et al. [YLRC10] designed an event graph for
automatic animation of time-varying data. The event graph
embeds a tree-like structure and includes nodes, tree links,
and relation links. Nodes represent event features from sev-
eral aspects and at different scales. Tree links indicate the
child and parent relationships of nodes belonging to the same
feature aspect. Relation links indicate the similarities of time
durations of nodes from different feature aspects. Balabanian
et al. [BVG10] explored the combination of hierarchical data
space and 3D spatial space. The input volumetric data set is
segmented and hierarchically organized. They utilized a tree
as a guiding structure for visual exploration of relationships
among segmented components. The spatial characteristics of
the data were integrated within the abstract view.
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Figure 22: The VisTrails builder and spreadsheet show the dataflow and visualization products. Image courtesy of Silva et

al. [SFC07] c©2007 IEEE.

For biological data, Wait et al. [WWB∗14] used a lin-

eage tree to depict the development of proliferating cells.
The parent-daughter relations among the proliferating cells
are tracked in consecutive time steps, and the cell that ap-
pears earlier is assigned to be the parent. Unlike traditional
lineage trees that communicate information such as the cell
cycle time and the number of progenies, this work focuses
on revealing the spatial relationships between stem cells and
their nutrient source. In their lineage trees, the vertical lines
are perturbed and the x-axis is used to reflect the distance be-
tween a particular stem cell and its nearest vasculature voxel.

Timelines are commonly used in animation control and
parameter exploration. Related work in this direction in-
cludes the timeline-based mixer (including multiple tracks
and a template chooser) for creating animations for volume
visualization [AWM10] and the timeline-based graph for ex-
ploring simulation parameter space [BM10]. For traffic data,
Wang et al. [WYL∗14] visualized the traffic over a long pe-
riod through dynamic graph animation. In this context, each
spatial cell is represented by a node, and the traffic between
two cells is visualized as an edge. For each cell, the traffic
speed is indicated by node color. In addition, the ‘>’ sign is
used inside the node to show the flow direction, and the num-
ber of ‘>’ signs represents the relative flow volume passing
the cell. To explore the graph over time, they created the
pixel table view over location and time for different prop-
erties, such as abnormality, flow volume, and traffic speed.
With this view, users can locate a certain time point with de-
sired properties. Moreover, they created an intuitive anima-
tion to show vehicle movements in the local animation view.
They also used the link/route filtering view to compare flow
patterns on upstream/downstream links of a central cell.

5.3. Provenance Visualization

Typical visualization solutions only require final results. Be-
sides final results, provenance visualization also includes
capabilities for visualizing intermediate or partial results,
derivation processes, and any information associated with
used sources. Provenance techniques can facilitate the com-
prehension, verification and reproduction of scientific results
by providing access to information about the sources and
methods used to derive them.

The most notable example of provenance visualization is
VisTrails [BCC∗05, SFC07], a system that provides infras-
tructure for data exploration and visualization through work-
flows. An example of VisTrails builder and spreadsheet is
shown in Figure 22. Provenance information managed by
VisTrails refers to the modifications (e.g., addition, deletion
or replacement) or history of changes made to a particu-
lar workflow in order to derive a new workflow. VisTrails
renders this history of modifications as a tree-like structure
where nodes represent a version of some workflow and edges
represent the modification applied to a workflow in order to
derive a new workflow. Upon accessing a particular node of
the provenance tree, users are provided with a rendering of
the scientific product which is generated as a result of a par-
ticular workflow associated with the node. Due to the clear
separation between the specification of a pipeline and its ex-
ecution instances, VisTrails features powerful scripting ca-
pabilities and provides a scalable mechanism for generating
a large number of visualizations.

Groth and Streefkerk [GS06] presented a conceptual in-
teraction model to support provenance and annotation for
visual exploration systems. In their interaction graph, nodes
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represent measurable states of the visualization system and
edges denote transitions between states. States of the system
are generically captured in the model and transitions might
contain discrete interactions, such as zooming, translation,
rotation, etc. Their model concisely captures state changes
made by the user so that the recall of the steps taken to
achieve the visual representation can be retrieved. By articu-
lating with annotations, the prototypes implemented support
a wide variety of knowledge discovery tasks as well as col-
laborative discovery and recall of past explorations.

