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Abstract. We present a novel approach to analyzing built environment
variables (BEVs) using deep learning and Google Street View (GSV)
images. By identifying and classifying BEVs, we aim to assist architec-
ture professionals in understanding the relationship between heat-related
health risks and BEVs. Traditional methods require extensive finetun-
ing with human-labeled datasets, which is inefficient for analyzing di-
verse BEVs. Our approach integrates open-set object detection models
with vision-language models to accurately identify buildings and classify
wall materials without additional finetuning on our own human-labeled
datasets. This versatile model can efficiently handle mixed materials, of-
fering a cost-effective and scalable solution for analyzing the comprehen-
sive built environment. The results will support architecture professionals
in developing effective mitigation strategies for vulnerable populations
living in less resilient housing, addressing public health risks associated
with climate change.
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1 Introduction

The increasing frequency and intensity of climate change-related events pose
significant risks to public health, especially for vulnerable populations residing in
older, less resilient housing. By leveraging Google Street View (GSV) images and
advanced computer vision techniques, we aim to automate the identification and
classification of Built Environment Variables (BEVs), including wall materials,
roof types, external shades, window-to-wall ratios, and housing conditions, which
are critical indicators of a building’s sustainability. The automated collection of
BEV data using our method will enable architecture professionals to analyze the
relationship between these BEVs and heat-related health risks, facilitating the
development of effective mitigation strategies.

However, existing methods often rely on finetuning pretrained models with
thousands of customized, human-labeled images for each object detection or clas-
sification task [28]. This approach is not cost-effective when analyzing multiple
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aspects of buildings or incorporating new variables, as each new task requires
a specially labeled dataset. Additionally, current models typically use one-hot
encoding for categorization, which lacks flexibility and cannot accurately detect
overlapping categories (e.g., a wall containing wood and brick).

To address these issues, our approach integrates Open-Set Object Detection
(OSOD) models with Vision-Language Models (VLMs), significantly enhancing
accuracy and eliminating the need for additional finetuning with customized
human-labeled images. This versatile model can analyze various BEVs, includ-
ing mixed materials, without requiring multiple specialized models. It offers a
cost-effective, scalable, and flexible solution for built environment analysis, en-
abling more comprehensive and nuanced assessments of building sustainability
and associated health risks.

2 Related Work

Recent advances have significantly expanded the use of computer vision tech-
niques in architectural analysis and urban studies. Starzynska-Grzes et al. [28]
conducted a comprehensive review, highlighting five key applications of computer
vision in architecture. In these studies, while such analyses could traditionally be
performed by human experts, computer vision models help accelerate and scale
the process effectively. Comprising nearly half of the studies reviewed, street-
view imagery has emerged as an ideal source for automated visual analysis. We
will particularly focus on works involving street-view imagery closely related to
our approach.

One application of computer vision in architecture is the classification of
building styles and typologies [16,10,13,8,1]. These approaches automate the
labor-intensive process of architectural surveys and historic preservation efforts
by accurately identifying and classifying building styles. Another application is
detecting and classifying building details [6, 34, 35, 5, 4]. These capabilities with
street-view images are essential for various analyses, including urban modeling
and maintenance planning, as they allow for detailed architectural features to
be extracted efficiently and accurately. The qualitative analysis of urban envi-
ronments using computer vision is also gaining traction. Studies have employed
such algorithms to assess the quality of streetscapes, evaluate environmental
aesthetics, and correlate visual data with socio-economic indicators [23,33, 3,
15,29, 9, 32,22, 31]. Furthermore, computer vision has been applied to assessing
property values [12, 17]. By automating the evaluation of building conditions and
property values, researchers can provide more accurate and efficient assessments,
benefiting stakeholders across the real estate and urban planning sectors.

