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ABSTRACT

The Segment Anything Model (SAM) exhibits impressive
capabilities in zero-shot segmentation for natural images.
Recently, SAM has gained a great deal of attention for its
applications in medical image segmentation. However, to
our best knowledge, no studies have shown how to harness
the power of SAM for medical image classification. To
fill this gap and make SAM a true “foundation model” for
medical image analysis, it is highly desirable to customize
SAM specifically for medical image classification. In this
paper, we introduce SAMAug-C, an innovative augmentation
method based on SAM for augmenting classification datasets
by generating variants of the original images. The augmented
datasets can be used to train a deep learning classification
model, thereby boosting the classification performance. Fur-
thermore, we propose a novel framework that simultaneously
processes raw and SAMAug-C augmented image input, cap-
italizing on the complementary information that is offered
by both. Experiments on three public datasets validate the
effectiveness of our new approach.

1. INTRODUCTION
Trained on over 1 billion tasks using 11 million images, the
Segment Anything Model (SAM) [1], a Segmentation Foun-
dation Model, has showcased impressive zero-shot image
segmentation capabilities for natural images across various
prompts, such as points, boxes, and masks. Recently, a num-
ber of studies have explored leveraging SAM for medical im-
age segmentation, either by directly applying SAM [2, 3, 4, 5]
or by fine-tuning SAM for medical images [6, 7, 8]. Despite
these efforts, some studies have exhibited unsatisfactory per-
formance of using SAM in medical image segmentation [6, 2]
due to the following challenges: (1) the large differences in
appearance between medical and natural images, and (2) the
often blurred boundaries of target objects in medical images.
In contrast to the SAM-based methods mentioned above for
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Fig. 1. Visual example from the ISIC 2017 dataset [9]. The
entire image augmented by SAMAug [5] is covered in green,
which may increase the difficulty for a classifier to distinguish
the skin lesion from the background.

medical image segmentation, SAMAug [5] employed SAM to
augment raw image input for commonly-used deep learning
(DL) medical image segmentation models (e.g., U-Net [10]),
thereby enhancing their segmentation performances. Specif-
ically, SAMAug augments raw images with segmentation
maps and boundary prior maps generated by SAM (i.e.,
adding the segmentation and boundary prior maps to the
second and third channels of the raw images, respectively).

Medical image classification is a pivotal task in diagnos-
tic medicine, assisting clinicians in their decision-making
processes [11]. To our best knowledge, SAM has yet to
be employed for medical image classification. While one
might consider using SAMAug, inspired by its capabili-
ties, to augment raw image input for classification, several
challenges arise. First, SAMAug was primarily designed to
augment raw images for medical image segmentation, em-
phasizing the use of both SAM-generated segmentation maps
and boundary prior maps. Our experiments have shown that
applying SAMAug directly to raw images intended for clas-
sification could lead to a performance drop. As evidence, in
Table 1, we observe performance drops on the ISIC 2017 skin
lesion classification dataset [9] when training two DL-based
classification models (ResNet152 [12] and SENet154 [13])
with raw images augmented by SAMAug. Second, the SAM-
generated segmentation maps and boundary prior maps could
inadvertently obscure crucial regions in the raw images. Vi-
sual example of such issues with augmented image produced



Table 1. Results on the ISIC 2017 dataset.
Method Acc (↑) AUC (↑) Sen (↑) Spe (↑)
ResNet152 [12] 84.53 81.28 49.23 93.08
ResNet152 + SAMAug [5] 82.13 76.01 37.78 92.88
SENet154 [13] 84.45 79.41 42.74 94.53
SENet154 + SAMAug [5] 82.53 77.00 37.09 93.54

by SAMAug, using sample from the ISIC 2017 skin lesion
classification dataset, is illustrated in Fig. 1.

With these challenges in mind, it becomes imperative to
customize SAM specifically for medical image classification.
This paper addresses two pivotal questions for medical im-
age classification: (I) How can we design an effective SAM-
based augmentation method that emphasizes the crucial re-
gions while suppressing irrelevant ones in input images for
medical image classification? (II) How can we effectively
utilize raw and SAM-augmented images to enhance classi-
fication performance?