6. Summary

Throughout this survey, we classify graph-based solutions
into four categories. Nevertheless, we are also aware that
there are other ways to slice and dice the papers covered in
this survey. In this section, we revisit these papers and reveal
their relationships from a different perspective. We divide
the pipeline of generating and utilizing a graph-based vi-
sualization into three stages: construction, organization and
exploration. For each stage, we summarize the most com-
monly adopted strategies with representative works. This
summary serves a different purpose than the four categories.
The four categories classify different approaches according
to their underlying structures, which helps readers obtain the
inner-connections among them. This summary, on the other
hand, emphasizes what have been done for each key stage of
graph-based visualization. It may provide a better guideline
for researchers to apply such a technique to their own work.

6.1. Graph Construction

Graph construction consists of the definition and identifica-
tion of nodes and edges. Node definition states what are the
basic elements in a graph, and edge definition states the re-
lationships to explore among these basic elements.

Node Generation. There are two major strategies to
generate the set of nodes in scientific visualization: spa-
tial/spatiotemporal partition and feature detection. Partition-
wise techniques and some relationship-wise techniques
adopt domain partitioning to generate nodes. For partition-
wise techniques, we usually leverage partitioning trees over
the spatial domain [Mea82] or hybrid partitioning trees over
the space-time domain [SCM99]. The generated nodes are
hierarchically organized with parent-child relationships. On
the other hand, it is common to start with a uniform par-
tition for relationship-wise techniques [GW11]. The nodes
represent non-overlapping regions and are without a hi-
erarchy at this point. Many techniques create hierarchi-
cal structures in a later stage by clustering nodes or par-
titioning the graph. An alternative approach to generate
the set of nodes is to extract features in data and rep-
resent them as nodes. Many relationship-wise techniques
[SSZC94, SW97, WS09, OSBM14] adopt this strategy, al-
though the actual methods to detect features vary. We re-
fer readers to Section 3.5 for details. Structure-wise tech-
niques share more common sense in terms of node defini-

tion. They usually detect critical points and treat them as
nodes [BPS97, CSvdP04, PSBM07, WBP07].

Edge Definition. The definition of edges is interre-
lated with that of nodes. For partition-wise techniques, we
straightforwardly derive edges from the parent-child rela-
tionships among nodes. Similarly, in most structure-wise
techniques, edge definitions come directly from the con-
cepts behind them, e.g., Reeb graphs and Morse-Smale com-
plexes. In structure-wise techniques, an edge usually indi-
cates the connectivity, e.g., the neighborhood relationship
[CL11]. In relationship-wise techniques, edge definitions are
more diversified. Edges may be generated by defining the
neighborhood relationship of two nodes using their spatial
distance [PTRV12] or their distance in the feature space,
such as transition probability [JS09, GW11]. They may also
originate from the hierarchical structure by clustering the
nodes [IVJ12, GRT14].

6.2. Graph Organization

Graph organization is needed since graphs generated at the
construction stage may not be ideal. Larger data sets lead to
larger graphs, which undoubtedly hinders the observation of
graph structures as well as encoded data information. In ad-
dition, scientific data sets are often complicated and contain
high-dimensional information. Therefore, ordinary graph at-
tributes, e.g., node positions and edge connections, are not
enough to present all the information. To deal with these is-
sues, recent works take an extra step to organize the graph.
Some techniques build a hierarchy on the nodes to simplify

the graph for clearer observation, while others develop a
more expressive representation to enrich the encoded infor-
mation, which is often application-specific.

Simplification. In relationship-wise techniques, the most
common way to simplify a graph is to group the nodes
and form a hierarchy. We can perform node grouping bot-
tom up by agglomerative clustering [PIB∗11] or top down
by graph partitioning [IVJ12]. The complete hierarchy can
be captured by tree-based representations [LLRR08, IVJ12,
GRT14], where all clusters at different levels are displayed.
An alternative strategy is to display the nodes correspond-
ing to coarse clusters at the beginning. Fine clusters are only
available when users expand a node [GW11, MWS13]. In
structure-wise techniques, it is also possible to simplify the
graph by canceling critical point pairs [BPH05, GNP∗06]
and build a coarse-to-fine hierarchy [PSBM07]. Note that
this simplification removes noise that is less persistent.
When information beyond node connectivity is encoded,
the associated information should be aggregated for pre-
sentation at a higher level. This is usually the case for
relationship-wise techniques. For example, in the migration
data sets, a node represents the population in a region, and an
edge represents the volume of migrants between two regions.
When the nodes are grouped, an aggregation is performed to
sum the population in a group of regions and the number
of migrants between groups of regions [Guo09, vLBR∗16].
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Besides explicit aggregation, information is sometimes ag-
gregated implicitly, e.g., via edge bundling. In Figure 10 (a),
the group-level connectivity is shown clearly with the bun-
dled graph.

