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Figure 1: AQX contains multiple coordinated views to support exploring, analyzing, and verifying the ML model’s learning
with domain knowledge using feature contribution information along with performance and raw data information. To under-
stand the global pattern of feature contribution, the Overview (A) displays the feature contribution aggregated and presented
as Daywise Overview (a1), Hourwise Overview (a2), and Locationwise Overview (a3). It also aids in narrowing down to the
instance of interest. The Performance View (B) displays and compares the ML and CMAQ models’ forecast accuracy on mon-
itoring stations in Mean IOA(Index of Agreement) view (b1) and the spatial patterns captured by the model for the entire
Hong Kong region in Spatial Map View (b2) for the target timestamp and pollutant to understand what the model can and
cannot learn. The Raw data View (C) shows the wind trajectories for the input time period using animation which aids in
understanding how wind carries pollutants from one place to another. The Feature-Temporal Importance view (D) shows the
overall contribution of input features for the instance of interest and this helps in knowing the highly contributing features
for the forecast. The Spatio-Temporal View (E) shows the contribution of grid locations fromdifferent timestampswhich helps
to understand the contribution of features from different spatial locations for the input time period.
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ABSTRACT
Air pollution forecast has become critical because of its direct im-
pact on human health and its increased production caused by rapid
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industrialization. Machine learning (ML) solutions are being drasti-
cally explored in this domain because they can potentially produce
highly accurate results with access to historical data. However, ex-
perts in the environmental area are skeptical about adopting ML
solutions in real-world applications and policy making due to their
black-box nature. In contrast, despite having low accuracy some-
times, the existing traditional simulation model (e.g., CMAQ) are
widely used and follows well-defined and transparent equations.
Therefore, presenting the knowledge learned by the ML model can
make it transparent as well as comprehensible. In addition, validat-
ing the ML model’s learning with the existing domain knowledge
might aid in addressing their skepticism, building appropriate trust,
and better utilizing ML models. In collaboration with three experts
with an average of five years of research experience in the air pol-
lution domain, we identified that feature (meteorological feature
like wind) contribution, towards the final forecast as the major
information to be verified with domain knowledge. In addition,
the accuracy of ML models compared with traditional simulation
models and raw wind trajectories are essential for domain experts
to validate the feature contribution. Based on the identified infor-
mation, we designed and developed AQX, a visual analytics system
to help experts validate and verify the ML model’s learning with
their domain knowledge. The system includes multiple coordinated
views to present the contributions of input features at different lev-
els of aggregation in both temporal and spatial dimensions. It also
provides a performance comparison of ML and traditional models
in terms of accuracy and spatial map, along with the animation of
rawwind trajectories for the input period. We further demonstrated
two case studies and conducted expert interviews with two domain
experts to show the effectiveness and usefulness of AQX.

CCS CONCEPTS
• Applied computing → Environmental sciences; • Human-
centered computing → Visual analytics.
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1 INTRODUCTION
Due to rapid urbanization, environmental pollution, specifically
air pollution, has become more serious. It directly impacts human
health and causes severe health complications like chronic respira-
tory diseases, heart diseases, and lung cancer [24]. To tackle this
issue, modeling, forecasting, and monitoring air quality has become
a hot spot among the scientific community [27]. In particular, with
the increased availability of historical data, machine learning (ML)
has gained considerable attention in this critical domain. It can
potentially model and forecast complex data like air quality data

accurately, which is dynamic, volatile, and highly variable in space
and time [9, 37, 53]. Various ML techniques [14, 30] have been
proposed by machine learning researchers as a solution that can
forecast air quality like traditional statistical methods like CMAQ
(Community Multi-scale Air Quality modeling) [5]. Moreover, Na-
tional Science Foundation (NSF) has funded 100 million USD to
establish AI institutes that can accelerate the research in AI for
ES(Environmental Science) 1.

