
Eurographics Conference on Visualization (EuroVis) 2022
R. Borgo, G. E. Marai, and T. Schreck
(Guest Editors)

Volume 41 (2022), Number 3

SurfNet: Learning Surface Representations via

Graph Convolutional Network

Jun Han and Chaoli Wang
University of Notre Dame

Abstract

For scientific visualization applications, understanding the structure of a single surface (e.g., stream surface, isosurface) and

selecting representative surfaces play a crucial role. In response, we propose SurfNet, a graph-based deep learning approach

for representing a surface locally at the node level and globally at the surface level. By treating surfaces as graphs, we leverage

a graph convolutional network to learn node embedding on a surface. To make the learned embedding effective, we consider

various pieces of information (e.g., position, normal, velocity) for network input and investigate multiple losses. Furthermore,

we apply dimensionality reduction to transform the learned embeddings into 2D space for understanding and exploration. To

demonstrate the effectiveness of SurfNet, we evaluate the embeddings in node clustering (node-level) and surface selection

(surface-level) tasks. We compare SurfNet against state-of-the-art node embedding approaches and surface selection methods.

We also demonstrate the superiority of SurfNet by comparing it against a spectral-based mesh segmentation approach. The

results show that SurfNet can learn better representations at the node and surface levels with less training time and fewer

training samples while generating comparable or better clustering and selection results.

CCS Concepts

• Computing methodologies → Neural networks; Unsupervised learning; • Human-centered computing → Scientific visu-

alization;

1. Introduction

Analyzing various kinds of surfaces, such as stream surfaces and
isosurfaces produced from 3D vector and scalar fields, is critically
important for many applications. In this context, nodes represent
sample tracing points forming a stream surface or triangle vertices
constituting an isosurface. Grouping nodes on stream surfaces can
help us, for example, better understand the airflow at the wingtip
of an aircraft that traces the wake vortex. Partitioning nodes on iso-
surfaces can help us, for example, quickly detect different parts of
a human body. Meanwhile, identifying representative surfaces can
yield a compact representation of the underlying data and lead to
the efficient and effective analysis and visualization. Therefore, we
propose a node embedding solution for studying stream surfaces
and isosurfaces generated from scientific visualization. Our goal is
to investigate the relationship among nodes on a single surface and
the correlation among multiple surfaces.

Achieving node clustering and surface selection needs to answer
three key questions. First, how to represent surfaces so that both

node- and surface-level information can be extracted? Although
multiview-based [SMKLM15,QSN∗16] and voxel-based represen-
tations [WSK∗15,HTW20] have been proposed to formulate a sur-
face, these representations can only extract surface-level informa-
tion (such as the overall shape) rather than node-level informa-
tion (such as individual sources or sinks) since no node informa-

tion is built. Second, how to group nodes on a surface without any

given labels? Unlike 3D objects, where many node labels are sup-
ported, it is impractical to manually label every node on the sur-
face since this process is extremely time-consuming and expensive.
Third, how to derive surface embeddings from a set of node embed-

dings? Although several existing approaches [YYM∗18, HHF∗19]
can directly generate surface embeddings, they require labeling
each graph, which is not suitable in our scenario as we need to
handle a large set of surfaces (e.g., 1,000).

To respond, we apply a geometric representation [BBL∗17] (i.e.,
meshes) for surfaces since it can preserve geometric information
of the nodes. We introduce SurfNet, a deep learning approach for
embedding nodes on surfaces. These learned node embeddings sup-
port node clustering, surface clustering, filtering, and selection. The
crux of SurfNet is the design of a graph convolutional network

(GCN) and a novel loss that can automatically learn the hidden
embedding of every node on a single surface in an unsupervised

fashion. Specifically, we train SurfNet to learn an end-to-end func-
tion that maps a node with only its information (e.g., position, nor-
mal) to a node embedding with its neighborhood information. The
trained model allows us to explore the relationship among differ-
ent nodes on a single surface or the relationship among different
surfaces. Our approach consists of three major steps:

• Data sample generation. Given a vector or scalar field data

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-7286-062X
https://orcid.org/0000-0002-0859-3619

Han & Wang / SurfNet

set, we produce stream surfaces using random seeding curves
following the binormal directions [TW18] or isosurfaces with
uniformly sampled isovalues. The resulting surface samples are
used for training and testing SurfNet.

• SurfNet training. Given the surfaces, we first map them to undi-
rected unweighted graphs and initialize node information in ev-
ery graph using their positions, normals, or velocities. Then we
feed these graphs into SurfNet that maps these node embeddings
to new node embeddings, which can capture the graph’s spatial

and geometric structures. Moreover, we optimize SurfNet with a
loss function that measures node similarity.

• Interactive exploration. With the trained SurfNet, we develop
a visual interface supporting interactive surface exploration and
analysis from two perspectives. First, we can analyze a single
surface’s structure through automatically partitioning node em-
beddings generated by SurfNet. Second, we can select represen-
tative surfaces and measure surface similarity via grouping sur-
face embeddings aggregated from node embeddings.
We demonstrate the effectiveness of SurfNet with stream sur-

faces and isosurfaces generated from different vector and scalar
data sets. We qualitatively compare the clustering results of SurfNet
against other node embedding methods and the representative se-
lection results against other surface selection methods. We also
quantitatively show that we can use the representatives selected by
SurfNet to reconstruct the original vector and scalar field data with
better quality. Furthermore, we study the impact of different hy-
perparameters of SurfNet (e.g., loss function design and node in-
formation initialization) and make recommendations. In summary,
our contributions are as follows:
• We propose SurfNet that embeds node and surface information

for scientific visualization applications.
• We investigate several unsupervised loss functions and propose

a geodesic loss for network optimization.
• We conduct an extensive study to understand the learned repre-

sentations on node clustering and surface selection tasks.

2. Related Work

Deep learning for scientific visualization. With the tremendous
success of deep learning techniques in computer vision, natural lan-
guage processing, and robotics, the scientific visualization commu-
nity has begun to leverage deep neural networks (DNNs) to solve
various volume and flow visualization problems.

For volume visualization, Han and Wang [HW20b] introduced
TSR-TVD that combines the recurrent neural network and gen-
erative adversarial network (GAN) to upscales time-varying vol-
umetric data in the temporal dimension and designed SSR-
TVD [HW20a] that upscales time-varying data in the spatial di-
mension. Han et al. [HZ∗22] further presented STNet, an end-to-
end solution for spatiotemporal upscaling. Weiss et al. [WCTW21]
proposed a convolutional neural network (CNN) in the image
space, mapping low-resolution isosurfaces to high-resolution ones.
Cheng et al. [CCJ∗19] presented an interactive system based on
deep learning for detecting and discovering complicated volumet-
ric structures. Berger et al. [BLL19] generated various render-
ing images based on different viewpoints and transfer functions
through a GAN. Similar work on DNN-supported volume visual-
ization was done by Hong et al. [HLY19]. He et al. [HWG∗20]

proposed InSituNet that gathers rendering images from ensem-
ble simulations for offline training and enables interactive explo-
ration in a post hoc manner. Han et al. [HZX∗21] presented V2V,
a variable-to-variable translation framework that translates a vari-
able sequence to another one for multivariate time-varying data.
Tkachev et al. [TFE21a, TFE21b] developed machine learning so-
lutions for identifying spatiotemporal similarities for volume visu-
alization. Weiss et al. [WITW20] generated a sparse adaptive sam-
pling structure from a given low-resolution isosurface or direct vol-
ume rendering image for reconstructing a high-resolution one. Shi
et al. [SXW∗22] designed GNN-Surrogate, a hierarchical and adap-
tive graph neural network for generating unstructured grid data.

For flow visualization, Hong et al. [HZY18] leveraged long
short-term memory to estimate data access patterns and reduce I/O
latency for parallel particle tracing. Han et al. [HTZ∗19] and Gu et
al. [GHCW21] proposed vector field reconstruction algorithms that
take a set of representative streamlines to synthesize high-quality
vector fields. Han et al. [HTW20] designed FlowNet that generates
the latent representations of streamlines or stream surfaces and uti-
lizes them for clustering and selection tasks. Guo et al. [GYH∗20]
presented SSR-VFD, a machine learning solution to upscale a 3D
vector field by 64 or 512 times. Han and Wang [HW22] developed
TSR-VFD that generates temporal super-resolution for unsteady
vector fields. Jakob et al. [JGG21] trained CNNs on a large 2D
fluid flow data set to provide a benchmark for the post-analysis of
Lagrangian fluid flow. Gu et al. [GHCW22] designed Scalar2Vec
that translates scalar fields to velocity vector fields.

