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Abstract. Correlation study is at the heart of time-varying multivariate
volume data analysis and visualization. In this paper, we study hierarchi-
cal clustering of volumetric samples based on the similarity of their cor-
relation relation. Samples are selected from a time-varying multivariate
climate data set according to knowledge provided by the domain experts.
We present three different hierarchical clustering methods based on qual-
ity threshold, k-means, and random walks, to investigate the correlation
relation with varying levels of detail. In conjunction with qualitative
clustering results integrated with volume rendering, we leverage parallel
coordinates to show quantitative correlation information for a complete
visualization. We also evaluate the three hierarchical clustering methods
in terms of quality and performance.

1 Introduction

Finding connection among time-varying multivariate data is critically important
in many areas of scientific study. In the field of visualization, researchers have
investigated relationships among variables and developed techniques to visualize
them. One effective solution is to cluster voxels based on correlation similarity.
This allows users to observe how those voxels that have similar correlation behav-
iors distribute over space and detect possible patterns. When the size of volume
data is large, we can select samples for computation to gain an overall impres-
sion of the correlation relation in a cost-effective manner. Many research efforts
adopted the standard correlation coefficients to study the linear correlation be-
tween variables, yet little work is done to build a hierarchy for coarse-to-fine
exploration of data correlation. Hierarchical clustering can show cluster within
clusters and much as in multiresolution visualization, it provides us a flexible
means to adaptively examine the data. In this paper, we present three differ-
ent hierarchical clustering methods for correlation classification and perform a
comparative study of their quality and performance using a climate data set.
The evaluation includes side-by-side qualitative comparison of clustering results
and quantitative comparison using silhouette plot. We conclude this paper by
making our recommendation and pointing out our future research.

2 Related Work

Analyzing and visualizing time-varying multivariate data remains a significant
challenge in visualization research. Over the years, researchers have applied the
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standard pointwise correlation in their analysis [1–4]. New user interfaces were
also developed to visualize multivariate data relationships [1, 2]. To the best of
our knowledge, hierarchical clustering of time-varying volume data based on the
similarity of multivariate correlation has not been investigated, which is the focus
of this work.

Parallel coordinates have become a popular technique for visualizing rela-
tionships among a large collection of variables. An important issue for parallel
coordinates is to order dimensions to reveal multivariate data patterns. One
way to achieve this is based on the evaluation of similarity between dimensions.
Ankerst et al. [5] provided global and partial similarity measures for two di-
mensions. They defined the dimension arrangement problem as an optimization
problem to minimize the summation of the dissimilarity of all consecutive pairs of
axes. Yang et al. [6] built a hierarchical dimension structure and allowed dimen-
sion reordering and filtering. We utilize parallel coordinates to show quantitative
correlation information for volume samples that are clustered hierarchically. To
effectively present relationships among samples, we define two correlation-based
distance measures for dimension clustering and ordering.

3 Sample Selection

Given a large time-varying multivariate data set, computing the correlation
among all voxels over all time steps could be very expensive. A viable alter-
native is to sample in space and time. This is feasible because in general, the
correlation pattern with respect to close neighboring reference locations are simi-
lar and not all time steps are necessary in order to detect the correlation pattern.
Thus, we can compute the correlation for selected samples at selected time steps
and perform clustering to gain an overview of the correlation relationships.

We can adopt uniform or random sampling depending on the need. The
domain knowledge about the data can also help us choose a customized sampling
scheme. For the climate data set we experiment with, the domain scientists
provide the knowledge to assist us in choosing spatial samples and time steps.

4 Hierarchical Correlation Clustering

4.1 Correlation Matrix

We use the Pearson product-moment correlation coefficient to evaluate the linear
correlation between the time series at two sampling locations X and Y

ρXY =
1

T

T
∑

t=1

(

Xt − µX

σX

)(

Yt − µY

σY

)

, (1)

where T is the number of time steps. µX (µY ) and σX (σY ) are the mean and
standard deviation of X (Y ), respectively. ρXY is in [−1, 1]. The value of 1 (-1)
means that there is a perfect positive (negative) linear relationship between X
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and Y . The value of 0 shows that there is no linear relationship between X and
Y . For all the samples given, we can build a correlation matrix M with Mi,j

recording ρXiXj
. If Xi and Xj are drawn from the same variable (two different

variables), then M is the self-correlation (cross-correlation) matrix.