However, experts in the environmental science domain are skep-
tical about adopting ML solutions in real-world applications and
policy-making due to their black-box nature. In contrast, the tra-
ditional model like CMAQ is currently widely used in many real-
world applications and policy decisions on air qualitymanagement 2
as it works transparently based on clearly defined physical and
chemical equations. However, these traditional models are not good
at modeling sudden changes or non-linear behavior, which often
results in less accurate forecast results [10]. Therefore, presenting
the knowledge learned by the ML model might make it transparent
and comprehensible for the domain experts. Furthermore, validat-
ing the ML model’s learning with the existing domain knowledge
might aid in addressing their skepticism, building appropriate trust,
and better utilizing MLmodels. Concurrently, numerous techniques
have been proposed in the XAI (Explainable AI) field to uncover
the black box, which has proven to be successful in illuminating
the workings of machine learning models [1, 6]. However, little
work has systematically investigated the prospect of using XAI for
validating domain knowledge and what domain knowledge needs
to be validated to gain the appropriate trust towards the ML models
[16, 45].

Domain experts are end-users of ML models or XAI tools with
more domain knowledge than common public but little-to-no tech-
nical background. Moreover, predominantly experts in the air pol-
lution domain are end-users of ML models rather than developers
themselves. Unlike common users, whose interest lies in the model
results and performance, domain experts are more interested to
understand what the ML model can learn from the data. In addition,
they might be interested in verifying whether it is consistent with
their knowledge 3. Therefore, existing XAI tools explaining the
workings of hidden layers of the ML model are neither easy for
them to comprehend nor can be used to corroborate the domain
knowledge.

To build a tool that facilitates experts in verifying their domain
knowledge, it is essential to identify and distill critical domain
knowledge that needs to be verified by domain experts to establish
an appropriate trust in ML models. Therefore, we conducted a for-
mative study following the design study methodology proposed
in [43], with three domain experts with an average of five years
of experience in conducting research pertaining to air pollution
and air quality. From the formative study, we identified that fea-
ture (meteorological feature like wind) contribution towards the
final forecast as the major information to be verified with domain

1 https://www.ai2es.org/
2https://www.epa.gov/cmaq/cmaq-models-0
3NSF has established AI Institute for Research on Trustworthy AI in Weather,
Climate, and Coastal Oceanography (AI2ES) to develop XAI methods
aligned with perspectives and priorities of environmental science domain.
https://www.ai2es.org/research/foundational-research-in-trustworthy-ai-ml/
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knowledge. In addition, the performance of ML model compared
with traditional simulation model and visualizing the raw wind
trajectories are essential for domain experts to validate the feature
contribution information.

Based on the findings, we derived seven design requirements to
guide the overall design and development of AQX: A visual analytics
system for verifying domain knowledge using feature importance
visualization. In particular, AQX uses multiple coordinated views to
present the contributions of input features at the different levels of
aggregation in both temporal and spatial dimensions. In addition, it
shows the performance information of both the ML model and the
traditional CMAQmodel for comparison. The system also visualises
and presents the raw wind trajectories using animation to facilitate
the validation process. The system was then evaluated by two
case studies and an expert interview with two domain experts to
demonstrate its effectiveness and usefulness. To summarize, we list
our contributions as follows:

• A list of design requirements for an XAI tool that verifies
domain knowledge in air pollution area.

• A visual analytics system for domain experts to explore,
understand, and verify their knowledge by showing the con-
tributions of input features at different levels of aggregation,
the model performance, and the raw data.

• A comprehensive evaluation to demonstrate the usefulness
and effectiveness of the system by two case studies and an
expert interview.

2 RELATEDWORK
The related work of this paper includes MLModels for Air Pollutant
Forecasting,ML Interpretations, Visual Analytics for XAI andVisual
Analytics for Spatio-Temporal (ST) data.

