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1 Introduction

Imagining a typical workflow for a climate scientist to explore a 3D volumetric data set produced from a simulation.
The data set is time-varying and multivariate, containing scalar and vector quantities. The scientist first plays back
the entire time sequence of the precipitation scalar field and spots some “features” of interest. She wants to extract
those features and track them over time. However, the features are difficult to select or pick directly in 3D. Visually
tracking multiple features over time is very difficult as she has to rely on her memory to tie together their connections.
Furthermore, she also integrates a set of flow lines from the wind velocity vector field and needs to examine their
relationships. Visual exploration of these flow lines poses quite a challenge due to the lack of capability to observe
them and their spatial relationships in an occlusion-free and controllable fashion. Moving forward, she even hopes
to investigate these scalar and vector quantities simultaneously. For instance, identifying regions of high pressure
and low precipitation and studying flow lines passing through these regions only, or exploring flow lines that connect
attracting spiral saddles and repelling spiral saddles. This becomes increasingly impossible without a new solution
for data abstraction and relationship exploration. As the size and complexity of scientific data continue to grow, all
these challenges will only become more severe.
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Figure 1: Mapping relationships extracted from the high-dimensional scientific data to the 2D graph representation for visual analytics and knowledge discovery.

The above challenges call for a transformative view to explore scientific data sets. Over the years, intensive
research efforts have been spent on developing better algorithms and techniques for processing, managing, and
rendering scientific data. However, much less attention has been paid to the design of effective visual analytics tools
that fully integrate techniques from information visualization into the scientific visualization workflow. As sketched
in Figure 1, instead of being confined to the original spatiotemporal domain, we should extract data relationships
over space and time, display these relationships in a low-dimensional transformed space, and enable users to perform
queries and make connections to the original data. Extracting data relationships makes it possible for users to
make clear and quantified observations at runtime. Turning the visual representation of data relationships into a
user interface for navigation essentially transforms users from passive observers to active participants in the visual
analytics process. As a result, we are able to address scientific visualization problems whose size, complexity, and
the need for closely coupled human and machine analysis may make them otherwise intractable.

In information visualization, graphs are well-known structures that use node-link diagrams to represent various
kinds of data relationships. Transforming this generic and powerful visual means into a visual interface for navigating
and exploring scientific data sets requires a fully integrated pipeline of data transformation, representation, and
visual mapping. In this article, we present our recent works of TransGraph [5] for time-varying data visualization
and FlowGraph [7] for flow field exploration. Both graph designs are hierarchical, enabling level-of-detail exploration
of large scientific data in an adaptive manner. Moreover, we describe our mining approach to abstract TransGraph
via motif simplification and support visual recommendation [6]. We also explore a different way to organize different
“objects” associated with a flow field into a semantic flow graph [11], contrasting the structural FlowGraph design
and highlighting the differences it makes. For a comprehensive overview of the past, present, and future of graphs
in scientific visualization, we refer readers to the survey paper by Wang and Tao [12].
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Figure 2: Transition query of the combustion data set using TransGraph. (a) shows the query of the transitions having their frequency larger than 0.12. (b) shows
the volume highlighting corresponding to the red nodes brushed at time step 16. (c) shows the query of the states that are only involved in self-transition at time
step 121. (d) shows the volume highlighting corresponding to the red nodes shown in (c).

2 TransGraph

Time-varying data are all about changes. What makes time-varying data visualization unique yet challenging is the
very dynamic behaviors of the data. Among them, transitions among data items over time capture the evolution of
time-varying data and therefore are the most important relationships we seek to extract and visualize. We advocate
an adaptive approach by building states from data blocks and clustering states into a hierarchy. By extracting
a global view of data transitions, we aim to present states and transitions in an occlusion-free, controllable, and
adaptive manner using a graph-based representation.

2.1 Hierarchical State Transition and Graph Construction

Given a time-varying volumetric data set, we first perform uniform subdivision of each time step separately into a
list of data blocks with an equal size. We use the histograms of blocks to compute their distances, define states
based on blocks, and cluster states hierarchically to extract their transition relationships. From partitioned blocks,
we identify representative blocks and compute a distance matrix recording the distance between any two of them.
Later on, for any two blocks in the volume, we simply look up the distance between their representative blocks as
the approximation.