4.2 Distance Measure

Before clustering the samples, we need to define the distance between two sam-
ples X and Y . In this paper, we take two different distance measures which both
take the correlation matrix M as the input. The first distance measure only
considers Mi,j for samples Xi and Xj , and we define the distance as

ds(Xi,Xj) = 1 − |Mi,j |. (2)

That is, the distance indicates the strength of linear correlation between Xi

and Xj . When Xi and Xj are perfectly correlated (regardless of the sign), then
ds(Xi,Xj) gets its minimum of 0. If Xi and Xj have no linear correlation, then
ds(Xi,Xj) gets its maximum of 1. The second distance measure considers two
rows Mi,k and Mj,k for samples Xi and Xj , and we define the distance as

dv(Xi,Xj) =

√

√

√

√

N
∑

k=1

(

Mi,k − Mj,k

)2

, (3)

where N is the number of samples. We compute dv(Xi,Xj) for all pairs of
samples and normalize them to [0, 1] for our use.

4.3 Hierarchical Clustering

The correlation matrix and distance measure defined above can be used to clus-
ter the samples in a hierarchical manner. In general, there are two approaches
to build such a hierarchy, agglomerative or divisive [7]. The agglomerative (or
“bottom-up”) approach starts with each sample in its own cluster and merges
two or more clusters successively until a single cluster is produced. The divisive
(or “top-down”) approach starts with all samples in a single cluster and splits the
cluster into two or more clusters until certain stopping criteria are met or each
sample is in its own cluster. The advantages of hierarchical clustering are that
it can show “cluster within clusters” and it allows the user to observe clusters
according to the depth-first-search or breadth-first-search traversal order. We re-
fer interested readers to the work of Zimek [8] for the mathematical background
of correlation clustering. In this paper, we experiment with three hierarchical
clustering methods based on quality threshold, k-means, and random walks to
investigate the correlation relation among samples at different levels of detail.
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Hierarchical Quality Threshold This is a bottom-up hierarchical clustering
approach which uses a list of distance thresholds {δ0, δ1, δ2, . . . , δl} to create a
hierarchy of at most l+1 levels in l iterations. These thresholds must satisfy the
following conditions: δi < δj if i < j; δi ∈ (0, 1) for 1 < i < l − 1; and δ0 = 0,
δl = 1. At the beginning, each sample is in its own cluster. At the first iteration,
we build a candidate cluster for each sample s by including all samples that have
their distance to s smaller than threshold δ1. Then, we save the cluster with the
largest number of samples as the first true cluster and remove all samples in
this cluster from further consideration. In the true cluster, sample s is treated
as its representative sample. We repeat with the reduced set of samples until all
samples are classified. At the second iteration, we use threshold δ2 to create the
next level of hierarchy. The input to this iteration is all representative samples
gathered from the previous iteration. We continue this process for the following
iterations until we finish the lth iteration or until we only have one cluster left
in the current iteration.

Hierarchical k-Means The popular k-means algorithm classifies N points into
k clusters, k < N . Generally speaking, the algorithm attempts to find the natural
centers of k clusters. In our case, the input is the N × N correlation matrix M

where each row in M represents a N -dimensional sample to be classified. The
k-means algorithm randomly partitions the input points into k initial clusters
and chooses a point from each cluster as its centroid. Then, we reassign every
point to its closest centroid to form new clusters. The centroids are recalculated
for the new clusters. The algorithm repeats until some convergence condition is
met. We extend this k-means algorithm for the top-down hierarchical clustering
where we take each cluster output from the previous iteration as the input to
the k-means algorithm and construct the hierarchy accordingly. This process
continues until a given number of levels is built or the average distortion within
every cluster is less than the given threshold.

Random Walks Random walks [9] are also a bottom-up hierarchical clustering
algorithm. In our case, this algorithm considers the N ×N correlation matrix M

as a fully connected graph where we treat |Mij | as the weight for edge eij . At
each step, a walker starts from vertex vi and chooses one of its adjacent vertices
to walk to. The probability that an adjacent vertex vj is chosen is defined as

Pij = |Mij |/di, where di =
∑N

j=1
|Mij |. In this way, we can compute a random

walk probability matrix Pt to record the possibility starting from vi to vj in t
steps. With Pt, we define the distance between vi and vj as

rt
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)2

dk

, (4)

Random walks start with every vertex in its own cluster. Then the algorithm
iteratively merges two clusters with the minimum mean distance into a new
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cluster, and updates all the distances between clusters. This process continues
until we only have one single cluster left. The probability of going from a cluster
C to vj in t steps is defined as

Pt
Cj =

1

|C|

∑

i∈C

Pt
ij , (5)

and the distance between two clusters C and D is defined as

rt
CD =

√

√

√

√
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)2

dk

. (6)

5 Evaluation

To evaluate the effectiveness of different hierarchical clustering algorithms, we
generate the same or very similar number of clusters for all methods for a fair
comparison. A straightforward comparison is to directly compare the clustering
results side by side in the volume space. The limitation of this comparison is
that it is subjective, which can be complemented by a quantitative comparison.

