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Abstract Complementary to the classical use of feature-based condensation and
temporal subsampling for in situ visualization, learning-based data upscaling has
recently emerged as an interesting approach that can supplement existing in situ
volume visualization techniques. By upscaling we mean the spatial or temporal re-
construction of a signal from a reduced representation that requires less memory to
store and sometimes even less time to generate. The concrete tasks where upscaling
has been shown to work effectively are geometry upscaling, to infer high-resolution
geometry images from given low-resolution images of sampled features; upscaling
in the data domain, to infer the original spatial resolution of a 3D dataset from a
downscaled version; and upscaling of temporally sparse volume sequences, to gener-
ate refined temporal features. In this book chapter, we aim at providing a summary of
existing learning-based upscaling approaches and a discussion of possible use cases
for in situ volume visualization. We discuss the basic foundation of learning-based
upscaling, and review existing works in image and video super-resolution from other
fields. We then show the specific adaptations and extensions that have been proposed
in visualization to realize upscaling tasks beyond color images, discuss how these
approaches can be employed for in situ visualization, and provide an outlook on
future developments in the field.

1 Introduction

For in situ volume visualization, two commonly employed approaches are feature-
based data reduction and spatial or temporal subsampling. In the former approach,
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each dataset is condensed in situ to a few important features, and these features are
used to analyze the data. Since extracted features usually require far lessmemory than
the original data, memory bandwidth and capacity limitations can be overcome. On
the other hand, features not selected are lost, and some feature extraction techniques
require global data access operations not well supported by the data distribution
scheme on the parallel computing architecture. In the later approach, volumetric
data are downscaled spatially or only every n-th timestep is stored, thus reducing
the amount of memory needed. Then, spatial or temporal features can get lost, since
classical interpolation schemes cannot reconstruct these features from the reduced
data in general.

Complementary to these approaches, learning-based data upscaling has recently
emerged as an interesting approach that can supplement existing in situ volume
visualization techniques. By upscaling (which is also referred to as super-resolution),
we refer here to the spatial or temporal reconstruction of a physical field from a
reduced representation. The concrete tasks where learning-based upscaling has been
demonstrated for scientific data are

1 Image upscaling: Upscaling in the visualization image domain by inferring high-
resolution images from given low-resolution images of sampled 3D features.

2 Spatial upscaling: Upscaling in the spatial domain by inferring a higher resolution
of a 3D dataset from a downscaled version for reconstructing spatial features.

3 Temporal upscaling: Upscaling in the temporal domain by inferring temporally
dense volume sequences from sparse sequences for refining temporal features.

Option (1) requires focusing on specific features that are visualized at low image
resolution. Yet, resulting images require less data access operations to generate,
can be generated at higher speed, and decrease the memory required to store and
transmit them, e.g., for use over low bandwidth channels in remote visualization
environments. With options (2) and (3), storing a dataset becomes faster, and more
datasets can be stored in a given a certain disk capacity. Depending on the size of the
downsampled dataset, it can be even feasible to stream an entire dataset to a remote
client where the visualization occurs. This can be an interesting option to monitor
the running simulation.

The challenge in upscaling is to infer the structure of a coarsely sampled dataset
from a low-resolution spatial or temporal sampling, beyond what can be predicted
from the given samples by classical upscaling filters like bilinear or bicubic interpo-
lation. In general, this seems impossible without any further assumptions about the
structures that are contained in the dataset. Recent works in learning with artificial
neural networks (ANNs), however, have demonstrated that such networks have the
capabilities to learn such assumptions.

In abstract terms, upscaling seeks a mapping function from inputs to outputs,
called the generator. In the in situ scenario, the generator learns to map a multi-
dimensional field, e.g., a 2D color or geometry image, or a 2D or 3D and possibly
time-varying scalar or vector field, to a higher spatial or temporal resolution, option-
ally including additional parameters, i.e., channels, that are inferred from the given
input samples.
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With ANNs, the generator internally builds a so-called latent space represen-
tation that encodes the nonlinear mapping function. The generator tries to learn
an identity mapping, which gives for every low-resolution input the corresponding
high-resolution output. Since the dimension of the latent space is not sufficient to
achieve such amapping for every input, the network learns to encode relevant features
that have a significant impact on the inference quality. Thus, the generator learns
assumptions about the occurrence of structures by using corresponding pairs of low-
and high-resolution fields in the training process. Learned assumptions can then be
transferred to a new low-resolution input, to generate a high-resolution variant that
adheres to the structures seen at training time.

Learning-based image and video super-resolution have achieved remarkable re-
sults, by training networks using corresponding pairs of low- and high-resolution
color images [9, 26]. Learned assumptions can then be transferred to a new low-
resolution input, to generate a high-resolution variant in which structures that have
been seen at training time are well recovered. Similar approaches have been used in
the context of numerical fluid simulation, in particular, to add turbulent sub-structures
to low-resolution input simulations [6, 57].