We define a state as a configuration of neighboring spatiotemporal blocks that are characterized by their value
distributions. In hierarchical state clustering, we select a representative state from a group of states. The group is
formed by merging similar states that are spatially overlapping or neighboring and are in the same or neighboring
time steps. For efficiency, we use a method similar to region growing in our clustering. The spatial and temporal
constraints ensure that clustered states are space-time continuous which makes the subsequent tracking process
meaningful. A transition occurs between two states, from one state at time step ¢t to another state at time step t+1,
if and only if their corresponding central blocks are the same in the spatial domain. We also define the directional
transition probability to indicate how frequently a state is transferred to another state.

We create TransGraph, a hierarchical state transition graph, to record transition relationships among states at
various levels of detail. In this way, we convert a 4D space-time data set to a single graph which can be visualized in
2D. In TransGraph, a node represents a state (leaf) or a cluster of states (non-leaf) and the edge between two nodes
represents their transition probabilities.

2.2 Visual Exploration

TransGraph stores rich information about the nodes (states) and edges (transitions) over time. To make the best
use of TransGraph, we design a set of intuitive queries, such as state query, transition query, and time step query, to
enable knowledge discovery from the underlying time-varying data. We dynamically link together the volume view
and the graph view for dual-domain interaction.

Figure 2 shows an example of transition query. The evolution of time in TransGraph is indicated by the blue
dashed arrow. The graph reveals that in early time steps, few states and transitions are available. The numbers
of states and transitions increase as the time step increases. This indicates the increasingly turbulent nature of the
combustion data set over time. Such a finding can be solely inferred from the graph view without the presence of the
volume view. The volume view can help us put the graph in the context, make the connection to the spatiotemporal
data, and confirm our findings derived from TransGraph. For example, the nodes satisfying the query condition are
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Figure 3: Dynamic tracking of the earthquake data set using TransGraph. A volumetric region corresponding to the epicenter is selected at time step 34, which is
highlighted in its original color saturation in (a). (a) to (f) are the dynamic tracking results at selected time steps 34, 49, 69, 94, 124, and 179, respectively.
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Figure 4: (a) to (c) are fan, connector, and clique and their simplified forms. (d) shows a simple graph with three communities, enclosed by the dashed circles.

highlighted. In (a), nodes having the high frequency at the current time step are shown in red while others are shown
in green. In (c), nodes only involved in self-transition are in red and the rest of nodes at the same time step are in
green. The corresponding volumetric regions are highlighted in their original color saturation.

Figure 3 shows an example of dynamic tracking, which conveys the impression of data transition in the volume
while tracking the corresponding state changes over time. A spiral pattern is formed for TransGraph due to a large
number of time steps (599) involved. The graph reveals that the earthquake data set consists of many more states
and transitions in the early time steps than later time steps. This matches the fact that the earthquake breakout is
within the first 200 time steps. After that, it diminishes gradually for the rest of 400 time steps. Even though the
underlying transitions are computed in a block-wise manner, we allow the user to adjust the propagation speed to
give the impression of voxel-wise data transition. We consider the distances of a voxel to the centers of initial blocks
selected to further adjust the color saturation of the voxel. Corresponding to the precise tracking result, in the graph
view we highlight graph nodes at different levels of hierarchy in red.

3 Mining TransGraph

When the data set is large and the relationships are complex, navigating and exploring the resulting graph is a
daunting task. This motivates us to investigate a mining approach that automatically extracts graph features from
TransGraph for cost-effective exploration and understanding. Beyond straightforward graph properties such as node
size and edge density, users are now provided with further guidance through a series of graph analysis techniques
including graph simplification, community detection, and visual recommendation. These new techniques provide
the convenience and capabilities for graph exploration which is difficult or impossible to achieve through standard
interaction techniques.

3.1 Graph Simplification and Community Detection

Graph simplification condenses a large TransGraph to a smaller one by abstracting known structures, such as fan,
connector, and clique [2], presenting a less cluttered view for quick comprehension of the overall graph structure. In
a fan (Figure 4 (a)), a node v; transits to another node v; at later time steps and transit back to itself eventually. v;
can be considered as an interruption of v;. As a result, a fan could represent a volumetric region that has turbulence
and eventually returns to the original state. In a connector (Figure 4 (b)), the nodes (e.g., vx) in between can be
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Figure 5: Visual recommendation of the hurricane data set using TransGraph. (a) shows a chosen community highlighted in red and the recommended community
highlighted in yellow. (b) and (c) show the rendering of the corresponding blocks of the chosen and recommended communities at time steps 6 and 16, respectively.
(d) shows a chosen fan highlighted in red and the recommended nodes highlighted in yellow. (e) and (f) show the rendering of the corresponding blocks of the
chosen node at time step 30 and recommended nodes at time step 45, respectively.

considered as a set of intermediate states between the two ending nodes v; and v;. Therefore, a connector represents
a transition from a state v; to another state v;. A clique (Figure 4 (c)) is a simplification of several nodes that have
all-to-all connections between them. Because the corresponding states transit among themselves, a clique represents
a locally stable region in the volume.

