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Abstract We present a novel framework that creates an auto-
matic tour of unsteady flow fields for exploring internal flow
features. Our solution first identifies critical flow regions for
time steps and computes their temporal correspondence. We
then extract skeletons from critical regions for feature orien-
tation and pathline placement. The key part of our algorithm
determines which critical region to focus on at each time step
and derives the region traversal order over time using a com-
bination of energy minimization and dynamic programming
strategies. After that, we create candidate viewpoints based
on the construction of a simplified mesh enclosing each focal
region and select the best viewpoints using a viewpoint qual-
ity measure. Finally, we design a spatiotemporal tour that
efficiently traverses focal regions over time. We demonstrate
our algorithm with several unsteady flow data sets and per-
form a user study and an expert evaluation to confirm the
benefits of including internal viewpoints in the design.

Keywords Unsteady flow · critical regions · feature
correspondence · seed placement · internal viewpoints ·
automatic tour

1 Introduction

For large and complex flow fields, it is important for users to
view the features or pattern of interest, especially for those
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hidden or occluded ones which are not clearly visible from
outside the volume. We refer to such features as internal
features. This occlusion problem is similar to that in volume
rendering, which could be addressed by tuning the trans-
fer function. For integration-based flow visualization, if we
choose to keep flow lines opaque and do not filter out the
surrounding lines, considering internal viewpoints becomes
necessary. Internal viewpoints give users closeup views for
detail observation of what lies inside of the flow field. Exter-
nal viewpoints are commonly placed at the volume’s bound-
ing sphere and look at the center of the volume. They are suit-
able for observing external features, i.e., flow features around
the volume’s boundary. In contrast, internal viewpoints have
much more freedom as they can be placed anywhere inside
the volume and look at any points of interest. The recent work
of FlowTour [15] generates an automatic tour for exploring
internal flow features. FlowTour places viewpoints around
the features of interest, i.e., critical flow regions, to form the
view path. However, it only considers 3D steady flow fields.
The design of an automatic tour for exploring 3D unsteady
flow fields remains an unsolved problem.

Streamlines are steady over time, but pathlets traced over
an unsteady flow field move over time. This poses several
unique challenges which demand a new solution for auto-
matic tour design. First, for a steady flow field, we place
seeds once to generate streamlines. For an unsteady flow
field, we should carefully place seeds over time to capture
critical flow regions at different time steps. Using pathlet
animation, we need to make sure that the density of path-
let is appropriate and varies smoothly over space and time.
Therefore, new seeds need to be placed in the subsequent
time steps to highlight new critical regions. Additional seeds
need to be placed to account for disappearing pathlets which
go out of the domain boundary or get trapped around the
vicinity of a critical point. Second, in the tour animation,
since all streamlines remain unchanged, the shifting from
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one focal region to another region only needs to consider
how smooth the transition will be. For an unsteady flow field,
we assume that the animation follows the order of time steps
of the data. Since all pathlets change along the animation,
we need to solve the issue of dynamic shifting of focus as
the critical regions may merge or split over time. To this end,
we need to first identify the correspondence among critical
regions, then determine an optimal traversal order of these
critical regions. Third, placing cameras along the tour should
take into account the size, orientation, and lifespan of each
critical region of focus so that the tour would highlight dif-
ferent critical regions at the right moment and for a right
duration. Only by doing so can we produce an informative
tour path to capture important time-dependent flow features
for a comprehensive understanding.

In this paper, we present a new framework that designs
an automatic guide for exploring internal flow features for
unsteady flow fields. Our solution encompasses feature iden-
tification, pathlet placement, region traversal order determi-
nation, viewpoint selection, and tour generation. In particular,
we propose an optimal solution for determining the critical
region traversal order that integrates energy minimization
and dynamic programming techniques. This important step
essentially determines the outline of the tour path, leaving
path details to be solved in the subsequent steps. Our work
can be considered as an extension of FlowTour [15]. For a
single time step, it shares similar ideas with FlowTour, e.g.,
critical region detection and region skeleton extraction. How-
ever, since our algorithm focuses on unsteady flow fields,
the key questions are how to find the correspondence among
critical regions and how to determine the best region traversal
order. To the best of our knowledge, our work is the first that
aims at designing a guided tour for exploring an unsteady
flow field.

2 Related Work

Many flow visualization techniques were proposed to make
flow features and pattern easily and clearly perceivable. Ex-
amples include feature-based [21] and geometry-based [17]
flow visualization. Among these techniques, streamline vi-
sualization has long been a popular method for visualizing
steady flow fields. A streamline is a curve everywhere tan-
gent to a steady flow field. Intuitively, it is the path that a
particle will follow if released in the field. Seed placement
and streamline selection form two major branches of stream-
line visualization. For seed placement in 3D [25, 30, 31, 15],
the goal is to select the best seeds so that the correspond-
ing streamlines can clearly reveal flow features and patterns.
As an alternative to seed placement, streamline selection
[16, 12, 28, 14] aims at selecting the best streamlines from a
pool of streamlines to capture important flow features while
reducing occlusion and clutter.

Pathlines are the trajectories of particles seeded in an
unsteady flow field. Unlike streamline tracing which uses
the same vector data throughout the integration, the vector
data are updated at each time step when pathlines are ad-
vected. McLoughlin et al. [18] presented an approach that
computes the similarity between integral curves (streamlines
and pathlines) for interactive seeding. Their similarity-based
clustering enables filtering of the integral curves to provide
a nonuniform seeding distribution along the seeding object.
Different approaches were proposed to visualize unsteady
flow fields using pathline advection. Steinman [26] described
a simple method for visualizing 3D periodic velocity data
based on the subdivision and sequential display of pathlines.
The algorithm provides the flexibility to control the length
and spacing of the pathlines. Chandler et al. [5] presented
a method to trace pathlines in scattered, particle-based flow
fields. By developing a modified k-d tree representation for
highly compressible data sets, they performed pathline com-
putation via identifying, tracking, and updating an enclosing,
dynamic particle neighborhood as particles move over time.
Besides pathline visualization, other techniques were also
developed for unsteady flow field visualization. Lane [11]
built a simple and effective system to visualize unsteady flow
fields using streaklines. The system can process multiple
time steps without requiring all the data simultaneously, mak-
ing it suitable for out-of-core processing. Sadlo et al. [22]
visualized Lagrangian coherent structures of unsteady flow
fields using an efficient method to compute the finite-time
Lyapunov exponent and its height ridges related to the flow
structure.

Viewpoint selection is an important issue in volume
[2, 27] and flow [12, 28] visualization. Typically after finding
the best viewpoints, the subsequent task is to generate a good
path that traverses all selected viewpoints. Ji and Shen [10]
developed a solution to select viewpoints for a time-varying
volumetric data set using a dynamic programming algorithm
and produced a smooth viewpoint animation for viewing the
data set. Viola et al. [29] found characteristic viewpoints
based on an information channel between the model in the
scene and the viewpoint set. They designed a transformation
path between two selected viewpoints by utilizing an inter-
mediate viewpoint so that the camera path changes smoothly
by switching the focus from one feature to another. Hsu et al.
[8] leveraged the medial-axis based roadmap technique and
introduced several constraints for computing camera paths in
order to create effective animations for volume visualization.
Bai et al. [1] presented a view path design method to display
the evolution of volumetric features with their topology for
a time-varying data set. Their viewpoint entropy computa-
tion includes both visual information (i.e., the information
channel between viewpoints and feature groups) and topol-
ogy information (i.e., the skeleton of features quantified with
Kullback-Leibler distance). Meuschke et al. [19] designed
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Fig. 1 (a) to (c) are the critical regions detected for three consecutive time steps of the supernova data set. Their corresponding volume thinning
results are shown in (d) to (f), and skeletons extracted are shown in (g) to (i).

an automatic selection of viewpoints to form a camera path
for supporting the exploration of time-dependent cerebral
aneurysms. Their camera path reveals the most interesting
regions during the cardiac cycle based on user-selected mor-
phological and hemodynamic parameters.