In this book chapter, we aim to bring the readers’ attention to the possibilities
of learning-based upscaling in the context of in situ volume visualization. Even
though learning-based upscaling has not yet been integrated into existing in situ
visualization systems, especially in this context, we see it as an interesting technique
that can effectively complement existing approaches. In particular, recent works
on spatial and temporal upscaling of physical fields indicate that networks do not
learn a specific field, but rather that networks can generalize and learn properties of
structures that occur in such fields.

On the other hand, as recent works have shown, a network cannot infer the
missing data samples accurately in all but very simple scenarios. In particular,
when structures appear which have never be seen by the network in the training
process, or the sampling frequency is so low that structures are missed entirely, an
accurate reconstruction cannot be expected in general. While some networks tend
to hallucinate new structures in this case, other network variants prefer a smooth
continuation similar to classical smoothing filters.

One way to address this problem is to build specialized networks for certain
types of simulations to learn the specific features (and their spatial and temporal
relationships) that can occur. To achieve this, further research is required to explore
the limits of predictability using network-based inference, including in particular
a thorough investigation of their specialization capabilities in different application
areas. In this context, it will be important to shed light on the use of additional
information sources, besides low-resolution versions of the data, that can be generated
efficiently in a running simulation and can help to improve the prediction. For
instance, to investigate whether certain feature indicators can be derived and stored
together with the low-resolution version, so that the inference step can learn to
combine both sources in a meaningful way and improve the inference results.

Another limitation of current network architectures for upscaling tasks is perfor-
mance, which is essentially bound by the many data access operations a network
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needs to perform to reconstruct a full resolution dataset from the low-resolution
version. We are confident that with faster deep-learning hardware and performance-
optimized network architectures the performance and scalability of upscaling net-
works will increase significantly over the next years. Furthermore, in recent work
it has been shown that ANNs can even learn the importance of samples for data
reconstruction [54], by training an adaptive sampling network and a reconstruction
network end-to-end. This work, in particular, gives evidence that networks can be
trained to convert a dataset into a sparse, yet feature-preserving representation from
which another network has learned to generate a visualization in turn, i.e., without
having to reconstruct the full resolution field. Such an approach can significantly
reduce the number of data access operations and, thus, increase the visualization
performance accordingly.

2 Background and Related Work

2.1 Artificial Neural Networks

In the following, we will briefly discuss some of the basic machine learning mecha-
nisms underlying neural network-based upscaling, together with a short description
of the specific architectures used in upscaling for visualization. For a thorough intro-
duction to and an exhaustive summary of the developments in neural network-based
learning, we refer readers to the overviews by Schmidthuber [45] and Goodfellow et
al. [13].

In recent years, ANNs have gained tremendous attention due to their superior per-
formance to alternative methods in many pattern recognition and machine learning
tasks. The power of these networks comes from their ability to form representations
of categories by “learning” from large sets of samples in which these categories are
present. The learned representations are then used to recognize, classify and infer
about properties of objects and events in unknown samples. An ANN aims to solve
problems in a similar way as a human brain. It consists of interconnected nodes
akin to the vast network of neurons in the brain. Artificial neurons are aggregated
into layers, and different layers perform different kinds of transformations on their
inputs. A deep neural network (DNN) is an ANN with multiple layers between the
input and output layers [32]. These extra hidden layers result in a deep network,
enabling the composition of features from lower layers, potentially modeling com-
plex data with fewer units than a similarly performing shallow network [2]. As an
essential branch of machine learning, deep learning has been successfully applied
to many applications such as computer vision, speech recognition, natural language
processing, and computer graphics, achieving results comparable or even superior
to human experts. In recent years, fully connected network layers were replaced by
deep hierarchies using only local convolutional update operations, and massively
parallel graphics processing units (GPU) equipped with high-performance memory
interfaces made learning with large datasets and many layers practicable. Convolu-
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tional neural networks (CNNs) have proven very successful for supervised image
recognition and classification. The hidden layers of a CNN include several stages
of local convolutional and pooling layers, sometimes followed by one or several
fully-connected layers. A neuron z(i+1)

j at convolutional layer i + 1 detects local
combinations of features by aggregating information from the previous layer i via
convolution operations and non-linear state updates:

aj = Wj ∗ zi + bj, (1)

z(i+1)
j = f (aj), (2)

where Wj is a linear convolution operator with trainable weights, and bj is a bias
used to allow for absolute shifts in the output values. A non-linear function f is
used to compute a neuron’s final state, it’s so-called activation, to enable the network
to perform a non-linear mapping of its inputs without affecting the receptive fields
of the convolutional layers. Typical activation functions are Sigmoid(x) = 1

1+e−x or
ReLU(x) = max(0, x). A pooling layer aggregates features into smaller and smaller
feature maps via down sampling, i.e., it merges semantically similar features into
one by computing a summary (e.g., maximum or average). The fully-connected layer
learns global features from local ones by connecting neurons to all activations in the
previous layer. This is used, for instance, in classification tasks to generate the final
classificationmask from the activations of all neurons in the final convolutional layer.
Today, deep learning [30, 48] refers to the use of high-throughput architectures for
learning hierarchical representations of categories, which are formed via non-linear
models for transforming the representation at one level into a more abstract one.