For the first question, we introduce SAMAug-C, an inno-
vative augmentation method built upon SAM, aiming to aug-
ment the input datasets by creating variations of the original
images. Initially, we leverage SAM’s zero-shot image seg-
mentation capability to procure segmentation masks for the
raw images. We then generate the corresponding segmen-
tation prior maps by assigning a value of ‘1’ to the masked
regions. Subsequently, these segmentation prior maps are
added to each channel of the raw images to augment them.

For the second question, we propose a novel framework
that processes both the raw and SAMAug-C augmented im-
ages simultaneously, harnessing the complementary informa-
tion that each of them provides. The framework consists of
two branches, both equipped with identical backbone mod-
els. These models are concurrently trained with the raw and
SAMAug-C augmented images. Subsequently, an ensemble
module is employed to amalgamate the predictions from the
two branches, yielding the final predicted label.

In summary, our main contributions are as follows: (1)
We adapt SAM specifically for medical image classification,
pioneering its use in this domain. (2) We present SAMAug-
C, which is designed to augment raw images for medical im-
age classification, and put forward a new framework that ef-
fectively trains on both raw and SAMAug-C augmented im-
ages simultaneously. (3) We conduct comprehensive experi-
ments on three public medical image classification datasets to
demonstrate the effectiveness of our new approach.

2. METHODOLOGY
2.1. Background: The SAM Architecture
SAM consists of three main components: an image encoder, a
prompt encoder, and a mask decoder. The image encoder ac-
cepts an input image of any size and produces an embedding
feature. The prompt encoder can handle both sparse prompts
(e.g., boxes) and dense prompts (e.g., masks). The mask de-
coder is a Transformer decoder block modified to incorpo-
rate a dynamic mask prediction head. SAM employs a two-
way attention module, one for prompt-to-image embedding

and the other for image-to-prompt embedding in each block,
facilitating learning of the interactions between the prompt
and image embeddings. After processing through two blocks,
SAM upsamples the image embedding. Then, a MLP maps
the output token to a dynamic linear classifier, which then pre-
dicts the target mask for the provided image. In this paper, we
leverage SAM to predict the mask of the input image.

2.2. SAMAug-C: Augmenting Input Raw Images for
Medical Image Classification
For a given raw image I , SAMAug [5] produces two corre-
sponding prior maps for I . The first one is a segmentation
prior map derived from the mask’s stability score generated
by SAM. The second one is a boundary prior map, represent-
ing the exterior boundary of the segmentation mask. The raw
image I is augmented by adding to I the segmentation prior
map to its second channel and the boundary prior map to its
third channel. While this augmentation strategy was shown to
be effective for several medical image segmentation tasks [5],
it falls short in performance for medical image classification
(e.g., as shown in Table 1).

To address this limitation and develop a more effective
augmentation method for highlighting the important regions
and suppressing irrelevant ones in the input images for medi-
cal image classification, we introduce SAMAug-C, augment-
ing raw image input for medical image classification.

As illustrated in Algorithm 1, for a given input raw image,
SAM’s mask generator first predicts segmentation masks and
stores them in a list. For every segmentation mask in this list,
we generate a corresponding segmentation prior map, assign-
ing a value of 1 to the masked region. Then, we combine all
the segmentation prior maps to produce a final segmentation
prior map for the raw image. We then set the values of all the
masked regions in this final segmentation prior map to 1, and
augment the raw image by adding the segmentation prior map
to each channel of the raw image. It is important to note that
if SAM does not generate any segmentation masks, then the
raw image remains unaugmented. The added segmentation
prior map effectively emphasizes crucial regions and dimin-
ishes irrelevant ones in the input image. Refer to Fig. 1 for
visual example of image augmented using SAMAug-C.

2.3. Model Training with Raw and SAMAug-C Aug-
mented Images
Using SAMAug-C to augment input raw images, we derive
a new set of images, called SAMAug-C augmented images.
This raises a pertinent question: How can we effectively
leverage the SAMAug-C augmented images to enhance med-
ical image classification? A straightforward approach may
involve: (I) During the training phase, employ SAMAug-C
augmented images to train a DL classification model; (II)
in the test phase, labels are predicted by feeding the model
with SAMAug-C augmented test images. We refer to this
approach as “DL classification model + SAMAug-C” (e.g.,
ResNet152 + SAMAug-C). While possibly effective, this