3 Algorithm Overview

Our algorithm consists of three stages: critical region iden-
tification (Section 1), region traversal order determination
(Section 4), and viewpoint creation and tour generation (Sec-
tion 5). At the first stage, we detect critical regions at each
time step and construct their temporal correspondence. We
also extract each region’s skeleton for skeleton-based seed-
ing. At the second stage, we design a solution that integrates
energy minimization and dynamic programming to obtain the
optimal traversal order for critical regions. This stage is the
most important one as the region traversal order essentially
outlines the underlying tour. Once the order of traversal is
determined, we create sample viewpoints along each focal
region at the third stage. We then select the best viewpoints
based on their quality to generate the actual tour path. In this
section, we briefly describe the critical region identification
as its relatively straightforward. For the other two stages, we
will elaborate their procedures in Section 4 and Section 5,
respectively.

Critical region identification. Our approach first iden-
tify the critical regions at each individual time step and then
connect the regions based on their temporal correspondence.
The critical regions are detected as high entropy regions.
We evaluate the entropy at a voxel by considering the vari-
ation of vector directions in a 4D local window centered
at that voxel. In our experiment, we use a window resolu-
tion of 5× 5× 5× 5. Then, we leverage a parallel region
growing algorithm to group the high entropy voxels into re-
gions. Since a critical region could span several time steps
in an unsteady field, we further apply the feature tracking
algorithm proposed by Silver and Wang [24] to identify the
temporal correspondence among critical regions. Based on
the correspondence, we merge regions corresponding to the
same feature into a new critical region. In order to identify
the shape of a critical region, we compute its skeleton using
a volume thinning algorithm [7]. We place additional seeds

along the skeletons together with some random seeds to en-
sure the critical regions are covered by pathlets. An example
of the detected critical regions, their corresponding volume
thinning results, and their skeletons is shown in Figure 1.
Please refer to Section 1 in Appendix for details.

4 Region Traversal Order Determination

In general, we may have multiple critical regions at a single
time step while a critical region may span across multiple
time steps. Our goal is to produce a “smooth” traversal of
“good” critical regions over time, conveying the most infor-
mation about the underlying unsteady flow field. Assume
that we have a total of n regions and m time steps. Since we
select a single critical region to focus on for each time step,
the search space for determining the region traversal order
is bounded by O(nm). The worst case happens when each
region occupies all the time steps. Obviously, the brute-force
method is not practical due to its exponential time complexity.
A straightforward greedy algorithm which always picks the
“best” region for each time step could be applied. However,
the greedy method does not guarantee a globally optimal
result. Moreover, temporal correspondence among regions
is not considered. In this paper, we present a novel method
which integrates energy minimization and dynamic program-
ming to obtain the optimal traversal order for critical regions.

4.1 Overview of Method

We define Ir,t in the range of [0,1] as the score of region r
at time step t. A larger (smaller) value of Ir,t indicates that
r has a higher (lower) chance of being selected as the fo-
cus at t. Intuitively, Ir,t is the probability of region r to be
selected at time t. We consider multiple properties of crit-
ical regions and compute Ir,t by an optimization algorithm
given in Section 4.2. We divide the entire time sequence into
multiple time windows with an equal size Ws and compute a
local traversal order for each time window separately. For a
time window w, we minimize an energy function to compute
the optimal scores for critical regions in w and then apply
a dynamic programming algorithm to determine the region
traversal order. In order to incorporate region temporal cor-
respondence into score computation, the resulting traversal
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order for w will be leveraged as the input for score com-
putation in the next time window w+ 1. After all the time
windows have been processed, we apply the same dynamic
programming algorithm over all the region scores to iden-
tify the globally optimal traversal order for the entire time
sequence.

We point out that there is a significant difference between
typical minimization methods and our method. In these min-
imization methods, energy functions are formulated with a
set of initial state values. Then, a linear system is utilized to
solve for the optimal solution. In our method, the traversal
result from the current time window highly depends on the
result from the previous time windows. That is, selecting
the current focal region should consider the regions picked
before in order to provide a smooth and efficient traversal
experience. As such, rather than solving the linear system
in a single pass as usual, we adopt a hybrid approach which
applies energy minimization and dynamic programming it-
eratively across different time windows to obtain the final
optimization result.

4.2 Optimal Score Computation

To formulate the energy function for optimal score computa-
tion, we define the following two types of constraints: static
constraints and dynamic constraints. Static constraints con-
sider the intrinsic properties of critical regions while dynamic
constraints incorporate the influence of the preceding region
traversal order on the current region traversal order being
determined.

4.2.1 Intrinsic Properties

Before we introduce the static constraints, we first define the
following intrinsic properties of critical regions:

– Size (Sr,t). This term indicates the volumetric size of
critical region r at time step t. The larger the size, the
more important the region. Therefore, region score Ir,t
should be proportional to Sr,t .

– Average entropy (Er,t). This term computes the average
entropy value over all the grid points inside of region r
at time step t. Intuitively, the value of Er,t indicates the
amount of information contained in r at t. Therefore, Ir,t
should be proportional to Er,t .

– Coefficient of variation (Vr,t). This term measures the
normalized dispersion of entropy value distribution inside
of region r at time step t. Vr,t is computed as follows

Vr,t =
δEr,t

Er,t
, (1)

where δEr,t is the standard deviation of entropy values
inside of r at t. We prefer to focus on the region with
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Fig. 2 Four branches of a region’s skeleton.

higher Vr,t since such a region contains richer information
about the underlying flow features. Thus, Ir,t should be
proportional to Vr,t .

– Skeleton complexity (Cr,t). Since a region skeleton ex-
tracted in Section 1.3 in Appendix represents the overall
shape of the corresponding region, we also consider its
complexity when computing the region’s score. A high
value of Cr,t indicates that the corresponding region has
a complicated shape pattern and would be interesting to
focus on. Region score Ir,t should be proportional to Cr,t .
Because our skeleton is a tree structure, we first identify
the number of branches in the skeleton and then evaluate
the straightness of each branch. We consider two factors
for Cr,t : shape complexity and quantity complexity. Shape
complexity Cs,t is defined as follows

Cs,t = ∑
b∈B(r,t)

∑i, j∈b di, j−dbmax

dbmax
, (2)

where B(r, t) is the set of branches in the skeleton of r at
t, b is a branch in B(r, t), di, j is the Euclidean distance
between two consecutive skeleton points i and j, and
dbmax is the largest distance among all points in b. Quan-
tity complexity Cq,t records the number of branches in
a skeleton. As an example, in Figure 2, abcde, d f , cg
and bhi are branches of this skeleton, and Cq,t = 4. For
both Cs,t and Cq,t , we compute their normalized values
Cs,t and Cq,t . Then Cr,t is defined as follows

Cr,t = αCs,t +(1−α)Cq,t , (3)

where α ∈ [0,1]. Normally, we consider shape complexity
to be more important than quantity complexity. Therefore,
we set α = 0.7 for all data sets.