For network learning, a loss function is used to measure the difference between
the predicted network output and the desired result, e.g., a class label in classification
tasks or a high-resolution ground truth image in image-based upscaling. Minimizing
the loss function is usually achieved with an optimization method such as stochas-
tic gradient descent (SGD). SGD first calculates the gradient of the loss function
with respect to the network’s weights and biases, and then updates the parameters
according to a given learning rate. The network’s weights and biases are the only
parameters that can be modified to make the loss as low as possible. Because the
loss is calculated through the composition of the neurons’ activation functions, it is
a continuous and piecewise differentiable function of the parameters. This gives rise
to minimization via an iterative process of gradient descent. As such, the learning
process reduces to calculating the gradient of a network function with respect to its
weights. This is what is performed in the training step.

A simple yet often surprisingly effective class of loss functions considers regular
vector norms, i.e., L1 or L2, over the data domain. Perceptual losses [12, 10, 25]
have been widely adopted in image and video upscaling to guide networks towards
additional image details instead of smoothed mean values. The idea is that two
images are similar if they have similar activations in the latent space of a trained
network. Let φ be the function that extracts the layer activations when feeding an
input image into the network, and let OEST and OGT , respectively, be the inferred
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output and the ground-truth image. The perceptual loss function aims at minimizing
the distance

LP =
∑
s

| |φ(OGT
s ) − φ(O

EST
s )| |22 . (3)

Autoencoders [29] can learn latent features from data in an unsupervisedmanner,
e.g., to use these features for dimensionality reduction. An autoencoder consists of
two networks: an encoder and a decoder. The encoder encodes an input data sample
to a compressed representation in the latent space. The decoder decodes the latent
representation back to reconstruct the data sample as close as possible. Generative
adversarial networks (GAN) [14] are explicitly designed to optimize for generative
tasks. A GAN consists of two networks: a generator and a discriminator, which
contest with each other in a zero-sum game. The generator maps from a latent space
to a particular data distribution of interest. The discriminator discriminates between
instances from the true data distribution and candidates produced by the generator.
In adversarial training, this discriminator is then used in the loss function of the
generator network. A popular loss function in adversarial training is the binary
cross-entropy loss. Let z be the input over all timesteps and G(z) the generated
results, and let D(x) be the discriminator that takes the generated results as input and
produces a single scalar score. Then the discriminator is trained to distinguish fake
from real structures by minimizing

LGAN,D = − log(D(x)) − log(1 − D(G(z))). (4)

The generator is trained to minimize

LGAN,G = − log(D(G(z))). (5)

Recurrent neural networks (RNN) [42, 15] can capture the dynamics of a sequence
or a time series and are widely used in speech recognition, text synthesis, and
handwriting recognition. As themost popular deep RNN architecture, the long short-
term memory (LSTM) [22] addresses the vanishing gradient problem in traditional
RNNs by adding forget gates in the units. To strengthen the temporal coherence of
time series predictions, one can use loss functions that explicitly penalize differences
between predictions and different timesteps. To cope with motion in images, let Wi, j

be a warping operator that aligns the output at time i with the output at time j with
respect to some motion field. Then, the temporal loss can be defined as

Ltemp =
∑
t

| |OEST t −Wt−1,t (OEST t−1 )| |22 . (6)

2.2 Related Work in Upscaling

Upscaling Image and Video Data. In recent years, deep learning approaches have
been used successfully for single-image super-resolution tasks [8, 47, 49, 31, 51],
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i.e., the upscaling of images and videos from a lower to some higher resolution.Many
previous works let the networks learn to optimize for losses between the inferred and
ground-truth images based on direct vector norms [27, 28]. GANs were introduced
to prevent the undesirable smoothing of direct loss formulations [43, 33, 43], and
instead use a second discriminator network that discriminates real from generated
samples and guides the generator. Convolutional architectures [8] with residual
blocks [21] are popular generator architectures that offer training stability as well
as high-quality inference. Losses based on the feature-space differences of image
classification networks, e.g., a pre-trained VGG network [25] or the discriminator
in a GAN setting, have shown to mimic well the human’s capability to assess
the perceptual similarity between two images. In the context of synthetic images,
existing work focuses on enhancing path-traced images. A common application is
image denoising, e.g., for Monte-Carlo raytracing [58, 4].