Community detection organizes nodes with close relationships into groups, allowing visual comparison between
groups of nodes instead of individual nodes. Since a community (Figure 4 (d)) could be treated as a less stringent
clique, it could represent a relatively stable region. The stronger the link density of the community, the more stable
the region. Each community can be replaced by a symbol as well for simplification.

3.2 Visual Recommendation

Visual recommendation automatically highlights individual nodes or node groups based on user-selected items, thus
enabling users to spend more time on the actual analysis instead of painstaking interaction. We support community
recommendation and node recommendation. For community recommendation, we assume that a list of communities
is detected from the graph and users select a community of interest. We convert each community to an unweighted
undirected graph and treat the similarity between two graphs as the similarity between the two corresponding
communities. To calculate the distance between two graphs, we use a graph matching algorithm [9] which finds a
serial ordering of the nodes via random walks and converts graphs to strings. By comparing the difference between
the two strings, we compute the difference between the two graphs. For node recommendation, we recommend similar
nodes using the SimRank algorithm [4]. SimRank considers two nodes to be similar if they are related to similar
nodes. We revise it to accommodate weighted directed graphs such as TransGraph.

Figure 5 shows an example of visual recommendation. The correspondence of volume highlighting results demon-
strates the effectiveness of visual recommendation. Communities and node groups are highlighted using Bubble
Sets [1]. Bubble Sets use continuous, often concave, isocontours to delineate group memberships, producing tight
capture of group members with less ambiguity compared with using convex hulls. Although highlighting communi-
ties or node groups itself does not reduce visual complexity, the reduction in cognition overhead and interaction cost
allows users to achieve effective visual understanding and analytics.

4  FlowGraph

Striking a balance among coverage, occlusion, and complexity is a resounding theme in the visual understanding of
large-scale flow field data. We design FlowGraph, a graph-based visual representation and interface that substantially
increases our ability to understand and explore a flow field at various levels of detail, providing the clarity and
flexibility previously unavailable. In the following, we describe FlowGraph in the context of steady flow fields. Its
extension to unsteady flow fields is presented in [8].

4.1 Graph Definition, Construction, and Drawing

We define FlowGraph as a compound hierarchical graph that consists of streamline clusters (L-nodes) and spatial
regions (R-nodes) as nodes. Edges are formed between L-nodes (L-L edges) indicating the number of common regions



Figure 6: Exploring the five critical points data set using FlowGraph. (a) shows the identification of an important R-node by filtering R-nodes based on the R-R edge
weight. (b) to (d) show the streamlines passing through the parent R-node (shown in black) and two child R-nodes (shown in blue and red). Velocity magnitude is
mapped to streamline color (low to medium to high mapped to blue to gray to red).

traversed in order, between R-nodes (R-R edges) indicating the number of common streamlines shared, and between
L-nodes and R-nodes (L-R edges) indicating their interconnections.

To construct the region hierarchy, we create a spatial partition similar to an adaptive mesh refinement (AMR)
grid by considering the flow entropy in each region. To construct the streamline hierarchy, we design a similarity
measure based on the regions two streamlines traverse in common as well as the point-wise distance between the
two streamlines. We take a bottom-up approach to group streamlines together into an initial set of clusters, then
identify a representative from each cluster to form the next level of the hierarchy and so on.

The graph drawing and layout adjustment of FlowGraph follow those of TransGraph. The two types of nodes
are displayed in different styles: yellow circles for L-nodes and orange squares for R-nodes. For the underlying graph
representation, L-L. edges and L-R edges are undirected while R-R edges are directed. For simplicity, we draw a
single undirected R-R edge instead of double directed R-R edges. While all L-L edges and L-R edges are used for
computing the layout, for R-R edges, we only use edges that across neighboring spatial regions. This prevents the
force model from pulling two R-nodes together although they are far away in space.

4.2 Visual Interrogation

FlowGraph contains a wealth of information that can be effectively utilized for visual interrogation. We provide
standard interactions such as hierarchical exploration, node filtering, and edge querying. Figure 6 shows an example
of hierarchical exploration and interactive filtering of FlowGraph. In (a), only R-nodes and R-R edges are displayed
in the graph view. We select an R-node that has a strong connection with its neighbor and the streamlines passing
through this R-node are displayed in (b). Since the number of streamlines displayed is fairly large, we further explore
the children of this R-node. Two child R-nodes and the streamlines passing through each of them are shown in (c)
and (d). Such level-of-detail explorations are very necessary when exploring large and complex 3D flow fields where
dense streamlines are commonly exhibited throughout the entire volume.