2.1 ML Models for Air Pollutant Forecasting
Air pollutant dataset falls under a specific type of Spatio-Temporal
(ST) data which can be either represented as tensors or as spatial
maps. Various machine learning models have been proposed to
handle these two representatives of air pollution datasets and make
the forecast. Since air pollutant data is often represented as spatial
maps we will focus on related works which use a sequence of spatial
maps as input to theMLmodel and produce a sequential spatial map
as output. Here, the length of the sequences represents the input
and output time period. Spatial maps can be essentially considered
as image-like matrices, and thus Convolutional Neural Networks
(CNN) has been used for the forecasting task [25, 28, 59, 60]. Due to
the temporal attribute associated with these ST data, various model
architectures consisting of Recurrent Neural Networks (RNN) [7, 8]
have also been proposed for the forecasting task. However, perform-
ing forecasts with a sequence of spatial maps involves modeling
temporal and spatial correlations, which requires a combined func-
tion of both CNN and RNN. One such approach that combines
the convolutional structure of CNN and Long Short-Term Mem-
ory (LSTM) units is the convolutional LSTM network (ConvLSTM)
layer [46] which was initially proposed for precipitation forecast-
ing. The work used a sequence-to-sequence model whose input
and output were both sequential spatial maps, which are ST data.
Many variants of ConvLSTM like [54–56] have achieved impressive

results on modeling and forecasting ST data. Few works focused
on modeling air pollution data using ConvLSTM [46]. They used
spatial maps generated from air quality and meteorological data
collected from monitoring station as the input to the ConvLSTM
model and forecast the future air quality for the study region. In this
work, we adopt the model architecture from [2], it used a sequence-
to-sequence model architecture with ConvLSTM as the building
block and further utilized the results of a simulation model to make
forecasts for future hours. We modified the architecture according
to our needs and further enhanced the model by feeding it with
fine-grained interpolated data.

2.2 ML Interpretation
There are two general categories under which the XAI works fall.
One is intrinsic explainability, and the other one is post-hoc ex-
plainability. Simple models like linear/logistic regression [40], de-
cision tree [15], k-nearest neighbors, etc., are transparent models
which are self-explainable while complex models like neural net-
works require post-hoc explainability [1, 6]. In this literature review,
we mainly focus on post-hoc techniques as our paper tries to ex-
plain neural network learning, which is a complex black-box model.
Post-hoc explainability uses various methods like text explanations,
visual explanations, local explanations, explanations by example,
explanations by simplification, and feature relevance explanations
techniques to alleviate the interpretability of the complex mod-
els [6]. We will further discuss feature relevance explanations in
this section and visual explanations in subsection 2.3, as we adopt
the aforementioned method to present the relational link between
input-output.

Feature relevance explanations methods usually assign the input
features, an importance score to show the individual impact of each
feature on the final prediction, which help users understand the
relationship between features and predictions. Some recent works
which were based on sensitivity analysis methods, like Partial De-
pendence Plot (PDP) [18], SHAP[33], are commonly adopted for
illustrating how a change in feature value affects the prediction re-
sult. However, one major limitation of sensitivity analysis methods
like PDP, SHAP, etc. is that they are computationally expensive.
It becomes infeasible when the dataset has an exceptionally large
number of features like ST data [36] with multiple variables having
spatial and temporal dimensions, each of which will be considered
as an input feature. A feasible approach that can be adopted in
our scenario is the gradient-based method [29]. Gradient-based
methods provide feature relevance by calculating the first deriva-
tive of the output with respect to the input [29]. In this paper, we
produce our explanation based on gradient-based methods as they
are computationally inexpensive, provide more certain and reliable
results, are well supported by most of the ML frameworks, and can
be implemented with ease [12, 35, 38, 42, 44].

2.3 Visual Analytics for XAI
Representing the ML model’s inner workings using visual analytics
(VA) is the most inherent way to explain for non-ML-expert peo-
ple like domain experts. VA interfaces utilise novel interactions to
enable users to interact, which can help them in exploring, under-
standing, diagnosing the model and the underlying data as well



Reshika Palaniyappan Velumani, Meng Xia, Jun Hun, Chaoli Wang, Alexis Lau, and HuaminQu