Silhouette plot [10] is a technique to verify the quality of a clustering algo-
rithm and it works as follows. For each point pi in its cluster C, we calculate pi’s
average similarity ai with all other points in C. Then for any cluster Cj other
than C, we calculate pi’s average similarity dij with all points in Cj . Let bi be
the minimum of all dij for pi, and the corresponding cluster be Ck (i.e., Ck is
the second best cluster for pi), we define the silhouette value for pi as

si =
bi − ai

max(ai, bi)
. (7)

si is in the range of [−1, 1]. If si is close to 1 (-1), it means pi is well (poorly)
clustered. If si is near 0, it means pi could be in either cluster. If max(si) < 0.25
for all the points, it indicates that these points are poorly clustered. There are
two possible reasons. One reason is that the points themselves could not be well
separated or clustered. Another reason is that the clustering algorithm does not
perform well. To draw the silhouette plot, we sort si for all the points in each
cluster and display a line segment for each point to show its silhouette value.
By comparing the silhouette plots for all three clustering algorithms, we can
evaluate their effectiveness in a quantitative manner.

6 Results and Discussion

6.1 Data Set

We conducted our hierarchical correlation clustering study using the tropical
oceanic data simulated with the National Oceanic and Atmospheric Adminis-
tration (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 global
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(a) temperature field (b) salinity field

Fig. 1. Snapshots of the temperature and salinity fields at the first time step. Green,
yellow, and red are for low, medium, and high scalar values, respectively.

coupled general circulation model. The equatorial upper-ocean climate data set
covers a period of 100 years, which is sufficient for our correlation study. The
data represent monthly averages and there are 1,200 time steps in total. The
spatial dimension of the data set is 360 × 66 × 27, with the x axis for longitude
(covering the entire range), the y axis for latitude (from 20◦S to 20◦N), and the
z axis for depth (from 0 to 300 meters). Figure 1 shows the two fields, tempera-
ture and salinity, which we used in our experiment. The results we reported are
based on the temperature and salinity cross correlation.

6.2 Sampling in Space and Time

For this climate data set, the NOAA scientists provided us with the following
knowledge for sample selection. First, voxels belong to the continents are not
considered. Second, voxels near the Earth’s equator are more important than
voxels farther away. As such, the simulation grid along the latitude is actually
non-uniform: it is denser near the equator than farther away. Third, voxels near
the sea surface are more important than voxels farther away. We incorporated
such knowledge into sample selection. Specifically, we used a Gaussian function
for the latitude (the y axis) and an exponential function for the depth (the z
axis) to compute the probability of a voxel being selected. This treatment allows
us to sample more voxels from important regions. It also agrees well with the
computational grid used in simulation. In our experiment, we sampled two sets
of voxels (500 and 2000) from the volume for correlation clustering.

We only took a subset of time steps from the original time series to reduce
the computation cost in the correlation study. As suggested by the scientists,
we strode in time to reduce the data volumes with fairly independent samples:
we took the first time step, then chose every 12th time step (i.e., we picked
the volumes corresponding to the same month). A total of 100 time steps were
selected to compute the correlation matrix.

6.3 Distance Measure Comparison

In Figure 2, we show the comparison of two distance measures ds and dv on
the clustering performance while all other inputs are the same. Although it is



Lecture Notes in Computer Science 7

(a) clustering with ds (b) silhouette plot

(c) clustering with dv (d) silhouette plot

Fig. 2. Comparison of two distance measures ds and dv with random walks. Both have
500 samples and produce nine clusters which are highlighted with different colors in
(a) and (c). From (b) and (d), we can see that dv performs better than ds.

not obvious from the clustering results, the silhouette plots shown in (b) and (d)
clearly indicate that dv is better than ds. In this example, 45.4% of samples have
their silhouette value larger than 0.25 when using dv, compared with 22.4% of
samples using ds. For samples with silhouette value less than 0.0, it is 8.8% with
dv and 26.8% with ds. The reason that dv performs better is because given two
samples, dv considers correlations between all samples while ds only considers
the correlation between the two samples. The same conclusion can be drawn for
the other two hierarchical clustering algorithms. We thus used dv as the distance
measure in all the following test cases.