Furthermore, we enable users to clearly compare streamline clusters in terms of their paths going through different
regions, or compare spatial regions in terms of streamline clusters passing through them. For example, for path
comparison, users can select two or multiple L-nodes and compare their corresponding streamline clusters’ paths by
linking their R-nodes in order. An algorithm similar to the maximum spanning tree is used to capture the main
structure of the streamline clusters when the path becomes cluttered. In this way, users can compare and track
streamline clusters in an occlusion-free manner, which is not possible with the spatial streamline view alone. An
example of comparing the paths of two streamline clusters is shown in Figure 7 (a) and (b). These two streamline
clusters both start from the volume boundary and get increasingly intertwined toward the center. The highlighted
path results also match the spatial arrangement of these two clusters. The two R-nodes shared in common by these
two streamline clusters are highlighted in both views.

Figure 7 (c) exhibits an interesting FlowGraph layout of the car flow data set: many L-nodes and R-nodes are
pushed to the sides of the drawing area. This is due to the fact that many of the streamlines we trace over the volume
only form the straight pattern, i.e., they simply pass by rather than passing through the car. In contrast, L-nodes
and R-nodes around the center of the graph correspond to streamline clusters and spatial regions at the center of the
volume. They have more connections to their neighboring nodes and are important nodes for our visual exploration.
We explore three L-nodes and filter out streamline clusters at two different levels of detail that well capture the flow
pattern passing through the car.
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Figure 7: Exploring the supernova and car flow data sets using FlowGraph. (a) and (b) show the path comparison of two highlighted streamline clusters in both
views for the supernova data set. Their shared spatial regions are also highlighted. (c) and (d) show the selection of three L-nodes (one at the next level of the
hierarchy) of the car flow data set to capture the main flow structure passing through the car.

5 Semantic Flow Graph

The design of semantic flow graph (SFG) is radically different from that of FlowGraph. It mimics the heterogeneous
graph from social network analysis and supports dynamic graph reconfiguration, thus giving users the unprecedented
flexibility to customize the graph according to their own needs in the process of data exploration and knowledge dis-
covery. SFG is a novel graph representation and interaction framework that enables users to explore the relationships
among key objects (i.e., flow lines, critical points, vortex cores, and spatial regions) of a 3D flow field.

5.1 What are Missing in FlowGraph?

Although the FlowGraph design has its value, it suffers from several limitations. First, the underlying graph structure
is predetermined and fized, offering no opportunity for dynamic graph reconfiguration at runtime. Second, as nodes
and edges in FlowGraph do not carry attributes, we are not able to encompass various data attributes or relationships
and leverage the concept of ontology to describe how various node and edge attributes relate to each other. Third,
features such as critical points and vortex cores in the vector field are not explicitly encoded in the graph, which often
entails painstaking trial and error on the user side and hinders goal-oriented exploration. As such, the FlowGraph
design could not address many “what-if” questions such as “what if we want to investigate both scalar and vector
fields in the same graph?”, “what if we want to flexibly slice and dice the graph based on different criteria?”, and
“what if we want to perform feature-driven exploration in both the graph and data spaces?” All these limitations
prompt us to reexamine the existing solution and investigate a new, naturally suited graph design for visualizing and
exploring multifaceted flow data sets.

5.2 SFG Construction, Drawing, and Exploration

To capture the relationships among different types of objects in a flow field, we define three types of nodes for SFG:
L-nodes for streamlines, P-nodes for critical points, and R-nodes for spatial regions. Fach type of nodes carries a
set of attributes, e.g., average curvature and torsion for L-nodes, types of critical points for P-nodes, and entropy
of vector directions and magnitudes for R-nodes, etc. Each node is an aggregation of objects that share similar
attribute values (e.g., an L-node may represent streamlines with high curvature and high torsion values) or connect
to the same set of nodes (e.g., an L-node may represent streamlines connected to a P-node containing all repelling
saddles).

To reveal the relationships of these objects, we consider three kinds of edges: L-P edges between L-nodes and
P-nodes, L-R edges between L-nodes and R-nodes, and R-P edges between R-nodes and P-nodes. A streamline and
a critical point are connected, if the minimum distance between a point on the streamline and the critical point
is smaller than a certain threshold. A streamline and a region are connected, if the streamline passes through the
region. A critical point and a region are connected, if the region contains the critical point.