[26]. There has been a recent surge in XAI works which makes use
of visual analytics for explaining complex ML model’s behavior
[11, 19, 20, 34, 41, 47, 49–52, 57]. These VA interfaces were designed
based on requirements for a particular set of end-users who can
be ML experts, domain experts, or common public and evaluated
using case studies and qualitative feedback. This literature review
mainly focuses on visual analytics for XAI work on ST data, es-
pecially air pollution datasets. One closely related work [45] tried
to explain RNNs in high-dimensional time-series forecasts from
two aspects: model mechanism and feature importance to the do-
main experts. Another work [48] visualized the influence of input
(space-time and data features) for each prediction using correlation
charts. [22] explained the input(Temperature, wind, and humidity)-
output (pollutants concentration) relationship using SHAP values
on data collected from the monitoring stations (sparse ST data).
Despite having the forecasting model itself as its main contribution,
some works like ADAIN [14] and GeoMAN [30] interpreted the
ML model in terms of local spatial dependency by visualizing the
weights learned by the attention layers using heat maps and scatter
plots. However, these XAI works in air quality focused on explain-
ing the ML models based on what the domain experts do not know
about the model. But not many works investigate the prospect
explaining ML model based what the experts already know (i.e.)
domain expert’s domain knowledge, to increase transparency and
trust. As a result, in this paper, we design a visual analytics solution
that explains ML model to help domain experts corroborate their
domain knowledge.

2.4 Visual Analytics for ST data
One of the distinct attributes of the ST dataset is the data volume,
and it might not be easy to process and visualize these kinds of exten-
sive data without the cost of time. Someworks, such as imMens [32],
Datavore [17], DICE [23], speeded up queries by pre-aggregating
the data. In addition, they also utilized GPUs to achieve faster query
results. However, data reduction like aggregation can be made ef-
fectively only with prior knowledge of the domain field. Otherwise,
some interesting outliers and patterns might remain hidden from
the users. A more recent work TPFlow [31] used a dataset subdivi-
sion algorithm to identify subsets with similar trends/patterns along
multiple dimensions for further observation and comparison. Some
works which deal with air pollution data in specific [16, 39, 61] used
clustering based on similarity to aggregate and handle the massive-
ness of the dataset. Previous studies [4] suggested that ST data
especially air pollution concentration, differs based on geograph-
ical locations and temporal cycles. Thereby spatial and temporal
dimensions of the data should be considered while performing ag-
gregation or data reduction to reveal interesting patterns. As such,
we present the data at different levels of aggregation in both spatial
and temporal dimensions to perform in-depth analysis.

Current works visualizing multidimensional ST data either uses
multi-coordinated visualization or multivariate visualization, to
summarise and display information from temporal and spatial di-
mensions and different input features like pollutants, meteorologi-
cal data. There are works [3, 13] that leveraged the combination of
bothmethods tomitigate the problem of visual encoding exhaustion.
However, visual analytics for ST data require extra considerations

for the dynamic nature of the data and their features, especially
in air pollution domain where meteorological features like wind
which is highly dynamic and moves over space and time dimen-
sions. Considering this aspect of the ST data features is crucial as it
helps domain experts verify their domain knowledge. As such, we
propose a novel VA system that visualize raw wind trajectories and
presents it in the form of animation for the validating the existing
knowledge with that of the ML model’s learning.

3 INFORMING THE DESIGN
3.1 Formative Study
The formative study helped us to collect information about the
key domain knowledge of different features especially wind and its
contribution to air pollutant’s concentration forecast. We designed
the formative study as shown below.

Participants and Procedure: We associated with 3 domain ex-
perts (2 Male, 1 Female) from the Environmental department for
conducting the formative study. E1 is a professor in environmental
science department with a research experience of more than 20
years. He predominantly studies numerical modeling of the atmo-
sphere, regional and urban air pollution. E2 is a researcher with 5
years of experience in research which focuses on applying statistical
methods in deterministic models and data fusion for air pollution
forecast. E3 is a phd student conducting research in utilizing various
ML models for air quality forecast. All the domain researchers have
interest in utilizing ML models for their research and as well as
in real world applications and therefore would like to understand
their behavior. The study included a semi-structured interview ask-
ing the domain experts a series of questions for about 90 minutes.
We started the Q&A session with questions about the evaluation
methods in the air quality domain, as this can help us evaluate the
ML model. We advanced with questions about input features to
understand input-output relationship. Based on the answers given
we asked follow-up questions to have a better understanding. The
questions interchanged with the domain experts are listed in Tab. 1
and the answers provided by them are listed in appendix subsec-
tion A.1. Finally we drafted the initial design requirements based
on the Q&A session. We iteratively collaborated with domain ex-
perts for a period of five months (November 2020 - March 2021)
by holding biweekly meetings. Inputs from the experts helped us
to ensure that the results produced by the ML model and feature
contribution information generated by the gradient based method
are acceptable as well as the developed visual analytical system
meets their requirements.