Our work is similar to FlowNet [HTW20]; however, there are
several differences. First, instead of converting surfaces into binary
volumes as input, we directly use the original surface mesh as input.
This mesh representation can capture spatial, and more importantly,
geometric information. Second, we leverage GCN instead of CNN
to speed up training and achieve better performance. Third, we aim
to select representative surfaces and group nodes on a single surface
for understanding different node patterns.

Geometric deep learning. Geometric deep learning can be
classified into two categories: spectral and spectral-free meth-
ods [BBL∗17]. Spectral methods compute eigenvectors of graph
Laplacian and operate on the graph’s spectrum. For example, Monti
et al. [MBM∗17] designed Gaussian mixture model convolution
(GMMConv) to graphs and meshes for learning task-specific rep-
resentations. Yi et al. [YSGG17] introduced SynSpecCNN that pa-
rameterizes kernels in the spectral domain spanned by graph Lapla-
cian eigenbases for keypoint detection and part clustering. Ranjan
et al. [RBSB18] proposed a spectral convolutional network that can
capture non-linear variations of shapes for 3D face generation. Liu
et al. [LJQ19] utilized convolution operating on one-ring neighbors
of each node in mesh for the classification of impairment and dis-
ease. Shu et al. [SQX∗16] applied autoencoders to transform low-
level mesh features into high-level ones and grouped the high-level
features to co-segment 3D shapes.

Spectral-free methods implicitly learn to aggregate information
on the graph. For instance, Litany et al. [LBBM18] proposed a
variational graph convolutional autoencoder that learns hidden rep-
resentations of meshes to complete partial shapes. Smith et al.
[SFRM19] designed GEOMetrics, a framework based on graph

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

24.56 56.78 12!72

74.28 86.21 9!45

98.35 21.33 41!45

mesh

simplification

feature

initialization

similarity

measurement

2.67 0.00…

0.00 0.56…

10.21 12.31…

15.67 2.56…

1.89 4.78…

19.45 9.41…

graph

convolution

graph

convolution…
graph

convolution

SurfNet

u

layer j

u

layer j+1

(a) (b)

Figure 1: (a) SurfNet for node embedding learning. The input to SurfNet is the simplified surface. Several graph convolutions are leveraged

to learn node embeddings. Finally, a similarity measure is applied to optimize SurfNet. (b) An example of embedding propagation in GCN.

The latent embedding for node u at layer j+1 is aggregated from its previous embedding and immediate neighbors at layer j.

convolution, for reconstructing mesh objects. Yao et al. [YYSZ20]
applied GCNs to learn motions from meshes for face reenactment.
Kostrikov et al. [KJP∗18] built Surface Networks, leveraging Dirac
operator on meshes, for temporal prediction of mesh deformations
and mesh generation. Wang et al. [WSL∗19] proposed EdgeConv, a
convolutional operation acting on point clouds, to handle high-level
classification and clustering tasks. Wang et al. [WZL∗18] intro-
duced Pixel2Mesh that generates meshes from single RGB images
based on GCNs. Hanocka et al. [HHF∗19] established MeshCNN
that utilizes geodesic connections among edges to process meshes
for mesh classification and clustering.

Our work is a spectral-free method. Compared with spectral
methods utilizing linear operations, spectral-free methods apply
polynomial estimation on the mesh, capturing more complicated
patterns. SurfNet is different from the above works in two ways.
First, instead of requiring a large number of annotations at ei-
ther the mesh level [HHF∗19, MBM∗17, LJQ19] or the node
level [HHF∗19, YSGG17, WSL∗19], we propose a novel unsuper-
vised loss that helps SurfNet automatically group nodes. Second,
we present an unsupervised node aggregation operation that gener-
ates mesh embedding in our context from a set of node embeddings.

3. SurfNet

Given a large set of stream surfaces or isosurfaces generated from a
vector or scalar field data set, we propose two aims: clustering and
selection. For clustering, we aim to partition every stream surface
or isosurface into several parts so that these parts exhibit different
patterns. For selection, a subset of surfaces best covering the under-
lying features and patterns needs to be identified. Instead of iden-
tifying these surfaces directly, we group the input set into clusters
and select the representatives from these clusters. A key question is
how to generate node embeddings for a surface in an unsupervised
manner. We propose SurfNet, a GCN that learns node embeddings
through graph convolution. An overview of SurfNet is sketched in
Figure 1 (a). We first simplify the surfaces using a mesh simplifica-
tion algorithm [GH97], an iterative approach to simplify surfaces
and maintain surface errors through a given threshold for com-
putation reduction. Then, every simplified surface is treated as an
undirected unweighted graph, which will be the input to SurfNet.
We initialize the node using their positional information. SurfNet
learns node embeddings automatically by aggregating their neigh-
borhoods. To optimize SurfNet, we compute a node similarity ma-
trix, and based on this matrix, SurfNet will update learnable pa-
rameters through gradient descent. Once SurfNet converges, these
node embeddings represent each node’s information or the entire
surface’s information. We then apply t-SNE [vdMH08] to node em-
beddings for projecting to a low-dimensional space and leverage

DBSCAN [EKSX96] to identify the clustering or the representa-
tives based on interactive clustering (t-SNE+DBSCAN has shown
to produce the most meaningful clustering results [HTW20]). Fi-
nally, users can explore the surface(s) and perform visual analysis
and analytical reasoning through a visual interface.

3.1. Notation

Formally, we define a surface (mesh) as a graph G = (V,E), where
V is the set of all nodes (e.g., sample tracing points along both
streamline and timeline directions on a stream surface or trian-
gle vertices on an isosurface) and E is the set of all edges (e.g.,
edges connecting sample tracing points on a stream surface or tri-
angle edges on an isosurface). Each node u ∈ V has a set of asso-
ciated embedding values, denoted as Fu. Fu could denote various
pieces of information (e.g., position, normal, velocity) of the corre-
sponding node u. N (u) denotes the neighborhood of u. In addition,
G = {G1,G2, . . . ,Gn} is a set of graphs and FGi represents the em-
bedding descriptor of graph Gi.

3.2. Node Embedding

Given a surface, SurfNet aims to generate a set of node embed-
dings, and each node embedding presents rich spatial and geomet-
ric information of the corresponding node on the surface. To this
end, SurfNet needs to satisfy the two major properties as suggested
by Bai et al. [BDQ∗19]:

• Inductivity. SurfNet should learn a unified mapping function so
that it can be directly applied to any unseen surface to generate
the corresponding node embeddings.

• Permutation invariance. A different adjacency matrix can rep-
resent the same surface by permuting the order of nodes, and
SurfNet should be insensitive to such permutations.

Across different node embedding models, neighborhood aggrega-
tion methods based on GCN are permutation-invariant and induc-
tive. This is because the core operation, graph convolution, updates
a node’s representation by aggregating the node and its neighbors’
embedding. Since the aggregation function treats a node’s neigh-
bors as a set, the order does not affect the final embedding result.

Node aggregation. To merge information on a node u, we
choose a topology-based aggregator [YHC∗18], as sketched in Fig-
ure 1 (b). The aggregator works as follows. For each node u on a
surface, all nodes v, where v ∈ N (u), are first identified. Then, a
multi-perceptron layer is leveraged to transform the node represen-
tation Fv into a new node representation through an aggregation
function (e.g., averaging or summation). This aggregation function
merges representations Fu and Fv, where v ∈ N (u). After that, we
apply an activation function to the transformed embedding to in-
crease the capability of capturing nonlinear behaviors. Finally, a

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

representation of u consisting of the node and its local neighbor-
hood’s information is produced.

64 128 256 256 256 256

graph convolution K node embedding dimensionresidual connection

21.1 34.5 65.3

12.4 23.5 34.4

12.4 0.0…

15.7 29.6 45.3

5.6 2.2…

7.4 0.0…

Figure 2: The architecture of SurfNet. SurfNet contains six graph

convolution layers and the last four graph convolutions are bridged

by residual connection.

Network architecture. As sketched in Figure 2, following Ying
et al. [YHC∗18], after applying one graph convolution to a surface,
we update the embedding representation of each surface node u.
We employ several graph convolutions to aggregate enough infor-
mation from u’s neighbors. Specifically, SurfNet contains six graph
convolution layers. These six layers embed the embeddings into
64, 128, 256, 256, 256, and 256 dimensions, respectively. More-
over, we leverage residual connection [HZRS16] to bridge the in-
formation from the third to fifth graph convolution layers, miti-
gating the impact of vanishing gradients and accelerating conver-
gence [XZJK21]. We apply the rectified linear unit (ReLU) [NH10]
as the activation function after each graph convolution layer in the
following computation. Note that the initial representations (i.e.,
the input to the first layer) could be the original information of the
surface nodes (e.g., position, normal). The detailed parameters are
listed in Table 1. Note that we increase the embedding dimension
in network design so that the learned embedding have enough in-
formation to represent nodes.