– Time span (Tr). This term indicates the time span in
which region r is alive. If Tr is small, r will be alive for
only a few time steps. In order to capture this short-lived
region, we assign a higher region score Ir,t to r so that it
gets a chance to be focused on during its time span. So,
Ir,t should be inversely proportional to Tr. However, if r
with a short time span has parents or children and these
parents or children are long-lived, then even if we miss r,
we can still capture similar flow features by focusing on
its parents or children. So, Tr should be applied to only
regions with no parents or children.
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4.2.2 Static Constraints

With the intrinsic properties defined above, we can obtain the
following static constraints:

Intrinsic property constraint (Oτ). This constraint en-
forces that region scores should be as close to the maximum
value of 1 as possible according to their intrinsic properties.
We first combine all intrinsic properties for a region into a
single term Pr,t

Pr,t =

{
λSSr,t +λEEr,t +λVVr,t +λCCr,t +λT

1
Tr
, r is alive at t

0, otherwise

(4)

where λS, λE , λV , λC, and λT are the weights for Sr,t , Er,t , Vr,t ,
Cr,t , and Tr, respectively. In order to better capture short-lived
regions, we set λT to 2 and the other four weights to 1 for all
data sets. With Pr,t , we define the following energy term

Oτ = Σr∈R,t∈WPr,t‖Ir,t −1.0‖2, (5)

where R is the set of all critical regions and W is the set of
time steps in time window w. Note that if region r is not alive
at time step t, its initial score Ir,t will be set to 0.

Summation constraint (Oσ ). This constraint keeps the
summation of all the scores Ir,t in the range of [0,1] as much
as possible. To achieve this, we set the summation of scores
for the regions at the same time step to 1. If the score is less
than 0, we will set it to 0 to avoid negative scores. We define
this energy term as follows

Oσ = Σt∈W‖Σr∈RIr,t −1.0‖2. (6)

Again, if r is not alive at t, its initial score will be set to 0.

4.2.3 Normalized Traversal Frequency

The dynamic constraints rely on the preceding region traver-
sal order. Therefore, we first introduce how to compute
L f (r,w) which records the frequency that region r has been
traversed before the current time window w. We can obtain
L f (r,w) by counting the frequency that r has been visited in
the previous time windows. We define Lb as the maximum
number of time windows we will backtrack from w. This term
is used to control the length of temporal history we would
consider for r. Ideally, a good Lb should keep the tracking
in a reasonable time span (e.g., not too long or too short).
Sometimes, r may last less than Lb during the backtracking.
In this case, we will also consider the traversal history of r’s

ancestors. Using the above two terms, we define the normal-
ized traversal frequency F(r,w) of region r for time window
w as

F(r,w) =
L f (r,w)

Lb
. (7)

4.2.4 Dynamic Constraints

With F(r,w), we now define several dynamic constraints:
Traversal frequency constraint (Oν). If region r has

been traversed for multiple time steps in the previous time
windows, its score in the current time window w should be
decreased so that other regions could have a chance to be
selected as the focus. To achieve this, we attempt to minimize
the following energy term

Oν = Σr∈R,t∈W
1

F(r,w)
‖Ir,t −1.0‖2. (8)

Temporal correspondence constraint (Oη). This con-
straint considers the influence of previously focused regions
on their temporal corresponding regions. When region r has
been visited for multiple time steps, its children which share
similar spatial locations with r in the neighboring time steps
should have lower scores. Contrarily, in order to maintain a
smooth traversal order, the siblings of r should get higher
scores since they are less likely to be similar to r but have tem-
poral relations with r. For example, they will merge in a later
time step or they come from the same parent. Considering
these two cases, we define the following energy term

Oη =Σr∈R,t∈WΣc∈C(r)
1

F(r,w)
‖Ic,t −1.0‖2+

Σr∈R,t∈WΣs∈S(r)F(r,w)‖Is,t −1.0‖2, (9)

where C(r) and S(r) are the sets of r’s children and siblings,
respectively.

Equal opportunity constraint (Oξ ). When region r has
been traversed for multiple time steps, its own score will
decrease in the subsequent time steps. Meanwhile, we want
other regions which have no temporal correspondence with r
to have more chance of being selected as the focus. Therefore,
we introduce this constraint to increase the scores of such
regions based on their spatial distances to r. We formulate
the following energy term

Oξ = Σr∈R,t∈WΣk∈K(r)
F(r,w)

Dr,k
‖Ik,t −1.0‖2, (10)

where K(r) is the set of regions which have no temporal cor-
respondence with r, Dr,k is the distance between the skeletons
of r and k at t. In this work, we use the mean of the clos-
est point distances [20] as the distance measure. Intuitively,
region k will have a higher score if Dr,k is smaller.
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4.2.5 Energy Function

Based on the above constraints, we formulate the final energy
function as follows

O = γτ Oτ + γσ Oσ + γν Oν + γη Oη + γξ Oξ , (11)

where γτ , γσ , γν , γη , and γξ are the weights for these con-
straints, respectively. In our setting, we prefer to emphasize
the impact of the temporal corresponding constraint so that
the final tour will consider the relationship between neighbor-
ing spatiotemporal regions. Therefore, we set γη to 2 and the
remaining weights to 1 for all data sets. To find the optimal
solution, we convert the energy function into a linear system
and leverage a GPU implementation of the concurrent num-
ber cruncher (CNC) sparse solver [3] to solve the system.
After the optimization completes, we have the optimal values
for Ir,t .

4.3 Traversal Order Determination

After region scores are computed for a time window w, we
utilize a dynamic programming algorithm to find the optimal
traversal order Ω(w) within the time window. Ω(w) should
focus on one region at a time step and the overall region
scores along Ω(w) should be maximized. To achieve this, we
define Ĭr,t as the maximum traversal score from region r at t
to some region at the last time step of w and introduce the
following recursive equation

Ĭr,t = max
k∈R

(Ir,t + Ĭk,t+1), (12)

where R is the set of all regions. This equation indicates
that the maximum traversal score from region r at t to some
region at the last time step of w is equal to the sum of the
score Ir,t and the maximum traversal score from region k at
t +1 to some region at the last time step of w. In this case,
region k will be the focal region at t +1 and it will be put in
the array Ar,t , which records the traversal order starting from
r at t. For each region, we compute its Ĭr,t0 where t0 is the
first time step of w and pick Ar,t0 with the largest Ĭr,t0 as the
optimal traversal order Ω(w). We apply the same algorithm
to find the final traversal order for the entire time sequence
when all region scores Ir,t are obtained. In Figure 3, we show
snapshots of the region traversal order determined using our
optimization method.

5 Viewpoint Creation and Tour Generation

For the focal region at each time step, we first create a list of
viewpoints based on the isosurface generated from the region.

Fig. 3 The shifting of the focal region (shown in red) for three consecu-
tive time steps of the hurricane data set.

Then we select several best viewpoints to provide users with
closeup views of the respective flow pattern for clear observa-
tion. If one critical region spans more than one time step, we
also consider the location of viewpoints so that the same por-
tion of the region will not be repetitively focused on across
multiple time steps. After the best viewpoints are picked for
all focal regions, we generate a view path traversing all these
viewpoints according to the time order. Our goal is to give
a smooth and efficient way of exploring the unsteady flow
field.