3.2 Design Requirements
We identified three primary information the domain experts needed
for verifying their domain knowledge from the formative study.
The most important information required is (I1) Feature Contri-
bution: Contributions of input features (air quality and meteoro-
logical features) presented at different levels of aggregation can
reveal global and instance level patterns, which can be further ver-
ified with domain knowledge. Other essential information that’s
required is (I2) Performance of ML and Simulation models:
Performance of the ML model compared with that of simulation
model can provide a holistic understanding of what the ML model
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Table 1: Questions from the formative study.

Questions Information

Q1: How to evaluate machine learning model?
• Q1(a): How to evaluate spatial consistency and coherence?

Q2: Why CMAQ is widely accepted?

I2: Performance of Ml and simulation models.

Q3:What are the most important features in air quality forecast?
• Q3(a): How does wind affect air pollutant concentration?
• Q3(b): Effect of wind on different pollutants?

Q4: Does air pollutants affect concentration of another air pollutant?

I1: Feature Contribution

Q5: Other useful information about wind??
• Q5(a):What are the influential features other than wind?. I3: Raw Wind data

can and cannot learn. The last critical information required is (I3)
RawWind data: Raw Wind data is used to validate the input fea-
ture contribution (I1). Since wind helps in carrying pollutants from
one place to another, visual presentation of the raw wind trajecto-
ries for the input time period can aid in verifying the contribution
of spatial dimension to the final forecast. Based on the three in-
formation described above; we further summarised the following
seven design requirements. Design requirements R1 to R6 are re-
lated to the air quality domain, and the requirement R7 is related
to UI (user interface) design. The relationship among the identified
information from formative study, derived design requirements,and
proposed design elements for the system are shown in Figure 2.

Figure 2: The relationship among identified information
from formative study, derived design requirements,and pro-
posed design elements for the system.

R1: Provide an overview of feature contribution at tem-
poral and spatial dimensions: All the experts (E1, E2, E3) men-
tioned that the input feature’s contribution, especially wind and its
direction on air pollutants differs for different seasons. For example,
during summer, the contribution of easterly wind to air quality is
high, whereas, in winter, northerly winds have a high contribution.
Moreover, wind’s contribution to air quality differs for different
geographical locations. For instance, the wind might have a higher
contribution to air quality over places near the sea than over places
in the city center. Therefore, an overview of the input feature’s
contribution across different seasons and its comparison is needed
to verify high-level domain knowledge in the temporal dimension.
In addition, the overview of the contribution of features in various

geographical locations is also required to verify domain knowledge
in spatial dimensions.

R2: Provide the performance ofMLmodel in terms of IOA
and spatial pattern:All the experts (E1, E2, E3) agreed that show-
ing the performance of the forecastmodel can give an instant insight
about what the model can and cannot learn from the data. E1 men-
tioned that "A ML model’s performance on air quality data is usually
assessed based on two factors, one is accuracy which is measured in
terms of Index of Agreement (IOA) calculated on monitoring stations,
and the other one is spatial pattern and consistency which can be
evaluated by spatial map". Therefore, the system needs to present
the performance information of the ML model in terms of IOA and
spatial map.

R3: Compare the performance of ML model, and tradi-
tional simulation-based model: E1 mentioned that CMAQ is
a commonly used simulation model in the air pollution domain and
should be considered as a baseline for evaluating the ML model’s
performance, especially to assess the spatial consistency and co-
herence of the ML model’s forecast. E3 added "CMAQ is a widely
accepted traditional simulation model and is currently being used for
policy making regarding air pollution. It cannot be ignored completely,
at least CMAQ should be considered as baseline for comparing and
evaluating the ML model’s performance." Therefore, providing the
details of the simulation model’s performance in terms of IOA and
spatial map can facilitate the comparison of performances of the
ML model and CMAQ model.