Table 1: Network parameter details of SurfNet.

operation # input neurons # output neurons
graph Conv 3 64
graph Conv 64 128
graph Conv 128 256
graph Conv 256 256
graph Conv 256 256
graph Conv 256 256

3.3. Loss Function

To optimize SurfNet, we investigate several loss functions for mea-
suring node similarity in the embedding space.

• Optimization based adjacency matrix [ASN∗13]:

L=
n

∑
i=1

∑
u∈Vi

∑
v∈Vi

(Ai(u,v)−F
T
u Fv)

2
, (1)

where n is the number of graph samples (i.e., {G1,G2, . . . ,Gn})
used for training, Vi is the node set of Gi, and Ai is the adjacency
matrix of Gi.

• Optimization based on random walk [HYL17]:

L=
n

∑
i=1

∑
u∈Vi

[

− log(σ(FT
u Fv))− ∑

k∈Pu

log(σ(FT
u Fk))

]

, (2)

where v is a node that is near u on a fix-length random walk (e.g.,
10), σ is the sigmoid function, and Pu is a negative sampling node
set of node u.

• Optimization based on multidimensional scaling (MDS): Fol-
lowing Corso et al. [CYP∗21], which utilizes MDS to estimate
the error between the sequences’ edit distance and the distance
between the learned embeddings, we apply MDS as a self-
supervised loss as follows

L=
n

∑
i=1

∑
u∈Vi

∑
v∈Vi

(D(u,v)−d(Fu,Fv))
2
, (3)

where d(·, ·) denotes the distance measure (such as L2 norm) in
the embedding space and D(u,v) is a distance metric between
nodes u and v (e.g., position, normal, or velocity similarity).
When we use geodesic distance to estimate the learned node em-
beddings, the loss becomes ISOMAP.

Loss analysis. To investigate the effectiveness of various losses,
we train SurfNet with different objective functions (i.e., adjacency
matrix, random walk, Euclidean, normal, velocity, and geodesic
distances) using the five critical points data set. The results are
given in Figure 3. Node clustering results are not satisfactory us-
ing the adjacency matrix, random walk, normal, velocity, and cu-
rature distances. For example, these loss functions cannot isolate
the spirals on this surface. Euclidean distance can detect the spiral
at the top of the surface (i.e., the yellow part) but fails to discover
the other one. The geodesic distance can separate the two spirals
at both ends (the yellow and blue parts). Therefore, in the paper,
we choose geodesic distance as the objective function for SurfNet
optimization.

We further reason these losses during network optimization. As
illustrated with an example in Figure 4, Euclidean distance deems
red and yellow nodes closer than red and purple nodes. This con-
trasts the observation that red and purple nodes should be more
similar since they come from the same surface branch, while red
and yellow nodes are less similar as they reside in two different
branches. For adjacency matrix and random walk, both determine
that the red node is equally distant from the green and yellow ones.
The red node is disconnected from the yellow or green node in the
adjacency matrix. The red node cannot reach the yellow or green
node through multiple random walks. Only the loss function based
on the geodesic distance reflects the correct similarity order.

3.4. Surface Embedding

For surface Gi, given a set of node embeddings F =
{F1,F2, · · · ,F|Vi|}, we compute the corresponding surface embed-
ding as

F
Gi =

1
|Vi|

∑
u∈Vi

Fu, (4)

where |Vi| is the number of nodes in Gi.

Similar to Tkachev et al. [TFE21b], the distance between sur-
faces Gi and G j is defined as

D(Gi,G j) = ||FGi −F
G j ||2, (5)

where || · ||2 is L2 norm.

To demonstrate the effectiveness of this surface distance met-
ric, we compare this metric with two traditional surface distance
metrics, i.e., chamfer distance [BTBW77] (CD), Jensen-Shannon

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

(a) adj. matrix (b) random walk (c) Euclidean (d) normal (e) velocity (f) curvature (h) geodesic

Figure 3: SurfNet node clustering results of a stream surface under different loss functions using the five critical point data set.

,sim() > ,sim() ,sim()=

,sim() > ,sim() ,sim()>

,sim() > ,sim() ,sim()>

adjacency matrix

geodesic distance

random walk
,sim() > ,sim() ,sim()=

Euclidean distance

Figure 4: Comparison of different loss functions. The correct sim-

ilarity order is sim(,)>sim(,)>sim(,). This is because red,

purple, and green nodes are on the same surface branch while red

and yellow nodes are on two different branches. In addition, red

and purple nodes are closer on the surface than red and green

nodes.

divergence [Lin91] (JSD), and Jaccard distance [FML15] (JD). A
comparison is shown in Figure 5. In the projection space gener-
ated by each distance metric, we brush two parts and display the
corresponding stream surfaces. For CD, JSD, and JD, similar sur-
faces are not placed in close locations (i.e., the purple surfaces).
For SurfNet, we can observe that the surfaces can be classified into
four groups in general and similar surfaces can be placed together.

3.5. Interface and Interaction

The screenshot in Figure 6 shows that our SurfNet interface in-
cludes two views: surface view and projection view. Brushing and
linking are used to connect both views. Surface(s) in the original
3D space is shown in the surface view, and the projected points
in the 2D space are displayed in the projection view. Note that for
node clustering, each point in the projection view represents a node

on the surface (node embedding). For representative selection, each
point represents a surface (surface embedding). The following in-
teractive functions are supported to explore the clustering and se-
lection results.

• Clustering. The hyperparameters of DBSCAN (i.e., the maxi-
mum distance between two node embeddings in the 2D space
and the minimum number of samples in one cluster) can be
tuned by users to produce different clustering results. Neighbor-
ing clusters are drawn using different colors for differentiation. A
black boundary is added to the selected cluster for highlighting,
and the corresponding surface parts or surfaces are displayed in
the surface view. Multiple clusters in the projection view can be
chosen simultaneously by users. The relationships among them

are examined in the surface view. The unselected ones are col-
ored with light gray.

• Representatives. To select the representative from one cluster,
we follow FlowNet [HTW20] and define a cluster’s center as
the point where the average distance is the shortest between this
point and all the other points in this cluster. The number of rep-
resentatives can be manually changed based on user preferences.
The selected representatives are displayed in the surface view,
and the corresponding points are shown in the projection view.

• Neighborhood. Following FlowNet [HTW20] , we define the
distance between two clusters as the distance between their cen-
ters. Users can select one cluster and expand to its neighborhood
to explore the neighboring clusters. Users can also go through
these clusters according to their distances to the selected one.
They can check the similarities and differences among the clus-
ters in the neighborhood.

Table 2: Dimension and training epochs of vector data sets.

data set dimension (x× y× z) epochs
Bénard flow 128× 32× 64 200
five critical points 51× 51× 51 200
solar plume 126× 126× 512 200
square cylinder 192× 64× 48 200
tornado 64× 64× 64 200
two swirls 64× 64× 64 200

Table 3: Dimension and training epochs of scalar data sets.

data set variable dimension (x× y× z) epochs
combustion HR, MF, YOH 240× 360× 30 100
ionization H, He, PD 600× 248× 248 100
bonsai Intensity 204× 204× 204 100
brain Intensity 128× 128× 72 200
lobster Intensity 301× 324× 56 300

4. Results and Discussion

4.1. Data Sets and Network Training

We experimented with vector and scalar data sets shown in Tables 2
and 3, respectively. We used two multivariate data sets (combustion
and ionization), and the rest of the data sets have a single variable.
We implemented SurfNet using PyTorch and DGL [WZY∗19]. The
training and inference were run on an NVIDIA GTX 1080 Ti GPU.
In terms of optimization, we initialized SurfNet parameters follow-
ing the suggestion of He et al. [HZRS15] and employed the Adam
optimizer [KB14] for parameter updates (β1 = 0.9, β2 = 0.999).
We set one training sample per mini-batch and the learning rate
to 10−4. For stream surfaces, we generated 2,000 surfaces. We

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

(a) selected (b) chamfer dist. (c) Jensen-Shannon div. (d) Jaccard dist. (e) SurfNet

Figure 5: Evaluation of different surface distance metrics using the two swirls data set via brushing and linking. (a) shows the selected

surfaces, while (b) to (e) show their corresponding projections where the unselected nodes are colored in gray.

surface
view

projection
view

control
panel

Figure 6: The visual interface of SurfNet. In this example, the se-

lected nodes are highlighted in both views. The unhighlighted sur-

face parts are colored with light gray in the surface view.

used 1,000 surfaces for training and the other 1,000 for inference.
For isosurfaces, we uniformly selected 256 isovalues for training
and sampled other isovalues for inference. We determined all these
hyperparameters empirically. We use spatial location as initialized
node information for SurfNet.

To evaluate SurfNet, we analyze different hyperparameter set-
tings, including mesh simplification, network depth, training stabil-
ity, embedding strategy, embedding dimension, node information
initialization, and training samples. Please refer to the appendix for
SurfNet analysis. The appendix also includes a comparison of di-
mensionality reduction and clustering methods.