Integrating computer vision in analyzing buildings and built environments of-
fers promising opportunities for automating and enhancing various architectural
and urban studies. Unlike the previous methods, by leveraging OSOD models
and LLMs, we can assist researchers in gaining deeper insights into the built
environment, leading to more informed decision-making and improved urban
sustainability without requiring large-scale specialized datasets.
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3 Owur Approach

Our primary objective is to detect buildings in GSV images and classify their
wall material types as representative BEVs. This aids architecture professionals
in analyzing the relationship between BEVs and heat-related health risks. Tradi-
tional methods for similar architectural analysis tasks often rely on training with
human-labeled datasets, which can be costly and inefficient when dealing with
various BEVs, such as wall material, roof material, window types, and housing
conditions. We aim to accomplish this in a zero-shot manner, eliminating the
need for specially created human-labeled datasets.
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Fig. 1. Overview of our zero-shot approach for detecting wall material types of indi-
vidual buildings in GSV images.

We employ a two-step approach for detecting wall material types of individual
buildings in GSV images, as illustrated in Figure 1. First, we feed “building” text
input and GSV image as input to Grounding DINO [19], a state-of-the-art OSOD
model, to accurately identify buildings in GSV. Next, we leverage Bootstrapping
Language-Image Pre-training (BLIP) [14] with its Vision Question Answering
(VQA) feature to classify the wall materials. This is achieved by posing a series
of questions related to wall materials and using the responses to determine the
wall material type. This method enables us to determine wall material types
efficiently without relying on extensive human-labeled datasets. We justify and
explain the method in the following.

3.1 Open-Set Object Detection

Traditional Closed-Set Object Detection (CSOD) models, such as Faster R-CNN [26]
and YOLO [25], can only detect objects belonging to the categories in their pre-
trained datasets without finetuning on customized datasets. For instance, the
commonly used Faster R-CNN pretrained model is trained on the ImageNet 1K
V1 dataset, which comprises 1000 different categories, with only a few related
to buildings. The lack of semantic knowledge connecting these categories makes
it difficult to generalize a single category for all buildings using Faster R-CNN
without finetuning. Similarly, YOLOvVI, the first version of YOLO, is pretrained
on ImageNet with 1000 classes and cannot be used directly without finetuning.
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YOLOvVS, the most recent version, provides a pretrained model with 80 classes
but does not include buildings. Thus, the primary rationale for using OSOD in-
stead of CSOD lies in the constraints of the pretraining datasets, which OSOD
does not have, and the flexibility OSOD provides through semantic classes in
object detection.

We chose Grounding DINO as a state-of-the-art OSOD model. We found that
it effectively detects various buildings, including houses, townhouses, apartment
buildings, stores, gas stations, schools, churches, etc. Its robustness and versatil-
ity make it ideal for our detection task. More importantly, it can be used straight
out of the box. In Section 4.3, we compare Grounding DINO with other methods
to show its exceptional zero-shot capability for handling this task.

3.2 Vision-Language Models for Zero-shot Image Classification

Image classification tasks typically use CNN-based models such as VGG [27]
and ResNet [7]. However, similar to the constraints faced by CSOD models,
the classification categories are limited to those in the pretrained dataset if we
want to use them out of the box. Since most of these models are pretrained on
the ImageNet dataset, they cannot be directly applied to wall material classifi-
cation tasks without finetuning on our own human-labeled dataset. Therefore,
we must utilize models that learn image representations using natural language
supervision to achieve zero-shot classification.

Integrating vision and language modalities, vision-language models are com-
monly used for zero-shot image classification. One of the most well-known models
is Contrastive Language-Image Pre-training (CLIP) [24], which achieves perfor-
mance comparable to ResNet on the ImageNet dataset while being significantly
more robust across other natural image distributions. However, when analyzing
wall materials as a BEV, it is essential to account for cases where walls contain
wooden and brick parts. In such scenarios, even CLIP may not be sufficiently
accurate in classifying the wall material types.

As capable of answering open-ended questions based on images, VQA mod-
els are a type of vision-language model that can retrieve images with specific
characteristics. Such a capability is essential for identifying wall materials and
mixed types. Given the primary question prompt about the material of a wall,
VQA models respond by selecting the word associated with the highest likeli-
hood score, even if the score is relatively low. This approach is sufficient for a
basic classification, where the goal is to categorize the wall into a single material
type. In our experiment, for example, approximately 98% of wooden walls were
correctly identified by the answer from the BLIP model to the primary question,
and 93% of brick walls were accurately identified.