R4: Show the correlation of feature contribution of input
features for ML model’s forecast (Overall Feature Contribu-
tion): E2 and E3 stated that certain air pollutant features are highly
correlated and can influence the concentration of each other. For
example, PM pollutants and O3 are correlated. They can contribute
to each other’s concentration either positively or negatively, but
PM and small-scale pollutants like SO2 and NO2 usually do not
show any correlation. E2 mentioned "NO2, SO2 and PM pollutants
have no correlation because NO2 and SO2 is highly reactive and its
presence in the air is for a short period of time, thus they have less
contribution for PM pollutant’s concentration." Thus showcasing the
input feature contribution for air pollutants forecast can aid in
verifying the knowledge about the correlation between features.

R5: Show the contribution of features along spatial and
temporal dimensions: Experts (E1, E2, E3) stated that each input
feature varies across spatial and temporal dimensions, particularly
wind, which fluctuates highly in both dimensions. So, it is vital to
show the contribution of input features from spatial and temporal
dimensions for the final forecast. This information can be used to
verify the common understanding regarding the contribution of
these dimensions in forecasts. E3 mentioned that "Usually features
from the nearest input time periods and spatial locations have a strong
influence over the final forecast for a particular instance."

R6: Provide rawwind trajectory as reference information:
E2 highlighted the importance of presenting raw data, especially
raw wind trajectories. Wind helps in carrying pollutants from one
place to another and can be responsible for sudden changes in
air quality, so it is essential to show the raw wind trajectory for
the input time period, and this can function as additional informa-
tion to support the ML model’s learning and validate the feature
contribution information in the spatial dimension.
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R7: Provide sufficient interactions to facilitate details on
demand: Experts E1, E2, and E3 expressed their interest in per-
forming case-by-case analysis apart from analyzing global or high-
level seasonal and geographical patterns. In particular, the experts
wanted to understand the role played by spatial and temporal di-
mensions of the input features in the final forecast of an instance.
E2 also added that he is very much interested in enriching his
knowledge by exploring some exciting instances. So the system
needs to support interactions like selection, filter, and tool-tips.

4 FORECAST MODELING
In this section, we describe the application dataset (air quality
dataset), the model architecture we use for the forecast, and the
method we used for data interpolation.

4.1 Application Domain and Dataset
In this paper, we focus on explaining ML model behavior on air pol-
lution forecast. We mainly focus on five pollutants that drastically
affect human health, namely PM10, PM25, O3, SO2, and NO2. The
study area for this paper is Hong Kong. There are 16 air quality
and 28 meteorological monitoring stations installed across Hong
Kong to collect air quality and meteorological data respectively on
an hourly basis. We use both air quality and meteorological data
collected over one year from 1st January 2018 to 31st December
2018 for training and evaluating the ML model. Each input feature
has both spatial and temporal dimensions (i.e., its values change
over space and time). The features of the data are listed in Tab. 2.

Table 2: Features taken as input: air pollutant and meteorol-
ogy.

#Monitoring
Category Stations Feature Type Units

Air Pollutant Data 16

PM2.5 µg/m3
PM10 µg/m3
O3 ppb
SO2 ppb
NO2 ppb

Meteorological Data 28
Wind speed Meter/Second

Wind direction Degree
Temperature Celsius

4.2 Data Processing
The domain experts aim to forecast air quality for the entire Hong
Kong region with the data collected from the monitoring stations.
Therefore, we divided the study area into 64 × 41 grids with a
resolution of 1km. We then interpolated the data for locations
without monitoring stations using a well-established technique
called the Gradient Vector Flow (GVF) [58]. GVF, which is a two-
stage diffusion approach, is leveraged to obtain the velocity and
values of air pollutants at all locations from the sparsely sampled
data. In the first stage, it estimates the velocities and air pollutants
at these pixels, which are closest to the ground-truth grid cells
(i.e.) grid cells with monitoring stations, through a weighted linear
interpolation. Then, the interpolated values are iteratively diffused
to the whole region by minimizing the Laplacian. Similarly, data

were interpolated for all timestamps from January 2018 to 31st
December 2018 and for all the input features (PM10, PM25, O3, SO2,
NO2, Wind).