5.1 Viewpoint Creation

We leverage the same strategy described by Ma et al. [15]
to produce candidate viewpoints. For each critical region,
we use the marching cube algorithm [13] to extract the cor-
responding isosurface, and simplify the isosurface to avoid
oversampled candidates. Given the simplified isosurface, our
algorithm creates a list of viewpoints based on its vertices.
For each vertex, we first generate a viewpoint v at the vertex’s
location. The look-at center of v is the point on the skeleton
of region rt closest to v. There are two ways to compute the
up direction: fixing the up direction to a predefined direction
(such as the positive y direction of the volume) or utilizing the
skeleton’s major direction as the guidance. Specifically, we
define the local skeleton direction d at the look-at center as
the vector along the skeleton which starts from the look-at
center and points toward the skeleton’s major direction. We
then project d onto a plane perpendicular to the look-at
direction l and the final up direction is the projected vector
on the plane. In this way, we allow the up direction to follow
the underlying flow pattern’s major direction.

In order to consider the zoom level from the viewpoint v
to critical region rt , we generate a set of five offset viewpoints
V associated with v. The position of each offset viewpoint
is pushed away from v along the opposite direction of its
look-at direction l for some distance δl , and it shares the
same look-at center and the up direction of v. In the next
step, we will evaluate the quality of each viewpoint in V and
pick one best viewpoint as the representative for V.
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5.2 Viewpoint Quality Evaluation

Given a viewpoint v associated with critical region rt , we
define its quality based on the entropy value of the 2D pro-
jection of the pathlets seeded from rt . We also consider the
foreground occlusion and background noise as the penalty to
reduce visual clutter and distraction. Specifically, we com-
pute the viewpoint quality as follows

Q(v) = λ1Sfocus− (λ2Pfore +λ3Pback), (13)

where Sfocus, Pfore, and Pback are the focal region score, fore-
ground occlusion penalty, and background noise penalty, re-
spectively. λ1, λ2, and λ3 are the corresponding coefficients.
By setting different values to these coefficients, we ensure
that the viewpoint quality Q(v) is always non-negative. To
emphasize the focal region score, we set λ1 to 1 and give the
same weight for the other two penalties ( λ2 = λ3 = 0.2) for
all data sets.

– Focal region score (Sfocus). This term indicates the in-
formation revealed by the pathlets seeded from the focal
region’s skeleton. To compute this value, we first perform
the viewing frustum culling operation on each pathlet
from the focal region and check if it is inside of the view-
ing frustum. For all the pathlets inside, we compute the
entropy value for their 2D projections based on the flow
direction and set this value to S f ocus.

– Foreground occlusion penalty and background noise penalty
(Pfore,Pback). These two terms measure the influence of
pathlets seeded from non-focal regions on the current
viewpoint. To compute these two values, we first check
if the pathlets are inside of the viewing frustum. If yes,
we then transform the standard OpenGL view projection
plane into a predefined plane of 100× 100 pixels. and
check the depth values of these pathlet projections on the
plane to determine if they are foreground occlusion or
background noise pathlets. Pfore and Pback are obtained as
the entropy values of their 2D projections for these two
kinds of pathlets, respectively.

For a critical region which spans m time steps (m > 1),
we assign the viewpoints to focus on different portions of
the region at each occupied time step so that users could
observe the flow pattern in a more balanced way. To achieve
this, we divide the major axis of the focal region’s skeleton
into m segments where each segment corresponds to one
occupied time step. Then we compute the final viewpoint
score according to their distance to the segments. Specifically,
for a viewpoint v, we find one segment g which is closest to
v and set g as the segment associated with v. Then at each of
the m occupied time steps, there will be one active segment
and all the viewpoints associated with it will get Q(v) as their
final score. Other viewpoints get the score of 0. Later on,

(a) (b) (c) (d)

Fig. 4 (a) the entire tour path along the solar plume data set. Different
colors denote the path segments along different focal regions. The gray
color denotes the transition between two focal regions. (b) to (d) show
three path segments along three different focal regions.

Fig. 5 Left to right: the tour path segments in order along the same
focal region of the solar plume data set.

we will pick the best viewpoints for each time step based on
their scores. This guarantees that only viewpoints within the
current active segment would be considered.

5.3 Best Viewpoint Selection

By evaluating viewpoint quality, we first identify the repre-
sentative viewpoint for each viewpoint set V as the one with
the highest score. Then we sort all representatives based on
their quality scores and pick the final best viewpoints. In
order to avoid selecting similar viewpoints, any two selected
best viewpoints should satisfy either one of the following two
criteria. First, the angle between their look-at directions is
greater than a given threshold δα . Second, the distance be-
tween their look-at centers is greater than a given threshold
δd .

5.4 Tour Path Generation and Animation

After we identify the best viewpoints for the focal region
at each time step, we generate a spatiotemporal view path
traversing all these viewpoints

To this end, we first order the best viewpoints for a focal
region r according to the direction of the skeleton’s major
axis to obtain a local traversal order Dr. Since the temporal
order for all focal regions is already determined by the linear
system (Section 4), we only need to connect the viewpoints
between two temporally adjacent regions to obtain the final
traversal order for all the best viewpoints. Specifically, for the
focal region r1 at the first time step, we use its local traversal
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entropy region # ST average reg.
data set dimension comp. detect. reg. duration corr.

supernova 108×108×108×105 225.7s∗ 31.8s 277 3TS 124.8s
hurricane 100×100×20×48 21.7s 4.2s 49 4TS 3.7s
solar plume 63×63×256×28 63.7s 9.6s 17 7TS 37.9s

skeleton traversal VP total # best VPs/ VP tour
data set extract. order creat. # lines # total VPs eval. gen.

supernova 109.7s 2.6s 0.4s 9989 105/4575 500.1s 0.1s
hurricane 3.4s 0.7s 0.1s 8244 48/2676 273.8s 0.02s
solar plume 387.6s 3.7s 0.5s 6368 56/2615 248.7s 0.1s

Table 1 Timing results for the three unsteady flow data sets. ST, VP, TS, and “reg.” stand for spatiotemporal, viewpoint, time steps, and regions,
respectively. A ∗ denotes out-of-core processing.

order Dr1 as the final traversal order for this region. Then
for the next focal region r2 along the temporal sequence, we
compute the distance between the last viewpoint vlast of r1
and the two end viewpoints of the local order of r2 and pick
the one closer to vlast as the starting viewpoint for r2. So the
final order for r2 will be either Dr2 or its reverse Dr2 . We
repeat this process until we connect all the focal regions and
get the global viewpoint traversal order. Finally, we utilize a
cubic B-spline curve to connect all these viewpoints to obtain
the spatiotemporal view path. In Figures 4 and 5, we show
examples of the entire path generated, the path segments
along different focal regions, and the path segments along
the same focal region.

In the tour animation, when flying through each best
viewpoint we keep the current viewpoint staying still for a
certain duration. This would allow users to better observe
pathlet movements at fixed viewpoints. The transition be-
tween two best viewpoints is dynamic, i.e., the viewpoint
is changing while pathlets are moving. We render pathlines
as gray, thin tubes in the background and overlay pathlets
as arrows to show their movements along the corresponding
pathlines. Pathlets are also rendered as tubes. The tube radius
for focal pathlets is larger than that for non-focal pathlets.

6 Results and Discussion

In this section, we report the performance, parameters, and
case study results generated from three unsteady flow field
data sets. For the best evaluation of our approach, please refer
to the accompanying videos in the supplemental material for
a comparison between our view tour and the baseline tour
(Section 3.1 in Appendix). Please also refer to Section 3 in
Appendix for a user study.