Enrichment. The enrichment is designed to encode the
information that is not captured by ordinary graph attributes,
e.g., node size and edge weight. Whether enrichment is nec-
essary often depends on the application rather than the un-
derlying approach to construct the graph. The entire graph
may be redesigned for intuitive understanding: treemaps
were used to encode the level-of-detail quality in multireso-
lution volume rendering [WS05, WS06a]; topological land-
scapes [WBP07] indicate the scalar values associated with
critical points; and topological spines [CLB11] display nest-
ing structures to demonstrate the surrounding contours of
critical points. Other techniques use symbols to encode in-
formation on nodes: Sorger et al. [SBS∗13] designed neu-
roMap to visualize a fruit fly’s brain with different symbols
representing cell bodies, arborizations, projections, overlap-
ping information, and neuropils; Wang et al. [WYL∗14]
placed multiple ‘>’ signs in nodes to indicate the traffic
direction and volume. In addition, graph layouts can be
utilized to convey useful information. The graphs can be
embedded in the volume to provide contextual informa-
tion [BSL∗14,Guo09,PTRV12]. Wait et al. [WWB∗14] per-
turbed the vertical lines of a lineage tree to reflect the dis-
tance between a stem cell and vessels.

6.3. Graph Exploration

Direct exploration of graphs includes zooming and fo-
cus+context techniques for large graphs, brushing of nodes
and edges, and collapsing and expansion of subtrees, etc.
Another commonly adopted strategy for graph exploration
is to design multiple coordinated views. Those views usu-
ally plot the information about nodes which is not imme-
diately available from the graph view, so that users can se-
lect nodes or graph components that fulfill certain proper-
ties. Examples include parallel coordinates [LS16], scatter-
plots [PTRV12], pixel table views [WYL∗14], and other hy-
brid views [WLY∗13, HZY∗16, NSvA∗13]. A more recent
direction leverages graph mining solutions which directly
mine the graph itself for knowledge discovery. For instance,
Gu et al. [GWP∗16] detected features and communities on
the graph. Thomas and Natarajan [TN11, TN13] defined a
similarity measure of subtrees to detect symmetry structures.
Huang et al. [HZY∗16] partitioned the graph according to
the user-specified scalar property. Researchers also devel-
oped graph similarity measures and clustering solutions to
capture high-level information [vLBR∗16, WLY∗13].

7. Research Trends

Throughout this survey, we have observed several research
trends in graph-based representations and techniques for sci-
entific visualization:

From Internal to External Representations. Early work

on tree and graph structures focused on data representation
and organization, mainly for adaptive processing and render-
ing. These representations were mostly internal, addressing
issues such as data reduction and reuse, memory and I/O
efficiency, and rendering performance. Over the years, these
representations have gradually shifted from internal to exter-
nal. Most external representations display the graph in a sep-
arate 2D view to avoid occlusion rather than superimposing
the graph in the original 3D spatial data view. These external
representations go beyond the traditional boundary of sci-
entific visualization and incorporate information visualiza-
tion techniques toward effective analysis of scientific data.
Besides showing an overview of the data and relationships
as abstract visual graphs, they also serve as interfaces for
user interaction. In conjunction with the original data view
via brushing and linking, users are able to compare relation-
ships, track changes, and gain a more complete view and
flexible control over data navigation and exploration.

From Simple to Complex Graphs. Graph representa-
tions are moving from simple to complex, small to large, of-
ten with hierarchical, sometime compound structures. This
is partly because the research in scientific visualization has
moved from univariate to multivariate data, from scalar to
vector fields, and from steady to unsteady data. As the
data get larger and more complicated, the corresponding
graphs need to consider more advanced forms to encode var-
ious data relationships. Another reason that contributes to
this trend lies in the growing need to tackle big data with
coarse-to-fine analysis capability. Such a graph represen-
tation should allow users to not only gain a quick global
overview but also identify local features and patterns, in a
way that should be more simpler and easier to achieve in the
transformed graph view than in the original data view.

From Straightforward to Advanced Solutions. As
graphs derived from scientific data sets get larger and more
complex, more advanced graph techniques from information
visualization and graph drawing have been applied for effec-
tive visualization and interaction. From simple fixed graph
layouts such as circular layouts to flexible force-directed lay-
outs, from straightforward graph visualization to advanced
spectral layout and layered graphs, from single graph to
hierarchical and compound graph drawing, from steady to
dynamic graphs, this trend will remain active and we ex-
pect more applications of state-of-the-art graph visualization
techniques to investigate scientific data sets. We also expect
novel graph interaction and navigation solutions to be pre-
sented in order to handle the ever-growing graphs in terms
of both size and complexity.