For generating and visualizing the trajectories of wind from the
raw data, we used Euler’s method [21], a numerical method for
tracing particle’s flow in a two-dimensional vector field. It is a two-
step process; first, the user needs to select a constant named "Step-
size", and second, based on the selected constant, the algorithm
calculates the next position of the particle (wind) along the direction
of the vector using bilinear interpolation method. These two steps
are repeated until the wind position reaches the extent of the study
area. These extracted points can be further used to visualize wind
trajectories for the given time period.

4.3 Model Architecture
This section describes the components, input and output of the
ML model we built, while the proposed visual analytics solution
can support any differentiable ML model (i.e.) models with func-
tions for which derivatives can be computed. The ML model we
built follows an encoder-decoder structure with ConvLSTM as the
building block, inspired from the model architecture of [2], to fore-
cast the pollutant’s concentration. The model architecture shown

Figure 3: ConvLSTM model architecture.

in Figure 3 consists of two parts: encoder and decoder. Both en-
coder and decoder have the same architecture, which comprises
two ConvLSTM blocks with 64 and 32 feature maps, respectively,
and 3 × 3 convolutional kernel, each followed by a batch normal-
ization layer. The input for the ML model is past 12 hour inter-
polated data (spatial map) and the output is forecasted future 12
hour data (spatial map). We use the data collected from the mon-
itoring station, issued by the Hong Kong Observatory which are
publicly available, as ground truth to evaluate the model. Each
data point given as an input for the encoder is a 4D tensor with
the dimension of

(
Nin ,Nx ,Ny ,Npol+mete

)
, where Nin is the num-

ber of timestamps of input historical air quality data (in our case,
Nin = 12), (Nx ,Ny ) is the grid location, Npol is the number of
pollutants, and Nmete is the number of meteorological features.
The encoder outputs a state which encodes the historical data in
the dimension of

(
Nx ,Ny ,Nhenc

)
, where Nhenc is the number of

feature maps generated in the last ConvLSTM in the encoder. Then
the decoder takes this as input and outputs a 4D tensor of dimension(
Nout ,Nx ,Ny ,Nhdec

)
, where Nout is the number of future times-

tamps we want to forecast (in our case, it is 12 hours in future), and
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Nhdec is the number feature maps produced in the last ConvLSTM
in the decoder. The decoder is then followed by a 2D convolutional
layer with 1 × 1 kernel size and ReLU activation function and out-
puts 4D tensor of dimension

(
Nout ,Nx ,Ny ,Npout

)
, where Npout

is the number of pollutant to forecast (in our case Npout = 1). The
model is optimized using mean squared error and Adam optimizer
with a learning rate of 0.001. The model was evaluated on observed
data from March, June, September and December of the year 2018
and trained on the remaining eight-month data for 100 epochs with
a batch size of 16.

4.4 Extracting feature importance
Ourmodel interpretation method is mainly based on first-derivative
saliency [29]. We calculate the saliency score for individual units
and aggregate across spatial locations or the specific timestamp to
derive the spatial feature contribution or temporal feature contri-
bution. Below we discuss the implementation details of the model
interpretation method.

4.5 First-Derivative Saliency
Generally, the input is denoted as I , and the output of an ML model
M is denoted asM(I ). According to the first-order Taylor expansion,
we can approximate the model’s output with a linear function of
the input

M(I ) ≈ w(I )T I + b . (1)

where w and b are the weights and bias, respectively. Since we
are using the first-order Taylor expansion, the value ofw(I ) is the
first-order derivative with respect to the model’s output

w(I ) =
∂ (M)

∂I

����
I
. (2)

Such derivatives can measure how sensitive the input unit is to the
final forecast results [29]. We can use the derivative’s absolute value
to indicate the importance of this input unit to the final forecast,
which is the saliency score S(I )

S(I ) = |w(I )|. (3)

4.6 Spatial and Temporal Feature Importance
Based on the definition of first-derivative saliency, we further define
the spatial and temporal feature contribution as follows.

In our case, let’s denote the input data as I = {I1, I2, , ..., Itin }
where tin denotes the input time period. For a given timestamp,
the forecast is a 2D tensor with a dimension ofW ∗ H , whereW
and H denote the width and height of the 2D tensor, respectively.