In contrast to image super-resolution, video super-resolution tasks introduce the
time dimension, and as such, require temporal coherence and consistent image con-
tent. While many methods use multiple low-resolution frames [50, 34, 24], the
FRVSR-Net [44] reuses the previously generated high-resolution image to achieve
better temporal coherence. By using a spatiotemporal discriminator, the Teco-
GAN [7] network produced results with spatial detail without sacrificing temporal
coherence. Multiframe approaches benefit from aligning the frames via warping,
which requires an estimation of the image-space motions. As this is usually not
readily available for natural videos, optical flow estimation networks are a popular
choice [3]. EDVR [52] uses alignment modules on a U-Net [41] to align features of
different frames. Recurrent architectures employ feedback loops to address sequence,
time, and video prediction tasks [5]. Chaitanya et al. [4] used recurrent connections
to propagate a latent state over time inside the network, while other methods use the
previously generated high-resolution output as input [44].

Upscaling Scientific Data. Thanks to the tremendous advances of deep learning
solutions, visualization researchers have begun to explore the capabilities of DNNs
for upscaling and reconstruction of 2D/3D steady and time-varying scientific data,
including both scalar and vector fields. Closely related to scientific visualization,
Zhou et al. [60] presented a CNN-based solution that upscales a volumetric dataset
using three hidden layers designed for feature extraction, non-linear mapping, and
reconstruction, respectively. Han et al. [17] took a two-stage approach for vector field
reconstruction via deep learning. The first stage initializes a low-resolution vector
field based on the input streamline set. The second stage refines the low-resolution
vector field to a high-resolution one via CNN. The use of neural network-based
inference of data samples in the context of in situ visualization was demonstrated by
Han andWang [18], by letting networks learn to infer missing timesteps between 3D
simulation results. Guo et al. [16] designed a deep learning framework that produces
coherent spatial super-resolution of 3D vector field data. With a recommended
scaling factor of 4 or 8, they can downsample vector field data by 64 or 512 times
at simulation time and upsample these reduced data back to their original resolution
with good quality.
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Beyond scientific visualization, several works aim to upscale physical fields re-
sulting from volumetric flow simulations. For example, Xie et al. [57] presented
tempoGAN to synthesize spatial super-resolution volume sequences. Temporal co-
herence is ensured by wrapping velocity and vorticity fields into the synthesized
volumes. Xiao et al. [56] proposed a CNN-based flow correction method for a fast
preview of the smoke animation results based on low-resolution simulations, which
was achieved through the use of a grid-layer feature vector along with a special
loss function. Werhahn et al. [55] designed a multi-pass method to upsample 3D
spatiotemporal functions with GANs. They decomposed generative problems on the
Cartesian field functions into multiple smaller subproblems for efficient learning.
Bai et al. [1] proposed a dynamic upsampling approach to generate high-resolution
turbulent smoke flows using a dictionary-based neural network.

3 Upscaling Scenarios - Image-based Upscaling

Rendering an accurate image of a volumetric field typically requires a large number
of data samples, and reducing this number lies at the core of research in volume
rendering. In the following, we shed light on the use of CNNs for learning the up-
scaling of a low-resolution rendering of an isosurface to a higher resolution [53],
with reconstruction of spatial detail and shading. What makes this approach in-
teresting for in situ visualization is the reduced number of data samples that need
to be accessed to obtain the final high-resolution image. Since the high-resolution
image is inferred from a low-resolution image with only 1/16 (about 6%) of the
pixels in the high-resolution version, the number of data access operations that are
required to generate the high-resolution image decreases correspondingly. Due to
this, in in situ environments where a dataset is so large that volume rendering must
be performed while the data is being generated, increasing rendering performance
can be expected. In addition, the low-resolution image can be streamed in turn to a
remote visualization client, reducing bandwidth requirements by 16:1 and requiring
no additional compression stage on the machine where the data is being generated.

The input and output of the image-based upscaling (IU) network in [53] are 2D
images of an isosurface in a 3D scalar field. In contrast to classical image- and video-
upscaling approaches, however, there are differences in what these images represent
and what the network learns to infer. First, the upscaling task does not work on color
images. Instead, it uses a geometry image of the isosurface, including depth and
gradient information. As illustrated in Figure 1, this leads to improved learning of
geometric surface properties and avoids color bleeding effects when different color
maps are used in the training process. Second, instead of learning a mapping from a
low-pass filtered version of a given high-resolution image to that image, the network
is trained to learn a mapping from a low-resolution sampling of the isosurface in the
high-resolution dataset to a version that is sampled at high image resolution. Third,
the network learns to generate additional attribute channels from the given inputs.
In particular, it infers global illumination values from the given geometry images
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Fig. 1: Left: IU using depth and normal maps with screen-space shading. Right:
upscaling of color images introduces color bleeding from color mappings seen
during training. This image is adapted from our previous work [53].

by learning the relation between low-resolution geometry and global illumination in
the high-resolution data.