Evaluation metric. For quantitative evaluation, following Han
et al. [HTW20], we use the representative surfaces to reconstruct
the vector field (for steam surfaces) and the scalar field (for isosur-
faces) through gradient vector flow [XP97]. We then compute the
peak signal-to-noise ratio (PSNR) between the reconstructed and
original data.

4.2. Node Clustering

Baselines. For node clustering, we compare SurfNet against both
spectral and spectral-free methods:

• GMMConv [MBM∗17] is a spectral method. It learns d-
dimensional node embedding through Gaussian mixture CNNs.

• EdgeConv [WSL∗19] is a spectral-free method. It encodes each
node into a d-dimensional vector by aggregating its nearest
neighbors.

For a fair comparison, we apply the same settings (i.e., the loss

function, number of training samples, optimizer, and epochs) for
optimizing GMMConv, EdgeConv, and SurfNet.

Similar to other node embedding approaches [JZL∗19, KW17,
AEHPARA18, HLL∗19], the 2D t-SNE projection cannot com-
pletely represent relationships among different nodes.

Node embedding validation. To verify the effectiveness of our
node embedding, we apply t-SNE to project node embeddings to
a 2D space and then perform brushing and linking. The results are
shown in Figure 7. The t-SNE projection conveys the node’s posi-
tional information and potentially the surface’s structural informa-
tion. For example, for the tornado (Figure 7 (a)), the orange points
at the bottom-right corner of the projection view correspond to the
tail of the surface, and the green and red points correspond to the
spiral. Likewise, for the two swirls (Figure 7 (b)), the orange points
in the projection view exhibit a swirling pattern, which corresponds
to the orange part of the surface. These brushing and linking results
demonstrate the meaningfulness of the learned embeddings, indi-
cating that they can capture the nodes’ neighborhoods and their
positional information.

(a) tornado (b) two swirls

Figure 7: Evaluation of node embeddings via brushing and linking.

The unselected nodes are colored in gray.

Node clustering comparison. In Figure 8, we qualitatively com-
pare the node clustering results generated by GMMConv, Edge-
Conv, and SurfNet. The same number of clusters is used for the
same data set. For the bonsai data set, GMMConv does not sepa-
rate the bonsai from the basin, while both EdgeConv and SurfNet
can correctly separate the two structures. The same conclusion can
be drawn for the tornado data set, as only SurfNet partitions the
tornado into three spirals of different curvature ranges. For the two
swirls data set, GMMConv groups two spirals (refer to the green

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

(a) GMMConv (b) EdgeConv (c) SurfNet

Figure 8: Node clustering results of a single surface. Top to bot-

tom: bonsai (isosurface), tornado (stream surface), and two swirls

(stream surface). Smaller surface clusters are highlighted with ar-

rows of the same colors.

(a) (b) (c)

Figure 9: SurfNet node clustering results of a stream surface (top)

using the five critical points data set and an isosurface (bottom)

using the bonsai data set. From (a) to (c), the numbers of clusters

for stream surfaces are 2, 3, and 4, and the numbers of clusters for

isosurfaces are 3, 4, and 5.

and orange parts) with overlap. EdgeConv does not detect the two
spirals. SurfNet can recognize the surface’s structure correctly, i.e.,
two spirals (refer to the blue and green parts) and one bridge (refer
to the orange part). Overall, SurfNet outperforms GMMConv and
EdgeConv by producing satisfactory node clustering results.

In Figure 9, we adjust the number of clusters to show the results
with different scales (i.e., from coarse to fine) on a single stream
surface and isosurface. All the results indicate that SurfNet can pro-
duce meaningful node clustering results under different numbers of

(a) Liu and Zhang [LZ04] (b) SurfNet

Figure 10: Node clustering results of a single isosurface using the

brain (top) and lobster (bottom) data sets.

(a) five critical points (b) square cylinder

Figure 11: Loss convergence among GMMConv, EdgeConv, and

SurfNet.

clusters. For example, the clustering shows the basin’s top and bot-
tom portions and various parts of the bonsai.

Comparison against mesh segmentation. We compare SurfNet
against a spectral-based mesh segmentation approach of Liu and
Zhang [LZ04]. Their method computes geodesic and angular dis-
tances between faces to build a distance matrix and applies spec-
tral methods to select eigenvectors for segmentation. Since it is de-
signed for closed meshes, we choose the brain and lobster data sets
for comparison. The results are displayed in Figure 10. As we can

(a) joint training (b) separate training

Figure 12: SurfNet node clustering results of a stream surface us-

ing joint training and separate training. We utilize the tornado and

two swirls data set to jointly train SurfNet.

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

(a) (b) (c)

Figure 13: Evaluation of surface embeddings using the tornado

(top) and combustion (YOH) (bottom) data sets via brushing and

linking. Surfaces corresponding to unselected points are not dis-

played.

see, Liu and Zhang [LZ04] cannot separate the face and forebrain
of the brain data set and the body and tail of the lobster data set.

Baseline analysis. As shown in Figure 8, we observe that GMM-
Conv does not produce acceptable node clustering results for all
data sets, and EdgeConv only generates acceptable results for sim-
ple surfaces (e.g., bonsai). This is because GMMConv only applies
linear operations on the mesh Laplacian, which leads to slow con-
vergence and poor performance. To verify this, in Figure 11, we
plot the loss curves among GMMConv, EdgeConv, and SurfNet us-
ing the five critical points and square cylinder data sets. We can see
that SurfNet and EdgeConv converge faster and exhibit more stable
training compared with GMMConv. EdgeConv has limited capabil-
ity to detect complex node patterns. It does not produce satisfactory
clustering results for the lobster and two swirls data sets.

Timing and model size analysis. In terms of training time, in-
ference time, and model size, SurfNet, GMMConv, and EdgeConv
do not exhibit significant differences, as shown in Table 4. The
training time relies on the number of training samples and the com-
plexity of surfaces (e.g., the number of nodes and edges on sur-
faces). As for the training time for isosurfaces, SurfNet only takes
less than 10 seconds per epoch.

Performance degradation on boundary. As node clustering
results show in Figures 8 and 10, the performance of node clus-
tering degrades on the boundary of two structures (e.g., the face
and forebrain of the brain data set). We give three explanations
for such inaccurate boundary results. (1) ambiguity: The transition
from one structure to another is a gradual change. This means that
the shortest-path distance between two nodes located in two dif-
ferent patterns could be small, letting SurfNet treat the two nodes
as similar. (2) difficulty: Detecting the boundary accurately in an
unsupervised fashion is challenging since current deep learning
frameworks require node annotations (e.g., experts label each node
on the mesh) to delineate the boundary [HHF∗19, WSL∗19]. Even
with these annotations, the boundary could still be inaccurate due to
the uncertainty and error introduced by the annotations [ZPP∗20].
(3) amplification: The similarity of nodes located in two struc-
tures could be close. After several graph convolutions, the simi-

larity could be amplified due to the weight-sharing mechanism and
node propagation and aggregation in GCN, which hinders SurfNet
from detecting a clear boundary between two structures.

Cross data set evaluation. To evaluate the cross data set gen-
eralization of SurfNet, we perform joint training using the tornado
and two swirls data sets. Both joint training and separate training
take the same number of epochs for training. The surface cluster-
ing results are shown in Figure 12. For the two swirls data set, both
ways of training can isolate the two swirls on the corresponding sur-
faces; however, separate training can also isolate the “bridge" con-
necting the two swirls. Therefore, we prefer using separate training.

4.3. Surface Selection

Baselines. For representative selection, we compare SurfNet
against two surface selection methods:
• FlowNet [HTW20] is a deep learning solution for representative

stream surface selection. It encodes each surface into a latent em-
bedding and leverages t-SNE for dimensionality reduction and
DBSCAN for surface clustering.

• Isosurface similarity maps (ISM) [BM10] is constructed by com-
puting the mutual information between isosurfaces. The repre-
sentative isosurfaces are selected based on ISM.

Please refer to the accompanying videos for the frame-to-frame
comparison of node clustering and representative selection results.

Surface embedding validation. To verify our surface embed-
ding approach’s effectiveness, we leverage t-SNE to project surface
embeddings to a 2D space and then perform brushing and linking
of these surfaces. The results are shown in Figure 13. The t-SNE
projection conveys the surface’s positional and shape information.
For the tornado data set, the points on the left/right side of the pro-
jection view correspond to the surfaces shown at the top/bottom
part of the surface view. For the combustion (YOH) data set, the
points from right to left correspond to the isosurfaces with increas-
ing isovalues. Thus, these brushing and linking results demonstrate
the meaningfulness of these surface embeddings.