Algorithm 1 SAMAug-C(tI,mask generator)
1: Input: The raw image input tI and mask generator

mask generator from SAM
2: Output: Augmented image newTI
3: masks← mask generator.GENERATE(tI)
4: tI ← IMG AS FLOAT(tI)
5: SegPrior ← ZEROSMATRIX(size of tI[0], tI[1])
6: newTI ← ZEROSMATRIX(size of tI[0], tI[1], tI[2])
7: for maskindex from 0 to length of masks− 1 do
8: thismask ← masks[maskindex][′segmentation′]
9: thismask ← ZEROSMATRIX(size of thismask)

10: thismask [where thismask = True]← 1
11: SegPrior[where thismask = 1] ←

SegPrior[where thismask = 1] + 1.0

12: if SegPrior.MIN = SegPrior.MAX then
13: for i from 0 to 2 do
14: newTI[:, :, i]← tI[:, :, i]

15: else
16: SegPrior ← WHERE(SegPrior ̸= 0, 1, 0)
17: for i from 0 to 2 do
18: newTI[:, :, i]← tI[:, :, i] + SegPrior

return newTI

.
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Fig. 2. The overview of our framework.

straightforward design might struggle in scenarios where
SAM fails to produce accurate segmentation masks.

To address this limitation, we propose a novel framework
that concurrently processes both the raw images and their
SAMAug-C augmented images. As shown in Fig. 2, our
new framework consists of two branches. The “Raw Image”
branch ingests raw image input to train a DL classification
model (e.g., ResNet) and produces predicted labels. In con-
trast, the “Augmented Image” branch uses the augmented im-
ages generated by SAMAug-C to train another DL classifi-
cation model, which shares the same architecture as that of
the “Raw Image” branch, and subsequently outputs the asso-
ciated predicted labels. An ensemble module is employed to
consolidate the outputs of the two branches, generating the
final predicted label. We refer to this design as “DL classifi-
cation model + SAMAug-C + Ensemble” (e.g., ResNet152 +
SAMAug-C + Ensemble).

2.4. Model Ensemble
For a given test image x and its corresponding augmented test
image generated by SAMAug-C, we employ two models to
process them and ensemble the results. From these two mod-
els, we obtain two N -dimensional vectors, p1 and p2, where
N denotes the number of categories that the task is classi-

fied into. We explore several possible ensemble schemes: (1)
Voting: The majority voting strategy is employed to derive
the final prediction by consolidating the outcomes from both
models. (2) Entropy: The entropy offers a quantifiable mea-
sure of the uncertainty or randomness present in the predicted
probabilities across various classes. We compute the entropy
using the equation −p × log2 p, where p is the set of pre-
dicted probabilities. By multiplying each probability with its
logarithm (base 2) and negating the result, we then accumu-
late these values across the classes to determine the entropy
for each sample. Ultimately, the model output with the lower
entropy is chosen from the two. (3) Direct average: The
outcomes from both models are averaged to arrive at the fi-
nal prediction. (4) Weighted average: During the averaging
process, a weight, indicating the significance of each model’s
output, is employed: Final prediction =

∑2
i=1 ωipi

2 , where ωi

represents the weight of the output of the i-th model, with
ωi ≥ 0 and ω1 + ω2 = 1. For clarity, we refer to the “Raw
Image” branch as the 1-st model and the “Augmented Image”
branch as the 2-nd model.

Through empirical study, we choose the weighted average
ensemble scheme for our framework in all the experiments.

3. EXPERIMENTS AND RESULTS

Datasets. (1) The ISIC 2017 skin lesion classification dataset
(ISIC 2017):The dataset [9] contains 2000 training, 150 val-
idation, and 600 test images. Our experiments are focused
on task-3A: melanoma detection. (2) The vitiligo (public)
dataset:The dataset [14] contains 672 training, 268 valida-
tion, and 401 test images. Our experiments are performed
for vitiligo detection. (3) The extended colorectal cancer
(ExtCRC) grading dataset: The dataset [15] contains 300
H&E-stained colorectal cancer subtyping pathology images.
The task is three categories (Grades 1, 2, and 3) classification.
We randomly split the data, allocating 80% for training and
20% for testing. We resize all the images of each dataset to
224×224. For the ISIC 2017 and vitiligo public datasets, our
experiments conduct 5 runs using different seeds, and for the
ExtCRC dataset, we perform the random data splitting for 5
times, presenting the average outcomes of our experiments.
Implementation Details. Our experiments are conducted us-
ing the PyTorch. The model is trained on an NVIDIA Tesla
V100 Graphics Card (32GB GPU memory) using the AdamW
optimizer with a weight decay = 0.005. The learning rate is
0.0001, and the number of training epochs is 400 for the ex-
periments. The batch size for each case is set as the maximum
size allowed by the GPU. Standard data augmentation (e.g.,
random flip, crop, etc.) is applied to avoid overfitting.
Experimental Results. (1) ISIC 2017 Results. To evalu-
ate our method, we use two prominent models: ResNet152
and SENet154, which were pre-trained on ImageNet and have
proven their efficacy on medical image datasets, with teams
using them to obtain top scores in the ISIC skin lesion classifi-
cation challenge. From Table 2, we observe that: (I) The mod-