However, to confirm if the wall is a mixture of multiple materials, in addition
to the wall material, we also ask for the presence of wooden or brick parts as a
supplement. We then compile the responses to categorize the wall material. For
example, if VQA models indicate the presence of wooden and brick parts on a
wall initially identified as wooden, we classify the wall material as a combination
of wood and brick. This decision-making process is detailed in Table 3.
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For the VQA models, we selected several feasible options. First, we chose
ViLT [11], a unified vision-language transformer trained on comprehensive datasets,
including Google Conceptual Captions (GCC), Stony Brook University Captions
(SBU), Visual Genome (VG), and COCO Captions (COCO), and finetuned on
the VQAv2 dataset. Second, we selected BLIP [14], which employs a novel vision-
language pretraining framework that learns from noisy image-text pairs from
web data. It is pretrained on datasets such as COCO, VG, CC, SBU, and an
additional 115 million images with noisy texts from the web dataset LAION,
and it is also finetuned on VQAv2. In addition to these specialized VQA models,
we tested Large Language-and-Vision Assistant (LLaVA) [18], which combines
a pretrained CLIP ViT-L/14 visual encoder with Vicuna, a variant of the large
language model LLaMA.

Based on our findings from the comparison in Section 4.4, we determined
that BLIP is the most effective model for our wall material classification task.

Table 1. Decision-making process for determining wall materials based on responses
to questions by VQA models.

What Material? ‘ Has Wooden Part? Has Brick Part? ‘ Class
Wood Yes/No No Wood
Brick No Yes/No Brick
Wood No Yes Wood&Brick
Brick Yes No Wood&Brick
Wood/Brick Yes Yes Wood&Brick
Neither (e.g., Concrete) Yes/No Yes/No Other

4 Experiments

4.1 Dataset

For building detection, we collected 672,526 GSV images from a county in the
United States. Using the National Structure Inventory, we obtained the locations
of 105,885 buildings in the county. We matched these images to the buildings
and found that 97,130 buildings had GSV images within 100 meters. To validate
the effectiveness of our method and compare it with other approaches, as shown
in Figure 2, we randomly sampled 2,476 images and carefully annotated them
into four categories: wood, brick, wood and brick, and other. The annotation
process included drawing bounding boxes around the buildings in the images
and labeling each building with its corresponding wall material. We used 2,000
images for training and the remaining 476 for testing. Note that our method and
other zero-shot baselines did not use the training images.

For classification evaluation, we utilized 2,476 sampled GSV images to gen-
erate 6,130 cropped building images within the bounding boxes. We allocated
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80% of these images for training and 20% for testing. Given the random sam-
pling of GSV images, the number of images per category is not equivalent: there
are 4,537 images for wood, 700 for brick, 678 for wood and brick, and 215 for
other. The proportion of images in each category within the dataset essentially
reflects the actual distribution found in the county.

Fig. 2. Sample annotated GSV images.

4.2 Metrics

For building detection, we employ mean Average Precision (mAP) to rigorously
evaluate the accuracy and effectiveness of each detection method. This met-
ric provides a comprehensive measure of precision and recall across different
Intersection-over-Union (IoU) thresholds, ensuring a robust assessment of ob-
ject detection performance. mAP is computed as

1
mAP = — E AP,.,
|C| ceC (1)

where C' represents all classes, and ¢ is one of the classes. The Average Precision
(AP) for each class is given by

AP = (Ri—Ri1) x P, (2)

K2
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where P; and R; denote the precision and recall at threashold index 1.
For building classification, we utilize accuracy to evaluate each classification
method. The accuracy is computed as

1 N
ACC = Z L(yi = 6i), (3)

where N represents the total number of predictions, y; is the ith prediction and
y; is the corresponding ground truth.

The time for finetuning and inference is recorded in minutes, with all exper-
iments running on a single NVIDIA A40 GPU with 48 GB of VRAM.

4.3 Single Category Building Object Detection

We compared Grounding DINO against Faster R-CNN (which utilizes a ResNet-
50-FPN backbone) and YOLOVS, focusing solely on building detection. As shown
in Table 2, despite Faster R-CNN and YOLOvS being finetuned on our dataset
of 2,000 human-labeled images, Grounding DINO demonstrates an mAP that
is on par with these models. While Grounding DINO operates slower than its
counterparts, the results underscore its efficacy as a robust choice for zero-shot
building detection.