Representative selection. In Figure 14, we compare repre-
sentative stream surface selection results between SurfNet and
FlowNet [HTW20]. Both methods allow users to handpick repre-
sentative stream surfaces via a two-step process. Both methods pick
the same number of representatives from the same set of stream sur-
faces for fair comparisons. We can see that compared to FlowNet,
SurfNet chooses a subset of surfaces that better covers the domain
to reveal more interesting flow features and patterns.

In Table 4, we report the average training time per epoch, av-
erage inference time, and the model size of FlowNet and SurfNet.
SurfNet only needs 17 to 50 seconds to train 1,000 samples per
epoch, while FlowNet requires 200 to 1,000 seconds. As for the in-
ference time, SurfNet is still faster than FlowNet. Besides, SurfNet
only needs 0.93 MB to store model parameters, while FlowNet
needs 710 MB on average. This is because SurfNet is indepen-
dent of the surface resolution, while FlowNet depends on the res-
olution of the vector field data. Another advantage of SurfNet is
that it requires fewer training samples (i.e., 1,000) for optimiza-
tion since graph convolution operations are permutation invariant,
and SurfNet utilizes both Euclidean and geodesic distances and a
node’s neighborhood information when producing embeddings. In

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

(a) five critical points (b) tornado (c) square cylinder (d) two swirls

Figure 14: Representative stream surface selection results. Top row: FlowNet. Bottom row: SurfNet.

(a) (b) (c)

Figure 15: Customized SurfNet representative stream surface selection results using the Bénard flow data set. The numbers of representative

surfaces are 4, 4, and 8, respectively, from (a) to (c).

(a) YOH (b) H (c) YOH → HR (d) YOH → MF (e) H → He (f) H → PD

Figure 16: Representative isosurface selection results. Top row: ISM. Bottom row: SurfNet. (a), (c), and (d): combustion. (b), (e), and (f):

ionization. For SurfNet, (a) and (b) show same-variable inference results, while (c) to (f) show difference-variable inference results. The

numbers of representative surfaces are 3, 3, 4, 3, 3, and 4, respectively, from (a) to (f).

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

Table 4: Average training time per epoch (in second) with 1,000
surface samples for training, average inference time (in second),

and model size (MB). Note that FlowNet is designed for learning

surface embedding, not node embedding.

data set method training inference model size

five critical points

FlowNet 333 1.87 541
GMMConv 19.18 0.005 0.83
EdgeConv 14.84 0.006 0.84
SurfNet 17.40 0.009 0.93

solar plume

FlowNet 1,001 2.42 1,228
GMMConv 61.14 0.028 0.83
EdgeConv 54.56 0.030 0.84
SurfNet 50.85 0.034 0.93

square cylinder

FlowNet 255 1.83 791
GMMConv 18.79 0.005 0.83
EdgeConv 17.42 0.006 0.84
SurfNet 18.36 0.009 0.93

two swirls

FlowNet 210 1.56 281
GMMConv 21.69 0.005 0.83
EdgeConv 19.84 0.006 0.84
SurfNet 20.69 0.009 0.93

contrast, FlowNet requires 2,000 samples to train for most of the
vector field data sets because convolutional operations are not per-
mutation invariant, and FlowNet only considers neighborhood in-
formation when learning the surface embedding.

In Figure 15, we can see that SurfNet can flexibly represent the
underlying vector field with selected stream surfaces at different
levels of detail. Users can determine the suitable number of repre-
sentatives empirically as they adjust interactively.

In Figure 16 (a) and (b), we compare our representative iso-
surface selection results against those selected by ISM [BM10].
It takes ISM three minutes to generate the representative set. For
fair comparisons, both methods select the same number of repre-
sentatives from the same pool of isosurfaces. We can see that both
methods can capture important isosurfaces. Furthermore, in Fig-
ure 16 (c) to (f), we compare the representative isosurface selec-
tion results through different-variable inference. In this case, we
use variable YOH of the combustion data set for training and apply
the network to HR and MF for inference. For the ionization data set,
we use variable H for training and He and PD for inference. We can
observe that these representative isosurfaces also exhibit compara-
ble results as ISM. In Table 5, we report PSNR values for different
representative surface selection methods. Although the difference
is marginal, SurfNet achieves higher PSNRs for surface selection.

Table 5: PSNRs of reconstructed vector and scalar fields (the

higher PSNRs are highlighted in bold).

data set method # REPs PSNR (dB)

solar plume
FlowNet 7 30.43
SurfNet 7 31.43

tornado
FlowNet 4 22.49
SurfNet 4 24.41

two swirls
FlowNet 4 27.55
SurfNet 4 28.12

combustion (HR)
ISM 4 18.86
SurfNet 4 18.91

ionization (PD)
ISM 4 18.86
SurfNet 4 19.02

4.4. Discussion

Although SurfNet produces coarser results in 3D shape compared
with the existing solutions [Sha08], SurfNet still has two advan-
tages. (1) Generalizability: Once converged, SurfNet can group

nodes on unseen surfaces, while traditional shape analysis ap-
proaches for meshes need to be rerun for producing new results.
(2) Diversity: SurfNet can handle different kinds of surfaces while
shape analysis algorithms are typically used to process closed

meshes (e.g., 3D objects) but not open ones (e.g., stream surfaces).
Also, SurfNet can handle node clustering and surface selection,
while shape analysis only focuses on node-level rather than surface-
level analysis. In addition, we believe it is a good start in unsuper-
vised geometric learning for surface analysis and has great potential
to improve in the future by incorporating domain knowledge into
graph convolutional operations.

5. Conclusions and Future Work

We have presented SurfNet, a new solution for clustering and
selecting stream surfaces and isosurfaces. Based on the GCN,
SurfNet can learn permutation-invariant node embedding from sur-
faces in an unsupervised manner, drawing a big difference from
other works that learn node embeddings from labels and use differ-
ent frameworks to solve surface clustering and selection separately.
These node embeddings encode their neighborhood information
rather than purely physical information (e.g., position, normal). By
projecting these embeddings into a 2D space, we provide an inter-
active visual interface for user exploration. Meaningful clustering
and selection results are yielded under different clustering hyperpa-
rameters. These node embeddings produced from SurfNet preserve
spatial proximity and geometric similarity.

We validate SurfNet on various vector and scalar field data
sets of different patterns and compare the clustering and selec-
tion results derived from the learned node embeddings with those
produced using other state-of-the-art methods. Compared with
FlowNet, training SurfNet is 10 to 20 times faster per epoch and
inferring is 70 to 170 times faster while the model’s storage-
saving is 300 to 1,300 folds (Table 4). Qualitative results show
that SurfNet generates better node clustering results than those gen-
erated by GMMConv and EdgeConv. Qualitative and quantitative
results show that SurfNet suggests comparable or better represen-
tative selection results than those generated by FlowNet (stream
surfaces) and ISM (isosurfaces).

To our best knowledge, SurfNet is the first that applies GCN to
solve surface clustering and selection problems for scientific visu-
alization. Our current work focuses on detecting surface patterns
and grouping a set of surfaces. We will explore the possibility of
GCN in two directions (1) predicting stream surfaces (lines) con-
ditioned on a user-specified seeding curve (point) through GCN. If
successful, this could enable us to predict the quality of the corre-
sponding stream surfaces (lines) without actual tracing. (2) detect-
ing delicate structures (e.g., separating the lobster’s arms from its
claws) with little human intervention. Currently, the clustering re-
sults can discover major surface structures but fail to discern minor
ones. We will leverage semi- supervised learning to improve the
node embedding quality by providing a small number of human
annotations to SurfNet.

Acknowledgements

This research was supported in part by the U.S. National Science
Foundation through grants IIS-1455886, CNS-1629914, DUE-
1833129, IIS-1955395, IIS-2101696, and OAC-2104158.