Processing Pipeline. In every frame t, the network receives the low-resolution
input ILRt , which comprises multiple 2D fields, the so-called channels. The binary
mask MLR

t ∈ {−1,+1}H×W indicates for every pixel whether or not the isosurface
is hit. The normal map NLR

t ∈ [−1,+1]3×H×W stores the the screen-space normal
vectors at the rendered surface points. The depth map DLR

t ∈ [0, 1]H×W stores the
distance of each point to the viewing plane.

From these input fields, the network infers the high-resolution image of the iso-
surface OEST

t , including additional output channels that were not given in the low-
resolution input, such as high-resolution ambient occlusion (AO) values. Therefore,
in the training process, the network is fed with ground-truth AO maps (generated via
volumetric raycasting) and learns to predict them according to the low-resolution ge-
ometry. Screen-space Phong shading with AO is finally applied as a post-processing
step. Optionally, a map of 2D displacement vectors FLR

t ∈ [−1,+1]2×H×W – indicat-
ing the screen-space flow from the previous view to the current view – is computed
internally to let the network smooth the differences between subsequent predictions.

Architecture Details. The network architecture builds upon a fully convolu-
tional frame-recurrent neural network (FRVSR-Net) consisting of a series of residual
blocks [44]. In a residual network, some layers feed their output not only into the
next layer but also directly into the layers many stages away. By using these so-called
skip connections, the layers can learn the residual between the true output and the
prediction. Furthermore, larger gradients can be propagated to initial layers, thus
avoiding the problem of vanishing gradients in deep networks. The FRVSR-Net is
a rather small network that provides a good tradeoff between quality and inference
speed, i.e., the inference of FullHD images at 60fps is possible, which is difficult to
achieve with more complex architectures like the U-Net [41]. An illustration of the
network’s building blocks and its topology is given in Figure 2.

The residual architecture network improves the network’s capability to generalize
to new data, as it can focus on generating the residual content [21]. Hence, the
input channels are bilinearly upsampled and added to the channels of the output,
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Fig. 2: The IU network architecture. ⊕ indicates component-wise addition of the
residual. All convolutions use 3 × 3 kernels with stride 1. Bilinear interpolation is
used for the upsampling layers. This image is reprinted from our previous work [53].

Fig. 3: Comparing networks with different loss function configurations. Top row:
the normal map. Bottom row: the shaded output color. Since the “Shaded” network
acts directly on color images, a normal map is not used. Left to right: low-resolution
input, shaded, L1-color, L1-geometry (final), perceptual, GAN, and ground truth.
This image is adapted from our previous work [53].

producing MEST
t , NEST

t , and DEST
t . The only exception is AOEST

t , which is inferred
from scratch, as there is no low-resolution input AO map.

Training and Loss Function Characteristics. For training and validation, im-
ages of isosurfaces in a supernova simulation (dataset Ejecta) on a 2563 grid are
used. The dataset is rendered at different timesteps to provide the network with a
variety of different geometric structures, ranging from very small details to rather
smooth low-frequency parts. The input images were subdivided into smaller parts
so that multiple inputs can be processed at once and benefit from batch processing
in the optimizer.

Weiss et al. [53] compare networks with different weighted combinations of the
individual losses described in Section 2.2. Figure 3 shows a visual comparison of
the surface structures (without AO) that are inferred from the low-resolution input
image using these networks.

The evaluation indicates that a network which is trained only with L1-losses and a
minor objective on temporal coherence gives the best results. This network only sees
shaded colors in the temporal coherence loss during the training process and is thus
forced to focus primarily on the reconstruction of geometry. Adding a perceptual loss
on the normal and AO fields does not lead to any visual differences. This is because
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Fig. 4: Comparing upscaling quality on Ejecta, RM, Skull, Thorax, two isosurfaces
of a Rayleigh-Bernard process and a single jet. The network was trained only on
Ejecta, but on different views than shown. The other datasets were never seen during
training. Left to right: input, bilinear, IU, and ground truth with AO. This image is
adapted from our previous work [53].

the perceptual loss networkVGG-19 is trained on color images and does not explicitly
consider the relation between geometry and shaded output. Further experiments using
an adversarial loss indicate that the GAN produces more high-frequency details that
actually decrease the quality of the reconstruction. Furthermore, it significantly
increases both training time and memory requirements of the discriminator.

Quality and Performance Evaluation. The following comparison sheds light on
the quality and performance of network-based upscaling. The comparison involves
images of isosurfaces in Ejecta that were never seen during training, as well as
images of isosurface in other datasets (see Figure 4): A numerical simulation of a
Richtmyer-Meshkov (RM) instability at 10243 and of a Rayleigh-Bernard process
at 1200x1200x80, CT scans of human anatomies (Skull, Thorax) at a resolution of
2563, and a flow simulation (Flow) at 2563. For all datasets, even though some of
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Table 1: Comparing average PSNR and SSIM values of the normal map for different
methods.