6.1 Configuration, Timing, and Parameter Setting

We leveraged a hybrid CPU-GPU solution in our computa-
tion with the following hardware configuration: Intel Core
i7 quad-core CPU running at 3.20GHz, 24GB main mem-
ory, and an nVidia Geforce GTX 580 graphics card with

1.5GB graphics memory. Entropy field computation, critical
region detection, and viewpoint quality evaluation were im-
plemented using CUDA in the GPU. All other computations
were performed in the CPU. For better observation of the
changes of the focal region over time, we increase (decrease)
the radii of the pathlets from the current (previous) focal
region. In order to guarantee smooth update of the changes
of pathlets, we utilized the vertex buffer object (VBO) to
render pathlets and used the GPU to process their geome-
try changes on the fly. The timing results for the three flow
data sets are reported in Table 1. As we can see, the total
processing time for each data set is up to around 15 minutes.
The processing time depends on both the size and complex-
ity of the data set. Entropy computation is mainly related to
the size, while region correlation, skeleton extraction, and
viewpoint evaluation are highly related to the number and
size of critical regions. Therefore, it is possible to further
reduce the processing time by considering smaller critical
regions (e.g., increasing the entropy threshold for critical
region identification).

Our algorithm requires the setting of multiple parameters.
Some of them are equation weights, e.g., λS in Equation 4, γτ

in Equation 11, and λ1 in Equation 13. For such parameters,
we empirically set the same parameter values for all data sets,
reported in Sections 4 and 5. Other parameters are thresholds
and size values, e.g., entropy value threshold δe to determine
the critical regions and the overlap threshold δo to identify
temporal correspondence. In our experiment, we use δo =
0.1 for all data sets and δe = 4.0,3.5,4.0 for the supernova,
hurricane and solar plume data sets, respectively. We refer
the readers to Section 2 in Appendix for the influence of
parameters.

6.2 Case Studies

Case study 1: supernova. The supernova data set comes
from a simulation of the explosion and collapse of a super-
nova. The simulation produced 105 time steps revealing how
the dust collapsed back into the center of the star after the
supernova explosion. Since the flow near the supernova’s



Moving with the Flow: An Automatic Tour of Unsteady Flow Fields 9

(a) (b) (c) (d)

Fig. 6 (a) to (d): snapshots of the animation of the supernova data set along our automatic tour path.

(b)
(d)

(e)

(c)

(a) (b) (c) (d) (e)

Fig. 7 (a) the automatic tour path for the hurricane data set. (b) to (e): snapshots of the animation along the path.

core is heavily turbulent, it is difficult for users to observe
detail pattern around the core due to the occlusion and clutter
among pathlets. Therefore, we designed an automatic view
path to explore the data set in a hope that our method can
provide users with more information on the internal flow
pattern. In Figure 6 (a), we can see the overall pattern of the
supernova at an early time step. It is clear that all pathlets go
straightly inward and then become turbulent near the core.
The thicker pathlets indicate that they are from the current
focal region. We also display the corresponding pathlines to
help users better follow flow trajectories. In (b), a sink-like re-
gion which absorbs all pathlets can be clearly observed. From
(c), we can observe that some pathlets are repelled from the
core. They then form a semi-spherical surface around the
core. For automatic tours, this feature is difficult to catch
since it is not always present throughout the time series. Fur-
thermore, it is also hidden inside of the turbulent flow, and
therefore is not visible if the viewpoints are placed outside
of the volume. Using our method, we can not only clearly
observe such an interesting flow pattern in a closeup view
but also detect the changes of velocity. In (d), it is clear that
the velocity changes from high to low as the flow is repelled
from the core.

Case study 2: hurricane. The hurricane data set comes
from a simulation of Hurricane Isabel, a strong hurricane in
the western Atlantic region in September 2003. The simula-
tion produced 48 time steps, demonstrating how the hurricane
moved from the Atlantic Ocean to the east coast of Florida.
Since the data set is flat (100×100×20), users would easily

get disoriented if the tour goes across the volume frequently
along the z direction. Therefore, we add one more constraint
that the final view path should not cross through the volume
more than once along the z direction during any given ani-
mation time interval. In Figure 7 (a), we show the entire tour
path. We can see that the most portion of the path is on the
two sides of the volume and the path only traverses across the
volume a few times. In (b), the global pattern of the hurricane
is clearly shown. We can see that the hurricane’s center lies
in one corner of the volume with the corresponding pathlets
moving out. (c) shows the hurricane’s center from below.
We can observe the spiral pattern and the velocity differ-
ence between the center flow (slower) and the surrounding
flow (faster). From (d), we can find out that the surrounding
flow around the center bifurcates into two opposite directions
(highlighted in the ellipses). The velocity change could also
be discerned via pathline color. Besides, the pathlines depict
the moving trajectory of the center: from one corner of the
volume to another along the diagonal direction (highlighted
by the dashed line). In (e), the snapshot shows three small
spirals with slower speed (highlighted in the ellipses) at the
boundary of the volume which only last for a few time steps.
These features could be easily missed if the view path does
not focus on them at the right moment.

Case study 3: solar plume. The solar plume data set
comes from a simulation of the down-flowing solar plume
for studying the heat, momentum, and magnetic field of the
sun. This data set consists of 28 time steps, demonstrating
the heat flow emitting from the sun’s surface. Figure 8 shows
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(a) (b) (c) (d) (e)

Fig. 8 (a) to (e): snapshots of the animation of the solar plume data set along our automatic tour path.

snapshots of the animation along the automatic tour path.
Refer to Figure 4 (a) for the overall view path generated by
our algorithm. Since the tail of the solar plume only contains
straight flow lines and most interesting features are around
the head, our view path is almost around the head portion
so that users can gain a clear observation of these important
flow features. In (a), an overview of the flow pattern around
the head region is captured. Two big swirls with slower speed
and the central flow with higher speed are clearly shown.
(b) focuses on the central flow pattern around the head. (c)
gives us a glance on how the straight-line flow becomes
turbulent in the middle portion of the plume. From (d), we
can observe a spiral band pattern with slower speed in the
middle portion of the plume. Our view tour also provides
users with an expressive traversal experience to observe the
internal “kernel” flow pattern by “standing” inside of the
volume, which is shown in (e). The straight flow lines moving
to the head and the hollow shaft pattern are clearly visible.

7 Expert Evaluation

We also conducted an evaluation with a domain expert in
fluid mechanics and turbulent combustion to evaluate the
effectiveness of our method. The expert’s research focuses
on the modeling of multiscale and multiphysics problems in
relation to energy science and technology. The evaluation
consists of two major stages. At the first stage, the expert
spent about 90 minutes learning our framework, playing back
tour animation video clips multiple times, and asking ques-
tions related to the tour generation algorithm and the actual
pathlet animation as shown in the video. At the second stage,
the expert completed the evaluation form which includes 18
questions (hurricane: seven, solar plume: five, and supernova:
six) and 14 general questions. The 18 questions ask for the
identification of flow features, flow speed difference, and
additional flow patterns. The 14 questions ask for the overall
effectiveness of the solution, animation settings, and sugges-
tions for improvement. This stage took about 120 minutes.
The expert was instructed to show no bias in his evaluation.