6.4 Level-of-Detail Correlation Exploration

Figure 3 shows the level-of-detail exploration of correlation clusters with the
hierarchical quality threshold algorithm. Samples that are not in the current level
being explored can be either hidden or de-emphasized as shown in (c) and (e),
respectively. Parallel coordinates show the correlation relation quantitatively.
In our case, the number of axes in a level equals the number of samples. The
thickness of each axis is in proportion to the number of samples it contains in
the next level, which provides hint for user interaction. The user can simply
click on an axis to see the detail or double click to return. For each level in
the parallel coordinates, we sort the axes by their similarity so that sample
correlation patterns can be better perceived. The samples along the path from
the root to the current level are highlighted in white and green in the volume and
parallel coordinates views, respectively. By linking the parallel coordinates view
with the volume view, we enable the user to explore the hierarchical clustering
results in a controllable and coordinated fashion.
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(a) coarse level-of-detail (b) parallel coordinates

(c) medium level-of-detail (d) parallel coordinates

(e) fine level-of-detail (f) parallel coordinates

Fig. 3. Level-of-detail exploration of correlation clustering of 2000 samples with hier-
archical quality threshold. (a) shows all the samples, (c) shows only samples in the
current level, and (e) de-emphasizes samples that are not in the current level using
gray color and smaller size. Parallel coordinates show the qualitative correlation rela-
tionships among samples accordingly. The axes in the current level are reordered by
their similarity with each axis corresponding to a (representative) sample.

6.5 Clustering Algorithm Comparison

In Figure 4 and Table 1, we compare the three hierarchical clustering algo-
rithms. Their silhouette plots clearly indicate that hierarchical quality threshold
performs the worst. While hierarchical k-means and random walks have com-
parable performances in terms of percentages of samples with silhouette value
larger than 0.25 and smaller than 0.0. Random walks have more samples with
silhouette value larger than 0.5 and it take much less time to compute compared
with hierarchical k-means. Therefore, the random walks algorithm is the best in
terms of quality and performance tradeoff. Unlike quality threshold and k-means
algorithms, random walks do not require parameters such as the threshold or
number of clusters to start with, which also makes it appealing for use. On the
other hand, we observed that the timing of quality threshold is very sensitive
to the number of levels and the threshold chosen for each level. The output and
resulting quality are also very unstable. The quality of k-means is fairly good
except that it requires much more time to compute.
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(a) hierarchical quality threshold (b) silhouette plot

(c) hierarchical k-means (d) silhouette plot

(e) random walks (f) silhouette plot

Fig. 4. Comparison of the three hierarchical clustering algorithms with 2000 samples.
The numbers of clusters generated are 17, 18, and 17 for quality threshold, k-means,
and random walks respectively. From (b), (d), and (f), we can see that random walks
produce the best result while quality threshold produces the worst result.

7 Conclusions and Future Work

We have presented a study of hierarchical correlation clustering for time-varying
multivariate data sets. Samples are selected from a climate data set based on
domain knowledge. Our approach utilizes parallel coordinates to show the quan-
titative correlation information and silhouette plots to evaluate the effectiveness
of clustering results. We compare three popular hierarchical clustering algorithms
in terms of quality and performance and make our recommendation. In the fu-
ture, we will evaluate our approach and results with the domain scientists. We
also plan to investigate the uncertainty or error introduced in our sampling in
terms of clustering accuracy.
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quality threshold k-means random walks

strategy agglomerative divisive agglomerative

parameters # levels # initial clusters none
threshold for each level termination threshold

randomness no yes yes

tree style general general binary

speed unstable (184.4s, 22.2s) slow (673.9s, 30.1s) fast (188.4s, 4.5s)

quality bad (22.0%, 67.6%) good (65.1%, 60.8%) good (72.3%, 45.4%)

stability unstable stable stable

Table 1. Comparison of three hierarchical clustering algorithms. The two timings
(percentages) in the speed (quality) entry are for the clustering time in second on an
AMD Athlon dual-core 1.05 GHz laptop CPU (samples with silhouette value larger
than 0.25) with 2000 and 500 samples, respectively.
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