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

References

[AEHPARA18] ABU-EL-HAIJA S., PEROZZI B., AL-RFOU R., ALEMI

A. A.: Watch your step: Learning node embeddings via graph attention.
In Proceedings of Advances in Neural Information Processing Systems

(2018), pp. 9198–9208. 6

[ASN∗13] AHMED A., SHERVASHIDZE N., NARAYANAMURTHY S.,
JOSIFOVSKI V., SMOLA A. J.: Distributed large-scale natural graph
factorization. In Proceedings of ACM International Conference on World

Wide Web (2013), pp. 37–48. 4

[BBL∗17] BRONSTEIN M. M., BRUNA J., LECUN Y., SZLAM A.,
VANDERGHEYNST P.: Geometric deep learning: Going beyond Eu-
clidean data. IEEE Signal Processing Magazine 34, 4 (2017), 18–42.
1, 2

[BDQ∗19] BAI Y., DING H., QIAO Y., MARINOVIC A., GU K., CHEN

T., SUN Y., WANG W.: Unsupervised inductive graph-level representa-
tion learning via graph-graph proximity. In Proceedings of International

Joint Conferences on Artificial Intelligence (2019), pp. 1988–1994. 3

[BLL19] BERGER M., LI J., LEVINE J. A.: A generative model for
volume rendering. IEEE Transactions on Visualization and Computer

Graphics 25, 4 (2019), 1636–1650. 2

[BM10] BRUCKNER S., MÖLLER T.: Isosurface similarity maps. Com-

puter Graphics Forum 29, 3 (2010), 773–782. 8, 10

[BTBW77] BARROW H. G., TENENBAUM J. M., BOLLES R. C., WOLF

H. C.: Parametric correspondence and chamfer matching: Two new tech-
niques for image matching. In Proceedings of International Joint Con-

ference on Artificial Intelligence (1977), pp. 659–663. 4

[CCJ∗19] CHENG H.-C., CARDONE A., JAIN S., KROKOS E.,
NARAYAN K., SUBRAMANIAM S., VARSHNEY A.: Deep-learning-
assisted volume visualization. IEEE Transactions on Visualization and

Computer Graphics 25, 2 (2019), 1378–1391. 2

[CYP∗21] CORSO G., YING R., PÁNDY M., VELIČKOVIĆ P.,
LESKOVEC J., LIÒ P.: Neural distance embeddings for biological se-
quences. In Proceedings of Advances in Neural Information Processing

Systems (2021). 4

[EKSX96] ESTER M., KRIEGEL H.-P., SANDER J., XU X.: A density-
based algorithm for discovering clusters in large spatial databases with
noise. In Proceedings of ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (1996), pp. 226–231. 3

[FML15] FOFONOV A., MOLCHANOV V., LINSEN L.: Visual analy-
sis of multi-run spatio-temporal simulations using isocontour similarity
for projected views. IEEE Transactions on Visualization and Computer

Graphics 22, 8 (2015), 2037–2050. 5

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using
quadric error metrics. In Proceedings of ACM SIGGRAPH Conference

(1997), pp. 209–216. 3

[GHCW21] GU P., HAN J., CHEN D. Z., WANG C.: Reconstructing un-
steady flow data from representative streamlines via diffusion and deep
learning based denoising. IEEE Computer Graphics and Applications

41, 6 (2021), 111–121. 2

[GHCW22] GU P., HAN J., CHEN D. Z., WANG C.: Scalar2Vec: Trans-
lating scalar fields to vector fields via deep learning. In Proceedings of

IEEE Pacific Visualization Symposium (2022). Accepted. 2

[GYH∗20] GUO L., YE S., HAN J., ZHENG H., GAO H., CHEN D. Z.,
WANG J.-X., WANG C.: SSR-VFD: Spatial super-resolution for vector
field data analysis and visualization. In Proceedings of IEEE Pacific

Visualization Symposium (2020), pp. 71–80. 2

[HHF∗19] HANOCKA R., HERTZ A., FISH N., GIRYES R., FLEISH-
MAN S., COHEN-OR D.: MeshCNN: A network with an edge. ACM

Transactions on Graphics 38, 4 (2019), 90:1–90:12. 1, 3, 8

[HLL∗19] HUANG J., LI Z., LI N., LIU S., LI G.: AttPool: Towards
hierarchical feature representation in graph convolutional networks via
attention mechanism. In Proceedings of IEEE International Conference

on Computer Vision (2019), pp. 6480–6489. 6

[HLY19] HONG F., LIU C., YUAN X.: DNN-VolVis: Interactive volume
visualization supported by deep neural network. In Proceedings of IEEE

Pacific Visualization Symposium (2019), pp. 282–291. 2

[HTW20] HAN J., TAO J., WANG C.: FlowNet: A deep learning
framework for clustering and selection of streamlines and stream sur-
faces. IEEE Transactions on Visualization and Computer Graphics 26,
4 (2020), 1732–1744. 1, 2, 3, 5, 6, 8

[HTZ∗19] HAN J., TAO J., ZHENG H., GUO H., CHEN D. Z., WANG

C.: Flow field reduction via reconstructing vector data from 3D stream-
lines using deep learning. IEEE Computer Graphics and Applications

39, 4 (2019), 54–67. 2

[HW20a] HAN J., WANG C.: SSR-TVD: Spatial super-resolution for
time-varying data analysis and visualization. IEEE Transactions on Vi-

sualization and Computer Graphics (2020). Accepted. 2

[HW20b] HAN J., WANG C.: TSR-TVD: Temporal super-resolution for
time-varying data analysis and visualization. IEEE Transactions on Vi-

sualization and Computer Graphics 26, 1 (2020), 205–215. 2

[HW22] HAN J., WANG C.: TSR-VFD: Generating temporal super-
resolution for unsteady vector field data. Computers & Graphics 103

(2022), 168–179. 2

[HWG∗20] HE W., WANG J., GUO H., WANG K.-C., SHEN H.-W.,
RAJ M., NASHED Y. S. G., PETERKA T.: InSituNet: Deep image syn-
thesis for parameter space exploration of ensemble simulations. IEEE

Transactions on Visualization and Computer Graphics 26, 1 (2020), 23–
33. 2

[HYL17] HAMILTON W., YING Z., LESKOVEC J.: Inductive represen-
tation learning on large graphs. In Proceedings of Advances in Neural

Information Processing Systems (2017), pp. 1024–1034. 4

[HZ∗22] HAN J., ZHENG H., , CHEN D. Z., WANG C.: STNet: An
end-to-end generative framework for synthesizing spatiotemporal super-
resolution volumes. IEEE Transactions on Visualization and Computer

Graphics 28, 1 (2022), 270–280. 2

[HZRS15] HE K., ZHANG X., REN S., SUN J.: Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet classification.
In Proceedings of IEEE International Conference on Computer Vision

(2015), pp. 1026–1034. 5

[HZRS16] HE K., ZHANG X., REN S., SUN J.: Deep residual learning
for image recognition. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (2016), pp. 770–778. 4

[HZX∗21] HAN J., ZHENG H., XING Y., CHEN D. Z., WANG C.: V2V:
A deep learning approach to variable-to-variable selection and transla-
tion for multivariate time-varying data. IEEE Transactions on Visualiza-

tion and Computer Graphics 27, 2 (2021), 1290–1300. 2

[HZY18] HONG F., ZHANG J., YUAN X.: Access pattern learning with
long short-term memory for parallel particle tracing. In Proceedings of

IEEE Pacific Visualization Symposium (2018), pp. 76–85. 2

[JGG21] JAKOB J., GROSS M., GÜNTHER T.: A fluid flow data set
for machine learning and its application to neural flow map interpola-
tion. IEEE Transactions on Visualization and Computer Graphics 27, 2
(2021), 1279–1289. 2

[JZL∗19] JIANG B., ZHANG Z., LIN D., TANG J., LUO B.: Semi-
supervised learning with graph learning-convolutional networks. In Pro-

ceedings of IEEE Conference on Computer Vision and Pattern Recogni-

tion (2019), pp. 11313–11320. 6

[KB14] KINGMA D., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). 5

[KJP∗18] KOSTRIKOV I., JIANG Z., PANOZZO D., ZORIN D., BRUNA

J.: Surface networks. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (2018), pp. 2540–2548. 3

[KW17] KIPF T. N., WELLING M.: Semi-supervised classification with
graph convolutional networks. In Proceedings of International Confer-

ence for Learning Representations (2017). 6

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

[LBBM18] LITANY O., BRONSTEIN A., BRONSTEIN M., MAKADIA

A.: Deformable shape completion with graph convolutional autoen-
coders. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (2018), pp. 1886–1895. 2

[Lin91] LIN J.: Divergence measures based on the Shannon entropy.
IEEE Transactions on Information theory 37, 1 (1991), 145–151. 5

[LJQ19] LIU C., JI H., QIU A.: Convolutional neural network on semi-
regular triangulated meshes and its application to brain image data. arXiv

preprint arXiv:1903.08828 (2019). 2, 3

[LZ04] LIU R., ZHANG H.: Segmentation of 3D meshes through spectral
clustering. In Proceedings of Pacific Conference on Computer Graphics

and Applications (2004), pp. 298–305. 7, 8

[MBM∗17] MONTI F., BOSCAINI D., MASCI J., RODOLA E., SVO-
BODA J., BRONSTEIN M. M.: Geometric deep learning on graphs and
manifolds using mixture model CNNs. In Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition (2017), pp. 5115–
5124. 2, 3, 6