Table 2. Comparison of object detection models on buildings. We report mAP, Train-
ing Time (TT), and Inference Time (IT) in minutes. Best values are highlighted in
bold.

Model | mAP | TT | IT
Faster R-CNN (ResNet-50-FPN) | 0.80 | 24.33 | 0.85
YOLOV8 0.92 | 20.46 | 0.05

Grounding-DINO-Swin-T 0.90 1.56

4.4 Wall Material Classification

Considering the complexity of our task to classify wall materials, we evaluated
various models, incorporating both zero-shot techniques and methods that re-
quire finetuning on our human-labeled datasets. For the models requiring fine-
tuning, we explored the ResNet family, utilizing ResNet-18, ResNet-50, and
ResNet-152 to represent the small, base, and large configurations, respectively.
We also include EfficientNet [30] and ConvNeXt [21], which are designed to offer
competitive accuracy and enhanced efficiency compared to Vision Transform-
ers (ViTs) [2|. From the EfficientNet family, we selected EfficientNetV2-S and
EfficientNetV2-L as the base and large models. We also tested the newer Con-
vNeXt series, employing the base model ConvNeXt-S and the larger ConvNeXt-
L. ViTs were also included, with ViT-B/32 as the base model and ViT-L/16 as
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the larger option. Finally, we incorporated Swin-B [20] as the Swin Transformer
series base model. This extensive comparison provides a thorough benchmark of
the performance of leading classification methods when finetuned and evaluated
on our datasets.

For the zero-shot methods, we examine models including CLIP, ViLT, BLIP,
and LLaVA, as discussed in Section 4.4. Specifically for CLIP, we evaluate the
base model ViT-B/32 and the larger model ViT-L/14, where the numbers 32
and 14 refer to the input patch size. For ViLT and BLIP, we select the models
finetuned on the VQAv2 dataset to optimize VQA performance. Additionally,
we include LLaVA, specifically version 1.6 and its largest 34b variant. In this
comparison, we evaluate models of varying complexities to find the most suitable
model for our task.

The results detailed in Table 3 reveal that while all finetuned models surpass
80% overall accuracy, only BLIP achieves greater than 80% accuracy, with ViLT
closely approaching this mark. This superior performance can likely be attributed
to both models being finetuned on the VQAv2 dataset, which is known for en-
hancing VQA capabilities. Interestingly, due to the lack of finetuning on VQA
datasets, despite its considerable model size, LLaVA fails to predict the material
of building walls accurately. Our analysis indicates that the multiple-question
decision-making process described in Section 3.2 was particularly effective with
BLIP. This process was also applied to ViLT and LLaVA but with less suc-
cess. BLIP also demonstrates superior performance overall due to its higher and
well-balanced accuracy rates in distinguishing between mixed wood and brick
materials and the “other” category (non-wood or brick).

In terms of supervised models, the largest configuration of ViT performs
optimally, albeit with significant training time and slower operational speed
compared to other models. A more efficient alternative with comparable per-
formance is the larger version of EfficientNet. The dataset shows a category bias
towards buildings with wooden walls, particularly in the selected county, which
aids in achieving high wood material accuracy (around 95%) and, consequently,
an overall accuracy easily above 80%. However, the results might vary in ar-
eas with different class distributions, yet BLIP consistently maintains over 70%
accuracy across all classes. This consistency suggests that BLIP is well-suited
for robust inference in extended experiments on a larger scale. Such robustness
makes it a reliable tool for architecture professionals to analyze the relation-
ships between heat-related risks and BEVs, using wall material as a key BEV
indicator.

4.5 Building Object Detection and Wall Material Classification

We evaluated our object detection and classification strategy, which integrates
Grounding DINO with BLIP, against traditional models like Faster R-CNN and
YOLO. As shown in Table 4, despite Faster R-CNN and YOLO being finetuned
on our datasets covering four wall material classes, our method demonstrates
superior performance, achieving a mAP of 0.82 with all categories scoring above
0.7 AP. This surpasses the performance of supervised models, underscoring the
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Table 3. Comparison of classification models on buildings across four wall material
categories. We report overall accuracy (%), category-specific accuracy (%), Training
Time (TT), and Inference Time (IT) in minutes. Best values are highlighted in bold.