8. Remaining Challenges

Remaining challenges for graph-based representations and
techniques in scientific visualization include the following:

Graph Simplification and Mining. As the graphs de-
rived from scientific data sets get larger and more complex,
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there is a pressing need to process and present the graphs in
a simplified form for easy human understanding and navi-
gation. Techniques such as graph simplification will be very
helpful to reduce the workload, both visually and manually,
of users toward cost-effective analysis. When the data set is
large and the relationships are complex, it might be simply
impossible for users to find out community structures and
track features over time in the resulting graph. Graph min-
ing solutions could automatically identify communities and
hotspots for detecting trends and anomalies, and align mul-
tiple graphs or subgraphs for finding common features and
distinct patterns. These solutions will be more efficient and
effective than simply asking users to extract relationships via
standard brushing and linking techniques. Such graph func-
tions represent a significant step forward and will be in great
demand for big data visualization.

Online Streaming and In-Situ Graphs. Most current
graph algorithms and techniques presented for scientific vi-
sualization, especially for those represented in a visual form
for navigation and interaction, are built offline and on a sin-
gle machine. Solutions for streaming, parallel and in-situ
scenarios have not been explored. To fully leverage the ag-
gregated computing power, we need to not only develop
online dynamic graph solutions for extreme-scale scientific
data but also incorporate graph generation, visualization and
interaction into parallel and in-situ visualization. Much work
remains to be done in order to demonstrate the feasibil-
ity, capability and scalability of graph-based techniques for
analyzing and visualizing scientific data sets of terabytes,
petabytes and beyond.

Graph Customization and Feedback Loop. In Section
6, we divide the graph-based visualization pipeline into three
stages: construction, organization and exploration. At each
stage, specific designs have been developed to deal with the
diversified data and various needs from different applica-
tions and users. Scientific data sets are multivariate and time-
varying, and therefore, multiple aspects of data need to be
visualized. This means that no single graph encoding is suf-
ficient to meet all the needs. In the graph exploration stage,
a general solution can hardly accommodate the need to cus-
tomize the exploration procedure. Because once the graph is
constructed, the underlying node-link structure is usually not
subject to change. As a result, the amount of customization
that can be performed in the exploration stage is limited. To
address this issue, we envision an additional feedback stage
at the end of the pipeline which receives feedback during
the exploration and updates the graph accordingly. Unlike
the existing approaches, where users usually interact with
nodes and edges, this feedback loop interacts with the en-
tire graph by providing the mechanism to flexibly transform
from one graph form to another. Achieving this will surely
require long-term research efforts.

Evaluation and Knowledge Discovery. Since graphs are
abstract representations extracted from scientific data sets, it

is imperative to show that the added graph view would not
increase much the burden for users to understand the under-
lying data but rather facilitate such a process. Early work on
graph-based representations and techniques seldom included
user evaluation. Recent work that presented visual graphs for
navigation and exploration often incorporated ad-hoc feed-
back from domain experts or scientists. More rigorous eval-
uations are needed in order to verify that graph-based solu-
tions indeed help scientists in their visual analysis and dis-
covery of knowledge previously unknown or unable to get
without the graphs. As transformation-based solutions for
scientific visualization get increasingly popular, formal eval-
uation of general graph-based techniques for scientific visu-
alization becomes necessary. This evaluation presents quite a
few challenges ranging from evaluation design, experiment
to analysis as many current solutions are restricted to one
kind of scientific data or even tied together with a particular
scientific application. Nevertheless, existing guidelines and
practices for graph evaluation from information visualiza-
tion offer practical guidance to achieve this goal.

9. Conclusions

We have presented a survey of graph-based representations
and techniques for scientific visualization. The survey re-
views related work in four categories, reexamines related
publications in the graph-based visualization pipeline, and
points out research trends and remaining challenges. A no-
table trend in this research is to develop graph-based vi-
sual representations and interfaces for scientific visualiza-
tion, targeting large-scale time-varying multivariate scalar
and vector field data. We believe that this direction of re-
search is still on the rise as a number of new graph mappings
and interactions have been introduced recently.

Many challenges remain to be solved which are related to
big scientific data visualization. Novel graph-based solutions
for streaming, parallel and in-situ settings are in great de-
mand. Completing the feedback loop and evaluating graph-
based techniques for scientific visualization are only in their
infancy and much remains to be explored. We believe that
the success of graph-based techniques will fundamentally
change the tools and feature sets we have at hand to perform
scientific visualization on a regular basis. Eventually, such
graph views would become commonplace for researchers
and vendors to integrate and provide in the scientific visu-
alization workflow.
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