[NH10] NAIR V., HINTON G. E.: Rectified linear units improve re-
stricted Boltzmann machines. In Proceedings of International Confer-

ence on Machine Learning (2010), pp. 807–814. 4

[QSN∗16] QI C. R., SU H., NIESSNER M., DAI A., YAN M., GUIBAS

L. J.: Volumetric and multi-view CNNs for object classification on 3D
data. In Proceedings of IEEE Conference on Computer Vision and Pat-

tern Recognition (2016), pp. 5648–5656. 1

[RBSB18] RANJAN A., BOLKART T., SANYAL S., BLACK M. J.: Gen-
erating 3D faces using convolutional mesh autoencoders. In Proceedings

of European Conference on Computer Vision (2018), pp. 704–720. 2

[SFRM19] SMITH E., FUJIMOTO S., ROMERO A., MEGER D.: GEO-
Metrics: Exploiting geometric structure for graph-encoded objects. In
Proceedings of International Conference on Machine Learning (2019),
pp. 5866–5876. 2

[Sha08] SHAMIR A.: A survey on mesh segmentation techniques. Com-

puter Graphics Forum 27, 6 (2008), 1539–1556. 10

[SMKLM15] SU H., MAJI S., KALOGERAKIS E., LEARNED-MILLER

E.: Multi-view convolutional neural networks for 3D shape recognition.
In Proceedings of IEEE International Conference on Computer Vision

(2015), pp. 945–953. 1

[SQX∗16] SHU Z., QI C., XIN S., HU C., WANG L., ZHANG Y., LIU

L.: Unsupervised 3D shape segmentation and co-segmentation via deep
learning. Computer Aided Geometric Design 43 (2016), 39–52. 2

[SXW∗22] SHI N., XU J., WURSTER S. W., GUO H., WOODRING

J., VAN ROEKEL L. P., SHEN H.-W.: Gnn-Surrogate: A hierarchical
and adaptive graph neural network for parameter space exploration of
unstructured-mesh ocean simulations. IEEE Transactions on Visualiza-

tion and Computer Graphics (2022). Accepted. 2

[TFE21a] TKACHEV G., FREY S., ERTL T.: Local prediction models
for spatiotemporal volume visualization. IEEE Transactions on Visual-

ization and Computer Graphics 27, 7 (2021), 3091–3108. 2

[TFE21b] TKACHEV G., FREY S., ERTL T.: S4: Self-supervised learn-
ing of spatiotemporal similarity. IEEE Transactions on Visualization and

Computer Graphics (2021). Accepted. 2, 4

[TW18] TAO J., WANG C.: Semi-automatic generation of stream sur-
faces via sketching. IEEE Transactions on Visualization and Computer

Graphics 24, 9 (2018), 2622–2635. 2

[vdMH08] VAN DER MAATEN L. J. P., HINTON G. E.: Visualizing high-
dimensional data using t-SNE. Journal of Machine Learning Research 9

(2008), 2579–2605. 3

[WCTW21] WEISS S., CHU M., THUEREY N., WESTERMANN R.: Vol-
umetric isosurface rendering with deep learning-based super-resolution.
IEEE Transactions on Visualization and Computer Graphics 27, 6
(2021), 3064–3078. 2

[WITW20] WEISS S., IŞIK M., THIES J., WESTERMANN R.: Learning
adaptive sampling and reconstruction for volume visualization. IEEE

Transactions on Visualization and Computer Graphics (2020). Ac-
cepted. 2

[WSK∗15] WU Z., SONG S., KHOSLA A., YU F., ZHANG L., TANG X.,
XIAO J.: 3D ShapeNets: A deep representation for volumetric shapes.
In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (2015), pp. 1912–1920. 1

[WSL∗19] WANG Y., SUN Y., LIU Z., SARMA S. E., BRONSTEIN

M. M., SOLOMON J. M.: Dynamic graph CNN for learning on point
clouds. ACM Transactions on Graphics 38, 5 (2019), 146:1–146:12. 3,
6, 8

[WZL∗18] WANG N., ZHANG Y., LI Z., FU Y., LIU W., JIANG Y.-
G.: Pixel2Mesh: Generating 3D mesh models from single RGB images.
In Proceedings of European Conference on Computer Vision (2018),
pp. 52–67. 3

[WZY∗19] WANG M., ZHENG D., YE Z., GAN Q., LI M., SONG X.,
ZHOU J., MA C., YU L., GAI Y., XIAO T., HE T., KARYPIS G., LI

J., ZHANG Z.: Deep Graph Library: A graph-centric, highly-performant
package for graph neural networks. arXiv preprint arXiv:1909.01315

(2019). 5

[XP97] XU C., PRINCE J. L.: Gradient vector flow: A new external force
for snakes. In Proceedings of IEEE International Conference on Com-

puter Vision (1997), pp. 66–71. 6

[XZJK21] XU K., ZHANG M., JEGELKA S., KAWAGUCHI K.: Opti-
mization of graph neural networks: Implicit acceleration by skip connec-
tions and more depth. In Proceedings of International Conference on

Machine Learning (2021), pp. 11592–11602. 4

[YHC∗18] YING R., HE R., CHEN K., EKSOMBATCHAI P., HAMILTON

W. L., LESKOVEC J.: Graph convolutional neural networks for web-
scale recommender systems. In Proceedings of ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (2018),
pp. 974–983. 3, 4

[YSGG17] YI L., SU H., GUO X., GUIBAS L. J.: SyncSpecCNN: Syn-
chronized spectral CNN for 3D shape segmentation. In Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition (2017),
pp. 2282–2290. 2, 3

[YYM∗18] YING Z., YOU J., MORRIS C., REN X., HAMILTON W.,
LESKOVEC J.: Hierarchical graph representation learning with differen-
tiable pooling. In Proceedings of Advances in Neural Information Pro-

cessing Systems (2018), pp. 4800–4810. 1

[YYSZ20] YAO G., YUAN Y., SHAO T., ZHOU K.: Mesh guided one-
shot face reenactment using graph convolutional networks. In Proceed-

ings of ACM International Conference on Multimedia (2020), pp. 1773–
1781. 3

[ZPP∗20] ZHENG H., PERRINE S. M. M., PITIRRI M. K., KAWASAKI

K., WANG C., RICHTSMEIER J. T., CHEN D. Z.: Cartilage segmenta-
tion in high-resolution 3D micro-CT images via uncertainty-guided self-
training with very sparse annotation. In Proceedings of International

Conference on Medical Image Computing and Computer-Assisted Inter-

vention (2020), pp. 802–812. 8

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

Appendix

1. Graph Convolution

Algorithm 1 shows the graph convolution operation.

Algorithm 1: Graph convolution.

Input: node embedding Fu, j at layer j, a set of neighbor
embeddings {Fv|v ∈N (u)}, a set of neighbor
weights W and bias b, an activation function γ(·), an
aggregator α(·), and a norm function N(·).

Output: node embedding Fu, j+1 at layer j+1.
Fu, j+1← γ({WFv, j +b)|v ∈ {N (u),u}})
Fu, j+1← α(Fu, j+1)
Fu, j+1← Fu, j+1/N(Fu, j+1)

2. Additional Results

In Figure 1, we show more results with different data sets using
SurfNet for stream surface clustering. Each column shows node
clustering results for different surfaces of the same data set. These
results further confirm the reliability of SurfNet in clustering the
nodes of stream surfaces. We found that for complex flows (e.g.,
solar plume), the clustering results generated by SurfNet include
some minor errors, but the main surface structures can be detected
correctly.

3. Dimensionality Reduction and Clustering

Dimensionality reduction. To transform the learned features into
a 2D space, we experiment with four dimensionality reduction
methods: t-SNE [vdMH08], UAMP [MHM18], MDS [Kru64],
and Isomap [TdSL00]. Among them, t-SNE is a neighborhood-
preserving method, UMAP is a global-preserving method, and
MDS and Isomap are distance-preserving methods. The brushing
and linking results are shown in Figure 2. Both MDS and Isomap
cannot group similar nodes in the 2D projection space, while t-SNE
and UMAP meet our expectations. In addition, in the t-SNE projec-
tion, the nodes are more separated than those in the UMAP projec-
tion. Therefore, we choose t-SNE as the dimensionality reduction
algorithm to project the learned features.

Clustering. To group the points in the 2D projection space,
we study three representative clustering algorithms: DBSCAN
(density-based), k-means (partition-based), and agglomerative
clustering (hierarchy-based). The clustering results are shown in
Figure 3. DBSCAN performs best by detecting the lobster’s claws,
body, and tail while the other two clustering algorithms mix these
structures.

Feature space vs. projection space. We also conduct a study
to justify clustering the node embeddings in the projection space
(i.e., the space generated by t-SNE) instead of the feature space.
As shown in Figure 4, the results of clustering nodes directly in the
feature space do not make sense, and only several isolated parts are
grouped. The possible reason for this unsatisfactory result is that
in the feature space, data are sparse, which is problematic for any
method requiring statistical significance. Moreover, these data are
dissimilar in many ways, preventing the traditional clustering al-
gorithm from working efficiently. However, by clustering the node

Figure 1: SurfNet node clustering results of a stream surface. Top

to bottom: Bénard flow, five critical points, solar plume, square

cylinder, and two swirls.

embeddings in the t-SNE space, we keep all important information
and decompose co-related factors, ensuring that the clustering al-
gorithm works well.