The expert provided the following feedback. In general,
the tours we generated for the unsteady flow fields are inter-

esting and effective. The expert’s answers to the 18 questions
are all correct except one which asked him to identify the
overall moving trajectory of the hurricane’s center. He pro-
vided a comment which explains “Due to the camera angle
change, the movement of the hurricane’s center was not
clearly noticed.” He also gave a suggestion “It may help to
show the same pathlets in another (third) view where the
camera is fixed.” For effectiveness, he strongly agreed that
the tour provides a comfortable way to explore the flow field:
“It automatically captures the important flow features and
the most appropriate angle of view to visualize the features.”
Nevertheless, he also pointed out one limitation: although the
tour also captures the small-scale features, when important
small-scale features are inside large-scale features which are
also important, it appears that automatic selection of path-
lets may miss these structures. He agreed that parameter
settings for pathlines and pathlets, and camera and animation
are appropriate. He strongly agreed that it is appropriate to
pause the camera at each selected viewpoint in order to gain
clear observation of the moving pathlets. Finally, he strongly
agreed that the path view helps users better orient themselves
in the tour animation.

The expert also pointed out two suggestions for improve-
ment. First, a better hint for time steps in the path view could
help user understanding. Since we actually interpolate be-
tween time steps to generate a number of intermediate frames
for a smooth animation effect, it would be more appropriate
to display time steps including fractions. (We implemented
this. Refer to the accompanying video.) Second, the current
algorithm is fully automatic which helps users grasp the main
features of the flow field with minimal efforts. Once this is
done, it would be good to give options for user interaction.
For instance, users may want to choose some features and
focus on them for all time steps (perhaps, with different
viewing angles and zooming levels).

The expert further commented on the application of this
automatic tour framework. One of his main areas of interest
is the computation and modeling of turbulent combustion.
Turbulent combustion simulations usually generate big data.
The physicochemical processes are inherently transient and
involve complex interactions of fluid flow and chemistry.
Exploring such transient data poses a substantial challenge.
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Traditionally, statistical approaches where time or spatial av-
erages, variances, and correlations of certain key quantities
are investigated. To better interpret the statistical data and
shed light on relevant physical mechanisms, the exploration
of key flow and scalar structures in terms of visualization is
critical but is practically challenging due to the size of the
data and the complexity of the structures. The present tool
could offer an interesting and attractive way of exploring the
interaction of flow and scalar structures in turbulent flames.
The automatic tour of important flow features would provide
insights on the overall flow characteristics, using which the
expert can connect their observation with statistics of key
scalar quantities, with minimal effort. When a domain expert
has an option of setting criteria for important features to be
explored, e.g., regions with high scalar gradients or high re-
action rates, the method would greatly benefit combustion
scientists and engineers by helping them understand the char-
acteristics and underlying physical mechanisms in turbulent
reacting flows.

8 Conclusions and Future Work

Designing an automatic tour for exploring hidden or occluded
internal features for unsteady flow fields is a challenging task
due to the flexibility of viewpoint locations and orientations,
the nature of dynamic spatiotemporal features, and the dif-
ficulty to observe both viewpoint movement and flow line
movement simultaneously. Yet such a tour is quite useful for
gaining a good understanding of the underlying flow field,
including both the overview and feature details. As the size
and complexity of flow field data keep growing, we expect
an increasing need to observe flow features and pattern in
an automatic fashion. We have presented such a solution
and demonstrated the effectiveness of our work with results
gathered from several flow field data sets and through user
evaluation. To the best of our knowledge, our work is the
first that aims at designing a tour for examining internal flow
features for unsteady flow fields.

Our entropy-based feature extraction may not capture
certain global flow pattern, e.g., separation. In addition, the
computation does not consider the Galilean invariance prop-
erty of the unsteady flow. There exist seemly featureless flows
(e.g., the flow behind a cylinder) which actually consist of
rich flow dynamics hidden by some constant flow. For future
work, we would like to leverage other techniques to extract
such kinds of flow features. For tour exploration, we plan to
provide flexibility to users in their viewing and navigation.
Instead of a fully automatic tour, users may find it helpful
to control the tour in different ways. For example, pausing
the tour at selected viewpoints and changing the orientation
of viewpoint to look around for a customized exploration.
Beside pathline and pathlet rendering, we will also leverage

other means of visualization such as particle rendering to
enrich the experience of touring an unsteady flow field.
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Appendix

1 Critical Region Identification

1.1 Critical Region Detection

Given the input unsteady flow field, we adopt a 4D moving
window (5×5×5×5) centered at each voxel and calculate its
entropy value by evaluating the variation of vector directions
in each local window. Since calculating the entropy value of
one voxel is independent of another, we compute the entropy
field using CUDA in the GPU.

A critical region at each time step can be defined as a
subvolume which contains rich flow features such as the
neighborhoods of critical points. Entropy values in a critical
region are normally larger than a non-critical region because
vector directions located in the critical region have a higher
degree of variation. Therefore, we detect critical regions by
applying a region growing algorithm. In each time step, we
detect all connected voxels with their entropy values larger
than a given entropy threshold δe as a critical region. Multi-
ple critical regions can be identified for each time step. We
discard critical regions whose sizes are smaller than a given
threshold. To speed up the computation, we implement criti-
cal region detection using CUDA in the GPU. Specifically,
each GPU thread takes the responsibility for one voxel in the
volume. Each thread checks if the entropy value for the cor-
responding voxel is larger than δe. If yes, the voxel is marked
as a critical voxel. At the same time, the boundary critical
voxel is also marked if at least one of its neighboring voxels
is not critical. Each critical voxel is then assigned a unique
ID. Next, for a critical voxel v with ID vID, we check each
of its neighboring critical voxel’s ID nID and set nID = vID
if nID > vID. This is applied to all critical voxels in parallel.
After one round, some voxels’ IDs are changed to smaller val-
ues. We iteratively apply this operation for multiple rounds
until there is no ID change for any voxel. At this moment, all
voxels with the same ID form a critical region.

1.2 Temporal Correspondence Computation

For an unsteady flow field, a critical region at one time step
could span several time steps and overlap other regions in the
neighboring time steps. To identify such temporal correspon-
dences, we detect all matching regions between consecutive
time steps by computing their overlap rates [24]. We point out
that for fast moving structures, alternative solutions such as
optical flow or mass transport minimization should be used.
In our scenario, two regions are matched when their overlap
rate is larger than a given region overlap rate threshold δo.
In this way, we can construct an overlap table for every pair
of neighboring time steps t and t + 1 indicating the match-

ing relations (i.e., continuation, bifurcation, amalgamation,
dissipation, and creation) among critical regions.

Based on those overlap tables, we further apply the fea-
ture tracking algorithm developed by Silver and Wang [23]
to build the temporal correspondence among critical regions.
This algorithm considers every two consecutive time steps
by examining their overlap table in the order of bifurcation,
continuation, amalgamation, dissipation, and creation. When
any region has been categorized into one correspondence,
we will not consider the same region in the subsequent ex-
amination. Finally, based on their temporal correspondence,
we merge regions which have the continuation correspon-
dence into a new critical region. We also identify a region’s
parents or children if there is a bifurcation or amalgamation
correspondence. Figure 1 shows an example of the temporal
correspondence of critical regions.