PSNR (dB) SSIM
dataset nearest linear cubic IU nearest linear cubic IU
Clouds 59.18 65.51 56.03 69.88 0.92 0.94 0.88 0.96
Ejecta 60.71 64.99 58.03 69.43 0.91 0.92 0.87 0.95
RM 25.21 27.26 24.02 28.50 0.74 0.76 0.69 0.80
Thorax 43.76 46.74 41.69 49.36 0.75 0.76 0.68 0.78
Skull 25.46 27.36 24.55 29.10 0.91 0.92 0.87 0.95

them exhibit geometric features that are different from those in Ejecta, the inference
results are very close to the ground truth. The results indicate that the network can
effectively infer meaningful details in line with the geometric surface properties, and
can furthermore predict a highly accurate distribution of AO values from the inferred
geometry.

The quantitative assessment of the quality of IU using the peak signal-to-noise
ratio (PSNR) and the structural similarity index (SSIM) on the normal map in Table 1
confirm the high reconstruction fidelity of network-based inference.

Compared to volumetric raycasting on the GPU without the simulation of AO
values, the performance of isosurface image upscaling typically ranges from equal
to a factor of 2 faster, including the inference of AO values. Once the renderer also
needs to simulate AO, it is outperformed by the upscaling network by two orders of
magnitude, due to the computational complexity of AO simulation using ray-based
approaches.

4 Upscaling Scenarios - 3D Spatial Upscaling

Besides upscaling in image space, spatial upscaling (SU) can also be performed
directly in the data space. A possible integration with in situ implementation is as
follows. The simulation first outputs, for example, 40% of samples from the entire
volume sequence as high-resolution volumes, as the training data. The simulation
then resumes and only outputs subsequent low-resolution volumes, as the testing data.
For network training, the corresponding low-resolution volumes can be obtained by
downsampling the high-resolution ones using the bicubic kernel with a downscaling
factor of four (thus, each volume is 1/64 of the original size). Once trained offline,
the network can perform real-time inference to predict high-resolution volumes from
low-resolution ones.

Given a time-varying volumetric dataset, Han and Wang [19] designed a network
architecture similar to tempoGAN [57] for SU of each volume in the sequence.
The network includes a generator G and two discriminators (spatial discriminator
Ds and temporal discriminator Dt ). With this architecture, the network produces
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Fig. 5: Comparing same-variable inference results of the Ionization (He+) dataset
at timestep 73 using isosurface rendering. The chosen isovalue is -0.84 (the value
range is normalized to [-1, 1]). Left to right: bicubic, SU, and ground truth.

Fig. 6: Comparing same-variable inference results of the Hurricane (QVAPOR)
dataset using volume rendering. Left to right: bicubic, CNN, SU, and ground truth.

Fig. 7: Comparing different-variable inference results of the Combustion (MF →
YOH) dataset using volume rendering. Left to right: bicubic, SU, and ground truth.

spatiotemporally coherent spatial super-resolution of the given volume sequence
using adversarial learning. Formally, the goal is to estimate a mapping function F
from a low-resolution volume sequence VLR to a high-resolution volume sequence
VEST , while taking into account temporal coherence. Namely, VEST = F (VLR).
The network is then trained by minimizing the loss function that considers (1)
adversarial loss [35] which trains G with the goal of fooling Ds and Dt , (2) content
loss [40, 23] which mixes the adversarial loss with a more traditional loss, such as
L2 distance, and (3) feature loss [59] which constrains G to produce similar features
between synthesized and ground-truth volumes at different scales.

Preliminary Results. For same-variable inference, Figure 5 compares the iso-
surfaces extracted from the synthesized volumes via bicubic interpolation and SU.
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A single isovalue is picked and the results for a single timestep are shown. Clearly,
SU generates closer results with respect to the ground truth. Figure 6 compares
volume rendering of the synthesized volumes via bicubic interpolation, CNN, and
SU. The CNN-based baseline model utilizes a post-upsampling framework [33]. It
is clear that CNN generates the worst result while SU yields the best result. Besides
same-variable inference, the framework can perform different-variable inference.
That is, a variable X of a dataset is used for training. For inference, X is used to
infer another variable Y of the same dataset (X → Y ). Such an example is shown in
Figure 7, where the MF variable is used for training and the YOH variable is used for
inference. Again, SU produces higher-quality and more detailed visual results than
bicubic interpolation.

5 Upscaling Scenarios - Temporal Upscaling

Temporal upscaling (TU) is particularly useful as a large-scale scientific simulation
often runs a long sequence but could only afford to store the volume sequence rather
sparsely (e.g., every 100th timestep). The upscaling aims to synthesize the interme-
diate timesteps by providing temporally resolved details to support a more detailed
analysis and visualization of dynamic temporal features. A possible integration with
in situ implementation is as follows. The simulation also first outputs, for example,
40% of samples from the entire volume sequence as the training data. The simula-
tion then resumes and only sparsely outputs subsequent volumes (says every tenth
or hundredth timestep), as the testing data. For network training, it takes pair-wise
timesteps at two ends as input and aims to predict intermediate timesteps in between
through forward and backward predictions (where intermediate timesteps are known
for loss computation). Once training offline, the work can perform real-time infer-
ence to predict intermediate timesteps given a pair of timesteps in the testing set
(where no intermediate timesteps are known).