Therefore, in this paper, we choose the combination of t-SNE
for dimensionality reduction and DBSCAN for node clustering and
perform clustering of node embeddings in the t-SNE space.

4. SurfNet Analysis

To evaluate SurfNet, we analyze the following hyperparameter set-
tings: mesh simplification, network depth, training stability, em-
bedding strategy, embedding dimension, feature initialization, and
training samples. We focus on node clustering results, from which
surface embedding (representative selection) results are derived.
For fair comparisons, all remaining parameters use the same set-
tings (e.g., the number of clusters).

Mesh simplification. To study how mesh simplification impacts
the quality of node clustering results, we apply different mesh sim-
plification thresholds ε [GH97] (larger ε leads to more simplifica-

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

(a) MDS (b) Isomap

(c) UMAP (d) t-SNE

Figure 2: Comparison of different dimensionality reduction meth-

ods via brushing and linking using the five critical points data set.

The unselected nodes are colored in gray.

(a) DBSCAN (b) k-means (c) agglomerative

Figure 3: Comparison of different clustering algorithms under t-

SNE projection using the lobster data set. Each produces 3 clusters.

tion) to simplify stream surfaces. We then use the simplified sur-
faces to train SurfNet using the two swirls data set. The results are
shown in Figure 5. Under ε = 1.0, SurfNet cannot detect the bridge
that connects the left and right spirals. In addition, some blue sur-
face patches are mixed with the orange ones. Under ε = 0.5 and
ε = 0.2, the clustering results have no significant differences. Both
can separate the three spirals and the bridge well. Note that all the
surfaces displayed in the figures are the original surface without
simplification. Simplified surfaces are only used for SurfNet train-
ing. Hence, we suggest applying ε = 0.5 to simplify the surfaces.

Network depth. Given a mesh simplification threshold ε (i.e.,
0.5), we evaluate how the network depth affects the performance
of node embedding. We use 3, 6, and 9 layers to optimize SurfNet
using the two swirls data sets. The node clustering results are dis-
played in Figure 6. Only using 3 layers cannot produce meaning-
ful node embeddings since it groups one swirl and its bridge into
one cluster. However, applying 6 and 9 layers can discover the two
swirls (i.e., the blue and red parts) and two bridges (i.e., the orange
and green parts). Therefore, under ε = 0.5, using SurfNet with 6
layers is sufficient to generate meaningful node embeddings.

Training stability. To investigate the stability and sensitivity of
the training process, we independently train SurfNet four times.
The parameters are randomly initialized using He et al. [HZRS15].
The results are displayed in Figure 7. There is no significant dif-
ference among these results, and all results can discover the bonsai
and its basin. Note that the t-SNE projections of the four results
are not similar due to random initialization of the 2D points in the
t-SNE algorithm. However, the relative positions of these points

(a) DBSCAN+feature (b) agglomerative+feature

(c) k-means+feature (d) DBSCAN+projection

Figure 4: Comparison of different clustering algorithms under dif-

ferent spaces (feature vs. projection) using the two swirls data set.

(a) ε = 1.0 (b) ε = 0.5 (c) ε = 0.2

Figure 5: SurfNet node clustering results of a stream surface un-

der different thresholds for mesh simplification using the two swirls

data set.

are consistent. Therefore, SurfNet is stable in terms of training and
node clustering.

Embedding strategy. To confirm the effectiveness of generating
node embeddings using SurfNet, we compare the clustering results
generated using node embedding with SurfNet and directly using
the shortest-path length as the distance measure, as shown in Fig-
ure 8. The clustering results of SurfNet outperform those of direct
embedding as the number of clusters increases. One possible expla-
nation is that the features generated by SurfNet include Euclidean

(a) 3 layers (b) 6 layers (c) 9 layers

Figure 6: SurfNet node clustering results of a stream surface under

different network depths using the two swirls data set.

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

(a) (b) (c) (d)

Figure 7: SurfNet node clustering results of an isosurface using

the bonsai data set. (a) to (d) show the node clustering results from

SurfNet trained four times independently.

information (i.e., node position) and geodesic information (i.e., loss
optimization). The former can offer cues between nearby nodes,
while the latter can help separate spatially close nodes with large
geodesic distances [HBS∗21]. Therefore, the embedding generated
by SurfNet better captures the surface structure and leads to better
clustering results.

(a) 2 clusters (b) 3 clusters (c) 4 clusters

Figure 8: Direct embedding and SurfNet embedding of a stream

surface under t-SNE projection using the five critical points data

set. Top: direct embedding, and bottom: SurfNet embedding.

Embedding dimension. To determine the appropriate node em-
bedding dimension, we set it to 128, 192, and 256, respectively, to
train SurfNet. The node clustering results are shown in Figure 9.
The clustering results are not satisfactory under 128 and 192 em-
bedding dimensions. For example, under 128 dimensions, green,
red, and orange parts are mixed, and under 192 dimensions, green
and red parts cannot be separated well. However, using 256 em-
bedding dimensions, all the structures are clearly separated. In ad-
dition, we also use 384 and 512 dimensions to embed node infor-
mation; however, there is no significant difference compared to the
result of 256. Therefore, we set the node embedding dimension to
256 for SurfNet.

Node information initialization. To investigate how to initial-
ize the input surfaces’ features, we train SurfNet with different fea-
ture initialization options (e.g., position, normal, velocity) using the
square cylinder data set. As shown in Figure 10, we display the sur-
face clustering results under different feature initializations. Lever-
aging position as input features, SurfNet achieves the best cluster-
ing performance. For normal, SurfNet cannot separate meaningful

(a) 128 dimensions

(b) 192 dimensions

(c) 256 dimensions
Figure 9: SurfNet node clustering results of a stream surface under

different numbers of embedding dimensions using the solar plume

data set.

parts. For velocity, SurfNet detects major structures but still mis-
classifies some of the orange parts into the green part, as shown
in Figure 10 (c). In addition, if we use both position and veloc-
ity as input features, the clustering quality does not improve. In
summary, using normal, velocity, or position+velocity as the ini-
tialized features does not lead to good node clustering results. This
is because SurfNet is optimized using the shortest-path loss. Only
position-related information can provide an appropriate initializa-
tion for SurfNet optimization. Hence, we suggest only using posi-
tion as the initialized feature for SurfNet training.

(a) position (b) normal

(c) velocity (d) position+velocity

Figure 10: SurfNet node clustering results of a stream surface un-

der different feature initializations using the square cylinder data

set.

Training samples. We evaluate the influence of the number of

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

Han & Wang / SurfNet

training samples on clustering quality using the Bénard flow data
set. We use 500, 750, and 1,000 training samples to train SurfNet.
The clustering results are shown in Figure 11. It is clear that us-
ing 500 or 750 training samples, SurfNet cannot detect the four
major patterns of the stream surface. However, with 1,000 training
samples, these patterns can be discovered. Besides, our experiment
shows that using more than 1,000 training samples does not further
improve clustering quality. Hence, we suggest using 1,000 stream
surfaces for training.

(a) 500 training samples

(b) 750 training samples

(c) 1,000 training samples
Figure 11: SurfNet node clustering results of a stream surface un-

der different numbers of training samples using the Bénard flow

data set.

References

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using
quadric error metrics. In Proceedings of ACM SIGGRAPH Conference

(1997), pp. 209–216. 1

[HBS∗21] HU Z., BAI X., SHANG J., ZHANG R., DONG J., WANG X.,
SUN G., FU H., TAI C.-L.: VMNet: Voxel-mesh network for geodesic-
aware 3D semantic segmentation. In Proceedings of International Con-

ference on Computer Vision (2021). 3

[HZRS15] HE K., ZHANG X., REN S., SUN J.: Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet classification.
In Proceedings of IEEE International Conference on Computer Vision

(2015), pp. 1026–1034. 2

[Kru64] KRUSKAL J. B.: Multidimensional scaling by optimizing good-
ness of fit to a nonmetric hypothesis. Psychometrika 29, 1 (1964), 1–27.
1

[MHM18] MCINNES L., HEALY J., MELVILLE J.: UMAP: Uniform
manifold approximation and projection for dimension reduction. arXiv

preprint arXiv:1802.03426 (2018). 1

[TdSL00] TENENBAUM J. B., DE SILVA V., LANGFORD J. C.: A global
geometric framework for nonlinear dimensionality reduction. Science

290, 5500 (2000), 2319–2323. 1

[vdMH08] VAN DER MAATEN L. J. P., HINTON G. E.: Visualizing high-
dimensional data using t-SNE. Journal of Machine Learning Research 9

(2008), 2579–2605. 1

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

	template
	appendix