1.3 Region Skeleton Extraction

In order to identify the shape of each critical region detected,
we construct its skeleton by applying the volume thinning
algorithm presented by Gagvani and Silver [7]. For each
voxel, the algorithm first computes the distance transform
(DT) value, which is the minimum of the distances from the
current voxel to all boundary voxels. We identify a voxel as a
skeleton point if its DT value is larger than the summation of
the average of its neighboring voxels’ DT values and a pre-
defined thinning parameter δt . Obtaining all skeleton points
for each critical region, we employ a minimum spanning tree
(MST) algorithm to connect them to form the skeleton. We
also define the major axis of a skeleton as a line connecting
the two endpoints which have the longest Euclidean distance
on the skeleton. The major direction of the skeleton is the
vector starting from one endpoint of the skeleton with the
lower y value to the other one. In practice, for a critical region
which spans several time steps, we extract its 3D skeleton at
each time step separately.

1.4 Skeleton-based Seeding

In order to trace pathlines, we apply a skeleton-based seeding
strategy by evenly placing seeds along the skeletons extracted
from critical regions. Our goal is to make sure that each focal
region at every time step has enough pathlets to represent
itself for clear highlighting, and the entire flow field has
approximately the same number of pathlets for each time step.
To achieve this, we place two types of seed: region seeds and
random seeds. First, we place region seeds along the skeleton
of each focal region detected at every time step (refer to
Section 4 in the paper) and ensure that the number of seeds
for each region is proportional to its size. Furthermore, to
ensure that the traced pathlets will capture each focal region,
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Fig. 1 The temporal correspondence of critical regions extracted from the hurricane data set. The horizontal axis represents time step. Each red line
represents the lifespan of one critical region.

(a) (b) (c) (d)

Fig. 2 (a) and (b): pathlines traced from random and skeleton-based
seeding, respectively, over all time steps (each 4000 lines). (c) and (d):
pathlines traced from random and skeleton-based seeding, respectively,
from the first three time steps (each 300 lines). Note that skeleton-based
seeding only applies to the focal region, while the remaining regions
are still randomly seeded. Blue to gray to red are mapped to pathline
colors for slow to medium to high velocity magnitudes.

we actually start to trace region seeds a few time steps before
the region is being focused on. For random seeds, we keep
track of the number of pathlets in each time step. The number
of pathlets could decrease as the time evolves since pathlets
may go out of the domain boundary or get absorbed around
the vicinity of a critical point (such as a sink). If the number is
less than a given threshold Np, we will add some more seeds
randomly. This keeps the overall pathline number relatively
stable at each time step. In Figure 2, we compare skeleton-
based seeding against random seeding. It is evident from (a)
and (b) that skeleton-based seeding generates more pathlines
from interesting flow regions. The same conclusion can be
drawn when comparing (c) and (d). From regions highlighted
in red boundaries, we can see that the skeleton-based seeding
favors regions with more intricate flow patterns while placing
fewer streamlines at the bottom region where the flow pattern
is almost straight.

(a) (b) (c)

(d) (e) (f)

Fig. 3 Two sequences of focal region ordering based on two different
size weight λS values. The first row ((a) to (c)) shows the focal region
(highlighted in red) sequence in three continuous time steps with the
default λS value. The second row ((d) to (f)) shows a different sequence
with a larger λS value favoring regions of larger size.

(a) (b) (c)

(d) (e) (f)

Fig. 4 Two sequences of focal region ordering based on two different
temporal correspondence weight γη values. The first row ((a) to (c))
highlights the focal region (highlighted in red) sequence in three con-
secutive time steps with the default γη value. The focal region in the last
time step (c) is the child of the selected region in the previous time step
(b). The second row ((d) to (f)) shows a different sequence with a larger
γη value which prefers a region that is not the child of the previously
selected region.

2 Parameter Influence

We briefly discuss the effects of the parameters and how we
set their values. We categorize the parameters into three sets
based on which stage of the algorithm they are applied to:

– Region extraction parameters. This set of parameters
controls region extraction based on the entropy field and
temporal correspondence of these regions. The entropy
threshold δe allows users to control the extracted region
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entropy overlap thinning #lines win size #win decimation offset angle dist
data set δe δo δt Np Ws Lb δs δl δα δd

supernova 4.0 0.1 1.99 500 5 5 0.033 Vd /10 π/6 20.0
hurricane 3.5 0.1 1.90 450 4 4 0.033 Vd /15 π/6 15.0
solar plume 4.0 0.1 1.95 450 4 4 0.033 Vd /12 π/6 20.0

SC IP IP IP IP IP EF EF EF EF EF VPQ VPQ VPQ
data set α λS λE λV λC λT γτ γσ γν γη γξ λ1 λ2 λ3

supernova 0.7 1 1 1 1 2 1 1 1 2 1 1 0.2 0.2
hurricane 0.7 1 1 1 1 2 1 1 1 2 1 1 0.2 0.2
solar plume 0.7 1 1 1 1 2 1 1 1 2 1 1 0.2 0.2

Table 1 Parameter setting for all data sets. Vd , SC, IP, EF, and VPQ stand for the volume diameter, skeleton complexity, intrinsic property, energy
function, and viewpoint quality, respectively.

size at different levels. The thinning parameter δt is used
to control the point density of the region’s skeleton. The
overlap rate δo determines if two regions are overlapped
and therefore controls the final region temporal corre-
spondence.

– Region traversal order determination parameters. This
set of parameters determines the final scores of spatiotem-
poral regions in the linear system. They include the factor
weights (e.g., λS for the intrinsic property region size Sr,t ,
and γν for the traversal frequency constraint Oν in the lin-
ear system), the time window size Ws, and the maximum
number of backtracking time windows Lb used in the nor-
malized traversal frequency computation. Changing the
parameter values will vary the influence of correspond-
ing factors (e.g., the region size or the region time span)
in the linear system and affect the final region scores.
Since the traversal order is determined based on the re-
gion scores, manipulating these parameters will finally
impact the region traversal order.

– Viewpoint creation parameters. This set of parameters
controls the properties of the final viewpoints (e.g., posi-
tion, look-at direction, and viewpoint score). The mesh
decimation factor δs determines the number of vertices
(viewpoints) for the simplified mesh. The offset threshold
δl determines the distance from the created viewpoints
to the focal region. λ1, λ2, and λ3 control the weights of
different factors in the viewpoint score computation. The
thresholds δα and δd are used to control the final quality
of the selected viewpoints.

Table 1 shows all parameters for each data set. We point
out that although multiple parameters exist in our algorithm,
users are not required to adjust them for each data set. Actu-
ally, the motivation for providing such parameters is to offer
advanced users the capability to explore the flow field based
on their own requirements. In practice, most of the param-
eters in our case studies remain the same for all data sets.
We refer to these parameters as data-independent parameters.
Contrarily, the data-dependent parameters are the ones which
should be adjusted based on the given data set. There are only
a few of data-dependent parameters, e.g., Ws (depending on

the total time steps) and δd (depending on the dimension of
the data set).

Data-independent parameters are specifically designed
for advanced users to control the final exploration. In Figure
3, we give an example on how the size weight λS in the
linear system controls the final region order selection for the
hurricane data set. The three images in the first row show
the focal regions (highlighted in red) of three continuous
time steps based on the original value (λS = 1) used in our
experiment and the three images in the second row show the
focal regions for the same time steps using a larger value
(λS = 5). Therefore, when emphasizing the size factor in
the linear system, our algorithm prefers to select regions
with larger sizes. Figure 4 demonstrates the influence of
the temporal correspondence weight γη to the final region
traversal order for the solar plume data set. Setting a larger
value for the parameter will allow the linear system to prefer
a region which is not the child of the previously selected
region. The first row highlights the focal regions in red for
three consecutive time steps. With a small value (γη = 2),
the system picks the child of the previously selected region
in the last time step. On the contrary, a different region is
selected at the same time step if a larger value (γη = 5) is set,
as shown in the second row.