The graph view shows the current SFG, as shown in Figure 8 (a) and (b). The three types of nodes are displayed
in different styles: blue circles for L-nodes, orange pentagons for P-nodes, and green squares for R-nodes. The three
types of edges are displayed in different colors: blue for R-P edges, orange for L-R edges, and green for L-P edges. We
design two graph layouts: a standard layout (Figure 8 (a)) using stress majorization [3] for revealing the connections
among all nodes, and an egocentric layout (Figure 8 (b)) for examining the neighborhood of selected nodes.

The exploration of SFG starts with an ontology graph containing an L-node representing all streamlines, a P-node
representing all critical points, and an R-node representing all spatial regions. Finer structures in the flow field are
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Figure 8: Exploring the two swirls data set using semantic flow graph. (a) shows the neighborhood inspection for all P-nodes where each P-node represents a type
of critical points. (b) shows the same inspection result of (a) with the egocentric layout. (c) shows 300 streamlines randomly selected from the entire pool of 3000
streamlines. (d) and (e) show the objects in the red and blue dashed boundaries of (a), respectively. (f) shows the connectors of the P-nodes.

discovered through splitting the nodes in SFG. We provide two types of split: attribute-based split and structure-
based split. Attribute-based split divides a selected nodes into multiple nodes with a user-specified attribute. Each
generated node contains the objects with similar values of the specified attribute. In Figure 8 (a), the P-nodes are
generated by performing attribute-based split with “type” attribute, so that each P-node contains critical points of
a distinctive type. Structure-based split divides all other nodes based their connection to a selected set of nodes. In
Figure 8 (a), the L-nodes and R-nodes are generated using structure-based split with all P-nodes selected, so that
each L-node or R-node contains objects connected to the same type of critical points.

To investigate node connections, we provide two types of inspection: connector inspection and neighborhood
inspection. Connector inspection identifies the nodes serving as connectors between any pair of selected nodes. In
Figure 8 (a), the connectors of all P-nodes are inspected and highlighted by circular percentage bars. Each percentage
bar indicates the percentage of connector objects in the highlighted node. Neighborhood inspection reorganizes the
nodes according to their connections to a selected set of nodes. In Figure 8 (b), all P-nodes are selected and placed
at the center of an egocentric layout. The nodes connected to the P-nodes are placed at the middle layer, and all
other nodes are placed at the outer layer.

In Figure 8, we can see in (a) that most streamlines and regions are not related to the critical points, and they
form the two largest nodes at the center. In most cases, an L-node or R-node connects to a single P-node. Only four
of the L-nodes serve as connectors between the P-nodes, as indicated by the black arrows. We find that the P-nodes
form two groups through the L-nodes: two isolated flow structures are highlighted by the red dashed boundaries and
the corresponding streamlines are shown in (d), while the other group is highlighted by the blue dashed boundary
and the corresponding streamlines are shown in (e). Compared to a randomly selected subset of 300 streamlines in
(c), the streamlines in (d) and (e) reveal the more inner structure of the flow field. We can only see the two larger
swirling patterns and some smaller ones in (c), but their connections and the small spirals inside the two large swirls
can be found in (d) and (e). In (f), we show the streamlines connecting different types of critical points. Their
corresponding L-nodes are indicated with arrows in (a) and (b).



6 Concluding Remarks

Our experiments and experiences demonstrate that the graphs we generate are fairly lightweight in terms of storage
cost and quite scalable in terms of interaction with hierarchical representation. We conduct the expert evaluation
with the domain scientists on TransGraph mining, FlowGraph, and SFG. The evaluation results show that although
these graphs abstract data relationships into a transformed space, they are actually easy for training and intuitive to
get familiar with. This is because the graph layouts encode data information and their node-link structures reflect
the very nature and characteristics of the underlying data. Intuitive understanding can be conveniently gained by
users through dual interaction in the original data view and the graph view. SFG, however, is a bit more challenging
for users as the learning curve for structure-based split and connector inspection is a little steep, especially for those
who are only familiar with traditional visualization techniques. Our work represents a systematic visual analytics
approach to exploring scientific data sets. For further information about our work including papers, videos, and code,
please visit http://sites.nd.edu/chaoli-wang/. We envision this approach to be adopted by the community and
integrated into their scientific visualization workflow, thus changing the tools and feature sets we have at hand to
perform scientific visualization for big data analytics.
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