Model ‘ All ‘ Wood  Brick Wood&Brick Other ‘ TT IT
ResNet-18 85.17 | 95.81 68.57 42.65 48.84 8.55 0.12
ResNet-50 86.55 95.04 72.14 52.94 60.47 15.37 0.19
ResNet-152 86.31 94.93  69.29 56.62 53.49 20.2 0.34

EfficientNetV2-S | 85.98 94.16  73.57 55.15 51.16 32.95 0.43
EfficientNetV2-L | 87.53 94.82 79.29 58.09 53.49 | 122.62 0.81
ConvNeXt-S 85.66 94.49  75.71 50.74 41.86 | 113.48 0.28
ConvNeXt-L 86.55 | 96.26  65.00 55.88 48.84 | 187.47  0.71
ViT-B/32 84.76 95.59  65.00 43.38 51.16 16.78 0.18
ViT-L/16 88.02 95.48  75.00 60.29 60.47 | 363.25 1.39
Swin-B 86.88 95.93 72.14 53.68 48.84 44.68 0.47
CLIP-ViT-B/32 62.71 71.15  35.00 25.00 67.44 — 0.32
CLIP-ViT-L/14 68.38 81.83 12.86 38.97 58.14 — 0.49
ViLT-VQAv2 79.71 94.82  49.29 17.65 55.81 — 2.06
BLIP-VQAv2 89.49 | 94.49 77.86 70.59 81.40 — 12.70
LLaVA-1.6-34b 61.53 66.08  60.71 43.38 25.59 — 50.57

robustness and effectiveness of our zero-shot approach in handling complex de-
tection tasks without specific training on the dataset.

These findings indicate that our method, combining Grounding DINO and
BLIP, provides a compelling zero-shot solution, effectively managing classifi-
cation demands with higher precision and adaptability than traditional, fully-
trained models. This highlights the potential for zero-shot learning methods in
practical applications, achieving high accuracy without extensive retraining on
specialized datasets.

Table 4. Comparison of object detection models on buildings across four wall material
categories. We report overall mAP, category-specific AP, Training Time (TT), and
Inference Time (IT) in minutes. Best values are highlighted in bold.

Model | mAP | Wood Brick Wood&Brick Other | TT | IT

Faster R-CNN (ResNet-50-FPN) 0.61 | 077 033 0.21 0.25 | 67.95 | 0.87
YOLOv8 0.74 | 0.93 0.79 0.64 0.59 | 29.28 | 0.05
Grounding-DINO-Swin-T + BLIP-VQAv2 | 0.82 | 0.86  0.72 0.71 075 | — | 6.21

5 Conclusions and Future Work

We have presented a novel zero-shot method combining an OSOD model, Ground-
ing DINO, and a VLM, BLIP, to classify wall materials on buildings detected in
GSV images. We compared our method to other models and justified our choices
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based on detailed evaluations. Our approach exhibits great robustness and re-
liability compared to methods finetuned on our own human-labeled dataset,
demonstrating its capability to identify wall materials as a BEV for further
analysis by architecture professionals.

Our method has a few limitations. It is slower than supervised methods, so
scaling up the dataset, such as for the entire county could take days. To address
this, we could use our method to create a machine-labeled dataset that can
finetune more efficient models such as YOLO, ViT, or EfficientNet. VQA-based
decision-making poses another concern, as its accuracy heavily depends on how
questions are framed. Poorly designed questions can significantly affect the clas-
sification results. Thus, we should establish clear guidelines for crafting questions
that elicit the most accurate responses from various VQA methods, especially
when applying this technique to other BEVs. Furthermore, our current approach
can identify combinations of wood and brick on walls but cannot determine the
exact proportions of each material. Achieving this level of detail requires image
segmentation, a more complex task. We plan to develop a zero-shot segmentation
technique to estimate the proportions of wall materials better.
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