3 User Study

We conducted a between-subjects user study to evaluate the
effectiveness of our method. We used a design of 2 conditions
(our view tour and baseline view tour) ×2 tasks (answering
questions and identifying critical regions). We recruited 14
users and separated them into two groups: one group of seven
users evaluated our view tours and another group of seven
users evaluated baseline view tours. Each user was paid $10
for participating in the study. All users are graduate students
from different departments (computer science, mechanical
engineering, physics) of a university.
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3.1 Baseline View Tour

For the baseline view tour, we first generate a set of view-
points whose positions are randomly picked both inside and
outside of the volume. For external viewpoints, we also keep
them not too far away from the volume’s center to ensure
clear observation of the flow field. The look-at center of
each viewpoint is also randomly created. However, we con-
strain their positions to be inside of the volume so that the
viewpoints could still focus on the flow field rather than an
empty space outside. Next, we connect all these viewpoints
in a way such that both the Euclidean distance between view-
points and the angle change along the path could be mini-
mized. Finally, we interpolate a B-spline curve passing all the
viewpoints to generate the tour path. If the total length or the
angle change of the baseline view tour is much different from
our method, we will regenerate the path by replacing some
viewpoints. Since the viewpoints for the baseline view tour
are not selected intentionally for observing any particular
flow pattern, we expect that the baseline view tour is unable
to guarantee a comprehensive exploration of internal flow
features.

3.2 Experimental Procedure

Before the experiment started, users had been briefly intro-
duced the basic characteristics of unsteady flow fields, the
types of critical regions they need to recognize, and the tasks
they would be expected to perform in the experiment. After
the briefing, users could ask questions about the flow fields
or the experiment itself to avoid possible misunderstanding.
Then the main study commenced, consisting of tasks for three
data sets. For the first data set, a short demonstration of how
to use the program was given. During the experiment, users
were only allowed to ask questions for clarification about the
meaning of the specific questions or how to use the program.

The procedure for each data set was as follows. First,
users were shown an animation of the complete tour of the
data set without stop or pause. The speed of the animation
could be adjusted if desired. Second, users were given a lim-
ited time to answer several multiple-choice questions about
the flow field and to identify critical regions. They could re-
visit any part of the tour using a slider or replay the animation.
This function was helpful for answering questions and was
required for identifying critical regions. Finally, users were
asked to answer several post-experiment questions about
subjective feedback and suggestions for improvement. They
should complete all three data sets in one sitting. The entire
experiment took approximately an hour for each user, in-
cluding the initial paperwork, briefing, and post-experiment
questionnaire.

(a) (b)

Fig. 5 (a) the average proportion of correct answers of multiple-choice
questions. (b) the average number of critical regions detected.

3.3 Results and Discussion

We present the results of this study in the following aspects:
user correctness on multiple-choice questions, ratings of sub-
jective questions, the proportion of critical regions correctly
identified, and the post-experiment feedback. Because user
performance varied widely by data set, each data set was
analyzed individually, comparing user performance between
our tour and the baseline tour. We used Student’s t-test to
analyze statistical significance between the conditions with a
significance level α = 0.05. Although there are objections to
using the t-test on small samples (seven in our case), several
articles [4, 9, 6] argued that there are no principle objec-
tions to use a t-test for a small sample size even though the
statistical power may not be high.

Multiple-choice questions. Each data set was analyzed
individually by comparing users’ average proportion of cor-
rect answers by the two methods. The hypothesis is that
there is a significant difference of the answer correctness rate
between our method and the baseline method. The average
correctness rates of all users for the two methods are given
in Figure 5 (a). A t-test shows that our method performed
better than the baseline one on the hurricane and solar plume
data sets and the differences are statistically significant with
p� 0.001 and p = 0.045, respectively. For the supernova
data set, although our method also received higher average
correctness rate than the baseline method (0.63 vs. 0.54), the
difference is not statistically significant.

Subjective questions. There are two subjective questions
for each data set asking the effectiveness of finding critical
regions and identifying the global flow pattern. The subjec-
tive questions were also analyzed individually for each data
set. We quantized the answers by setting 1.0 for “Strongly
Agree”, 0.75 for “Agree”, 0.5 for “Neutral”, 0.25 for “Dis-
agree”, and 0.0 for “Strongly Disagree”. The hypothesis is
that there is a significant difference of the rating score be-
tween our method and the baseline method. For the hurricane
data set, our method gets much higher average ratings than
the baseline one for both questions (0.93 vs. 0.64 and 0.79 vs.
0.61). But only the first question has significant difference
with p= 0.039. Our method also receives a higher rating than
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the baseline one for the solar plume data set with average
ratings 0.75 vs. 0.57 and 0.68 vs. 0.61 though no significant
difference is shown. For the supernova data set, both methods
received similar scores.

Critical region identification. Similarly to the multiple-
choice questions, each data set was analyzed individually
for critical region identification. The analysis was done by
comparing how many critical regions the users correctly
identified. The average number of critical regions detected
for both methods are given in Figure 5 (b). The hypothesis
is that there is a significant difference in the average number
of identified critical regions between our method and the
baseline method. The supernova data set gets the same result
for both groups since it contains one enormous critical region
that is easily identifiable by all users. For the other two data
sets, users performed better with our method. The average
number of detected critical regions is 3.00 vs. 1.57 for the
hurricane data set and 5.43 vs. 3.29 for the solar plume data
set. Furthermore, the performance difference for the solar
plume is significant with p= 0.04 where the same conclusion
cannot be made for the hurricane because its p value is only
slightly above the significance level.

Post-experiment feedback. We received the following
major user comments from the post-experiment question-
naire. First, for both our and baseline methods, most users
suggested that the camera may stay longer at each of the se-
lected viewpoints to allow better observation and less visual
jumping. Second, the background pathlines should be thinner
for reducing distraction. Third, some users also suggested
providing a global view of the data set before the experi-
ment since the tour path may focus on the internal pattern
rather than the global shape of the flow field. Users also had
some different opinions on the two methods. For the base-
line method, users gave the neutral rating for detecting flow
features. One of them claimed that the look-at direction
sometimes provided an unreasonable view of sight for ob-
serving the flow field. By contrast, most users agreed that the
tour generated by our method could easily help them identify
critical regions. For other questions, such as animation speed
and pathlet size, both groups were satisfied with the current
configurations.

Discussion. In summary, for the multiple-choice ques-
tions, users in general performed better with our method than
the baseline method. This indicates that our view tour indeed
provides users with more information about the underlying
flow field. For subjective questions, most users agreed that
our method better help them detect critical regions and iden-
tify the global flow pattern than the baseline method for the
hurricane and solar plume data sets, though the latter one
did not have a significant difference. The supernova data set
received almost the same rating for both tours due to the
simple flow feature which could be easily observed with ei-
ther method. In terms of identifying critical regions, users

performed much better with our method over the baseline
method except for the supernova data set which only con-
tains a single obvious sink-like region at the center. From the
post-experiment feedback, except for suggestions on anima-
tion and interface, most users gave positive feedback to our
method over the baseline one.

We conclude that our view tour indeed helps users better
identify and observe the internal flow pattern in unsteady
flow fields, especially for hidden or occluded features that
only exist for a short period of time. Therefore, our view tour
could complement the traditional overview tour by providing
users with a more comprehensive exploration experience for
large and complex flow fields.
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