The TU solution given by Han andWang [18] uses a recurrent generative network
that combines RNN and GAN, to generate the intermediate volumes between a
given pair of volumes (i.e., two-end timesteps). Given a pair of volumes (Vi,Vi+k)

from timesteps i and i + k (where k > 1), a function F is sought that satisfies
F (Vi,Vi+k) ≈ V, where V = {Vi+1,Vi+2, · · · ,Vi+k−1} are the intermediate volumes
between Vi and Vi+k .

Network Design and Loss Function. As sketched in Figure 8, the network in-
cludes a generator G and a discriminator D. G uses two modules: the predicting
module (FPRED) and blending module (FBLD), to estimate F . FPRED is a volume
prediction network that produces a forward prediction VFW through Vi and a back-
ward predictionVBW throughVi+k , respectively. FPRED includes three components:
(1) feature learning component which extracts feature representations from the vol-
umes, (2) temporal component, which bridges the spatial and temporal information
among different volumes, and upscaling component, which recovers the volumes
from the spatiotemporal features. FBLD takes Vi , Vi+k , and Vi+j (0 < j < k) from
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Fig. 8: The TU network has a generator G (including the predicting and blending
modules) and a discriminator D. During inference, the network performs either same-
variable inference or different-variable inference usingG. This image is adapted from
our previous work [18].

VFW and VBW as input, and blends them into the predicted volume Ṽ. The discrim-
inator D distinguishes Ṽ from V. Given an input, D produces a score to indicate
whether or not the input is from the real data. That is, D(V) ≈ 1 and D(Ṽ) ≈ 0.
Note that the goal of G is to fool D so that D cannot distinguish Ṽ as fake volumes
In this regard, D serves the role of a binary classifier as the score from D can guide
G in synthesizing high-quality volumes. Similar to spatial upscaling, the network is
trained by minimizing the loss function that considers adversarial loss, content loss,
and feature loss.

Architecture Details. With a traditional residual block, the resolution of the
input [21] cannot be changed. Therefore, Han and Wang [18] opt to enhance the
residual block by allowing downscaling or upscaling the input. For the feature learn-
ing component, each residual block is designed to contain two parts, which are
bridged by skip connection. The first part has four convolutional layers, followed by
spectral normalization [37] and ReLU [38]. The second part has one convolutional
layer, followed by spectral normalization and ReLU. For the temporal component,
to enable the network to predict volumes, ConvLSTM [46] is applied to trans-
fer the spatial features into spatiotemporal features. The advantage of ConvLSTM
over traditional LSTM [22] lies in its weight-sharing mechanism in convolution.
Weight-sharing uses fewer parameters to train ConvLSTM, thus saving memory
and speeding up training. For the upscaling component, the spatiotemporal features
from ConvLSTM are taken as input and a synthesized volume is output. Although
common, using deconvolutional layers to recover resolution from max-pooling or
convolutional layers would incur a high computational cost. Therefore, right after



16 Sebastian Weiss, Jun Han, Chaoli Wang, and Rüdiger Westermann

Fig. 9: Comparing same-variable inference results of the Combustion (MF) dataset
using volume rendering. Top to bottom: linear, TU, and ground truth. Left to right:
five consecutive timesteps. The synthesized results show that TU solution can pre-
serve temporal coherence well while linear interpolation fails to do so (refer to the
evolution of a volumetric feature highlighted in ellipses).

the last spectral normalization layer, Han and Wang [18] add the voxel shuffle layer,
a sub-voxel convolutional layer, for upscaling. Assuming a feature of size [L,W,H]
needs to be upscaled with a factor f , voxel shuffle applies a periodic shuffle operation
to rearrange the elements of a [c f 3, L,W,H] tensor to a tensor of [c, f L, f W, f H],
where c is the number of channels.

Qualitative Results. Figure 9 shows the comparison of volume rendering images
of synthesized volumes generated using linear interpolation and inferred using TU.
The ground-truth results are displayed for reference. The comparison shows that
linear interpolation fails to capture the temporal evolution of features while TU can.
For example, the ground-truth rendering image sequence shows that the volume
feature highlighted in ellipses actually shifts from left to right (note that the feature
at the two-end timesteps do not overlap spatially). However, due to the non-overlap
of this feature at the two-end timesteps, linear interpolation would interpret this
as two separate features: the feature on the left shrinks and disappears while the
feature on the right appears and grows. TU can learn temporal evolution for accurate
inference of intermediate timesteps. The different-variable inference results shown
in Figure 10 also confirms the effectiveness of TU over linear interpolation.