Table 2. Results on the ISIC 2017 dataset. The best re-
sults are marked in bold, and the second-best results are
underlined. Same for the other tables.

Method Acc (↑) AUC (↑) Sen (↑) Spe (↑)
Galdran et al. [16] 48.00 76.50 90.60 37.70
Vasconcelos et al. [17] 83.00 79.10 17.10 99.00
Dı́az [18] 82.30 85.60 10.30 99.80
Zhang et al. [19] 83.00 83.00 — —
Suraj et al. [20] 86.00 83.10 59.00 92.60
ResNet152 [12] 84.53 81.28 49.23 93.08
SENet154 [13] 84.45 79.41 42.74 94.53
ResNet152 + SAMAug-C 85.07 81.83 48.89 94.20
ResNet152 + SAMAug-C + Ensemble 85.67 83.93 48.72 94.62
SENet154 + SAMAug-C 85.83 80.82 44.79 95.78
SENet154 + SAMAug-C + Ensemble 86.67 83.27 47.01 96.27

Table 3. Results on the vitiligo (public) dataset.
Method Acc (↑) AUC (↑) Sen(↑) Spe (↑)
VGG13 [21] — 0.995 0.972 0.963
ResNet18 [12] — 0.958 0.952 0.957
DenseNet121 [22] — 0.982 0.962 0.961
Dermatologists [14] — — 0.964 0.803
Suraj et al. [20] 0.988 0.998 0.996 0.975
ResNet18 + SAMAug [5] 0.967 0.992 0.990 0.934
DenseNet121 + SAMAug [5] 0.975 0.993 0.983 0.957
ResNet18 + SAMAug-C 0.968 0.993 0.991 0.955
ResNet18 + SAMAug-C + Ensemble 0.982 0.998 0.996 0.966
DenseNet121 + SAMAug-C 0.978 0.993 0.993 0.962
DenseNet121 + SAMAug-C + Ensemble 0.990 0.998 0.997 0.975

els trained with SAMAug-C augmented images demonstrate
superior performance over their counterparts trained solely
on raw images. Specifically, ResNet152’s accuracy is im-
proved by 0.54%, while SENet154’s is improved by 1.38%.
This validates the effectiveness of our SAMAug-C augmen-
tation method in boosting medical image classification. (II)
When the models are concurrently trained with both raw and
SAMAug-C augmented images, their performances are fur-
ther bolstered. ResNet152’s accuracy is lifted by an addi-
tional 0.6%, while SENet154’s grows by 0.84%. This finding
shows our proposed framework’s capability to leverage raw
and SAMAug-C augmented images to elevate classification
outcomes. (III) Our method outperforms the SOTA methods
(Suraj et al. [20] and Zhang et al. [19]) in accuracy. (2) Vi-
tiligo (Public) Results. From Table 3, we observe that: (I)
On employing SAMAug-C augmented images for training,
both our baseline models, ResNet18 and DenseNet121, ex-
hibit superior results. Specifically, there is an improvement in
AUC by 3.50% with ResNet18 and 1.10% with DenseNet121.
This further attests to the capability of our SAMAug-C aug-
mentation method. (II) When the models are simultaneously
trained on raw and SAMAug-C augmented images, the AUC
results for ResNet18 and DenseNet121 attain an uplift by an
additional 0.50%. This indicates that our dual training ap-
proach can enhance performance over using just augmented
or raw images alone. (III) Our method slightly outperforms
the SOTA method, Suraj et al. [20], in both accuracy and
sensitivity. These results demonstrate our method’s effec-
tiveness. (3) ExtCRC Results. In the experiments, we use
non-pre-trained versions of three representative (ResNet50,
ResNeXt50, and SE-ResNet50) models for gauging the ro-
bustness and stability of our method. From Table 4, we ob-
serve that: (I) Augmenting raw images using our SAMAug-C
method leads to a noticeable performance improvement for