Figure 11 compares the isosurfaces extracted from the synthesized volumes via
linear interpolation and TU. A single isovalue is picked and the results for two
different timesteps are shown. Compared with the ground-truth results, it can be seen
that at timestep 33, linear interpolation generates a similar isosurface; at timestep
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Fig. 10: Comparing different-variable inference results of the Combustion (MF →
HR) dataset using volume rendering. Left to right: linear, TU, and ground truth.

Fig. 11: Comparing same-variable inference results of the Supernova (E) dataset
using isosurface rendering. The chosen isovalue is 0.255. Top row: timestep 35.
Bottom row: timestep 51. Left to right: linear, TU, ground truth, and the two-end
ground-truth timesteps (i.e., 33 and 37 for timestep 35, 49 and 53 for timestep 51).

51, linear interpolation fails to construct the isosurface. However, in both cases, TU
clearly generates closer results with respect to the ground truth.

Quantitative Results. For quantitative comparison, PSNR and SSIM are used to
evaluate the quality of synthesized volumes at the data and image levels, respectively.
In addition to linear interpolation, two baseline deep learning solutions based on
RNN and CNN are implemented. For the training of RNN, the architecture of TU
is followed but the discriminator is excluded. For the training of CNN, the same TU
architecture is leveraged but ConvLSTM is removed. Table 2 reports the average
PSNR and SSIM values over the entire volume sequence for linear interpolation,
RNN, CNN, and TU. At the data level, RNN performs the best in terms of PSNR.
Such a result is expected, as RNN is a PSNR-oriented solution. In contrast, TU is
also constrained by adversarial and feature losses. At the image level, TU performs
the best in terms of SSIM.
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Table 2: Comparing average PSNR and SSIM values for different methods.

PSNR (dB) SSIM
dataset (variable) linear RNN CNN TU linear RNN CNN TU
Combustion (HR) 25.61 26.13 25.72 25.81 0.66 0.70 0.69 0.72
Combustion (MF) 25.12 25.86 25.43 25.62 0.71 0.73 0.73 0.74
Supernova (E) 22.34 24.31 23.81 23.74 0.61 0.64 0.63 0.66
Vortex 26.62 27.42 26.85 26.90 0.73 0.75 0.75 0.75

6 Concluding Remarks and Future

The current results of deep learning-based data upscaling indicate that such methods
have the potential to overcome some of the limitations in current high-performance
simulation environments. The trained networks infer well the geometric properties
of isosurfaces in 3D scalar fields, and they can even predict missing spatial and
temporal features in static and time-resolved fields. As such, there is evidence that
deep learning-based upscaling methods can (1) reduce the number of samples that
need to be reconstructed (and transmitted in a remote environment) whenmonitoring
a running simulation in situ, (2) reduce the resolution at which data needs to be stored,
and (3) reduce the number of timesteps that need to be stored.

In computer vision, a single neural network model trained on various types of
images could effectively upscale unseen images from multiple categories. However,
this is not the case for scientific data since the training data is limited, and different
scientific datasets may not follow a single data distribution (e.g., Gaussian distribu-
tion). Still, we believe that one can train a model on a certain type of datasets and
later apply it to upscale or infer a different dataset of the same type (e.g., a different
variable sequence or ensemble run). For example, Han et al. [20] recently designed
V2V, a framework for variable to variable transfer using GAN.

For future work regarding the use of learning-based upscaling for in situ visual-
ization, we envision in particular the following approaches.

When using 2D image-based upscaling in combinationwith 3Dupscaling, itmight
be possible to let networks infer on the raw data frommultiple (low-resolution) views
of selected features in this data, facilitating a feature-based encoding of physical
fields. An interesting research question is which features and how many of them are
required by a network to infer the original dataset, and whether networks can locally
infer the data from these features.

Even more important seems the question whether ANNs can convert the data to a
compact feature-preserving representation (a code) that can be permanently stored,
and directly decoded by the visualization tool into a visual representation, without
having to decode the initial data. In this context, it will be interesting to revisit
data compression techniques in light of the so-called “task-dependency principle"
from psychology. This principle suggests that a code is optimal if it considers the
behavioral goals of a user of this code, which is a perceptual investigation of the
information encoded in the data when performing visual data analysis tasks. Fol-
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lowing the task-dependency principle, codes should allocate resources according to
how the user makes use of the encoded information, and the encoding of data that
are irrelevant should be allocated minimal resources. This principle is fundamental
to data visualization, since it asks for the reconstruction of data from a perceptual
point of view, rather than a signal processing standpoint that argues in terms of
numerical accuracy. It is an interesting question whether ANNs can generate such
task-dependent, i.e., perception-aware, codes that can be intertwined with a visual-
ization tool in the envisioned way. Answers to this question might be obtained by
looking at recent works related to scene representation networks [36] and differ-
entiable rendering [39], where reconstruction networks and networks that learn to
generate rendered imagery from the resulting latent space representations have been
trained end-to-end.
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