Table 4. Results on the ExtCRC dataset.
Method Acc (↑) AUC (↑) Sen (↑) Spe (↑)
ResNet50 [12] 77.00 89.07 74.06 87.93
ResNeXt50 [23] 80.00 90.93 77.28 89.40
SE-ResNet50 [13] 81.33 90.85 78.76 90.36
ResNet50 + SAMAug [5] 76.67 88.73 71.63 87.52
ResNeXt50 + SAMAug [5] 76.00 88.64 71.67 87.16
SE-ResNet50 + SAMAug [5] 81.25 90.71 77.44 89.86
ResNet50 + SAMAug-C 79.67 90.85 76.92 89.41
ResNet50 + SAMAug-C + Ensemble 80.67 91.68 78.06 89.70
ResNeXt50 + SAMAug-C 81.67 90.80 79.19 90.42
ResNeXt50 + SAMAug-C + Ensemble 82.46 91.67 80.62 90.87
SE-ResNet50 + SAMAug-C 82.67 92.02 81.06 91.19
SE-ResNet50 + SAMAug-C + Ensemble 83.52 92.69 82.18 91.82

Table 5. Results of various ensemble methods on the ISIC
2017 dataset.

Acc (↑) AUC (↑) Sen (↑) Spe (↑)
ResNet152 + SAMAug-C

Voting 84.83 82.29 49.57 93.37
Entropy 82.67 81.89 38.46 93.37
Direct Average 85.17 83.33 50.43 93.58
Weighted Average w/ weights [0.6, 0.4] 85.33 84.18 50.43 93.79
Weighted Average w/ weights [0.4, 0.6] 84.67 81.15 55.56 91.72
Weighted Average w/ weights [0.7, 0.3] 84.17 84.30 59.83 90.06
Weighted Average w/ weights [0.3, 0.7] 85.67 83.93 48.72 94.62

SENet154 + SAMAug-C
Voting 86.00 80.78 48.72 95.03
Entropy 84.84 82.18 45.30 94.41
Direct Average 86.50 83.30 47.01 96.07
Weighted Average w/ weights [0.6, 0.4] 86.33 81.05 47.86 95.65
Weighted Average w/ weights [0.4, 0.6] 86.50 83.35 47.86 95.86
Weighted Average w/ weights [0.7, 0.3] 86.17 81.12 48.72 95.24
Weighted Average w/ weights [0.3, 0.7] 86.67 83.37 47.01 96.27

all three non-pre-trained models. Interestingly, when these
models are trained using augmented raw images generated by
the SAMAug [5], a decline in their performance is evident.
This observation highlights the superiority and appropriate-
ness of our SAMAug-C augmentation method for medical
image classification. (II) We observe further improvements in
model accuracy by simultaneously training on both raw im-
ages and their SAMAug-C augmented images. Concretely,
ResNet50, ResNeXt50, and SE-ResNet50 are improved by
1.0%, 0.79%, and 0.85% in accuracy, respectively. These re-
sults are a testimony to the potential of our method.
Model Ensemble Exploration. We conduct experiments
to explore different ensemble methods (i.e., voting, entropy,
direct average, and weighted average with various weights)
using the ISIC 2017 dataset. As shown in Table 5, for both
ResNet152 and SENet154, the weighted average method
yields the best accuracy results. The direct average method
gives the second-best results, followed by voting. The entropy
method attains the least accurate results. The combination of
weights [0.3, 0.7] produces the highest accuracy among the
different weight choices for the weighted average method.
This suggests that predictions by the model trained with
SAMAug-C augmented images are more reliable.

4. CONCLUSIONS

In this paper, we presented a new augmentation method
(SAMAug-C) that leverages the SAM for augmenting raw
image input to improve medical image classification. To fur-
ther enhance classification performance, we designed a novel
framework that effectively uses both raw and SAMAug-C
augmented images. Experiments on three public datasets
demonstrated the efficacy of our new approach.
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