Considering M(tout ,x,y)(Itin ) as the output of the model, (i.e.,
forecast instance, at a timestamp tout on a location (x ,y) in the 2D
tensor), we can calculate the saliency score S(x,y)t (Itin ) using first-
derivative saliency which is also considered as the spatial feature
contribution

S
(x,y)
t (I ) =

�������
∂
(
M(tout ,x,y)

)
∂Itin

�������
I

. (4)

For temporal feature contribution calculation at a specific times-
tamp t , we simply consider the sum of the saliency score for all (x ,y)
locations at this timestamp as the temporal feature importance St (I )

St (I ) =
∑

1≤x ≤W ,1≤y≤H
S
(x,y)
t (I ). (5)

5 AQX
In this section, we introduce AQX, a visual analytic system that
explains air quality forecast for verifying domain knowledge.

Figure 4: AQX includes the preprocessing, analysis, visual-
ization, and interaction modules.

5.1 System Overview
AQX comprises of four modules, namely: (1) Preprocessing; (2)
Analysis; (3) Visualization; and (4) Interaction as shown in Figure 4.
The preprocessing module interpolates the air pollutant and me-
teorological data for the entire Hong Kong region from the data
collected at the monitoring station. The analysis module incorpo-
rates two main parts: the ML model part (ConvLSTM architecture)
for forecasting the air pollutant, and the feature contribution ex-
traction part calculated using the first derivative gradient method.
The visualization module visualizes the feature contribution at var-
ious levels of aggregation and as well as includes visualization of
performance information of the models and raw wind trajectories.
In addition, the interaction module supports exploratory analysis
with rich interactions.

The visualizationmodule consists of fivemain views: (1)Overview
displays the overall feature contribution at Temporal (Days and
Hours) and Spatial dimensions; (2) Performance View shows the per-
formance of ML model and traditional simulation model in terms
of IOA (index of Agreement) values calculated at monitoring sta-
tions and Spatial Maps showing the spatial pattern and consistency
of the forecast; (3) Raw data View presents an animation of wind
trajectories, (i.e., wind movement along with speed and direction,
for the input time period) (4) Feature Contribution View shows the
instance level overall input feature’s contribution in temporal di-
mension; and finally (5) Spatio-Temporal Contribution View displays
the instance level input feature’s contribution at both spatial and
temporal dimensions.

5.2 Overview
Overview (Figure 1(A)) displays the overall feature contribution at
different temporal and spatial resolutions. The feature contribution
information is aggregated and presented as Daywise (Figure 1(a1)),
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Hourwise (Figure 1(a2)), and Locationwise (Figure 1(a3)) feature
contributions. The Overview has filters to select the target pollutant
and feature to analyse which are the inputs to the visualization
system. The system uses different colors to encode the input features
(NO2, PM25, O3, SO2, PM10, Wind-North, Wind-South, Wind-East,
Wind-West) and use gradient of the respective colors to denote the
feature contribution value. For example, a darker color gradient
represents a higher feature contribution value and a lighter color
gradient denotes a lower feature contribution value.

Daywise Overview (Figure 1(a1)) part uses bar chart to present
the contribution of the selected feature for every day in a year. The
view aids the domain experts in understanding the contribution of
different features for the forecast of target air pollutant on differ-
ent days over the year. Here the x-axis denotes days of the year,
and the y-axis denotes feature contribution value. The users can
interact with the bars by clicking on them to select a day of inter-
est to explore further. A tooltip appears with the date and feature
contribution information as the user hovers over the bars.

Hourwise Overview (Figure 1(a2)) This view helps the domain
experts in understanding the contribution of the selected feature for
the forecast of target pollutant throughout the day (for 24 hours),
using a circular barplot, after the user selects a date of interest from
theDaywise Overview chart. This chart provides interaction to select
a particular hour of interest by clicking on the bar. A tooltip appears
on hovering over these bars, showing the feature contribution
information. The bar’s color denotes the selected feature, and the
gradient of the color represents the feature contribution value. For
example, a darker gradient represents a higher feature contribution
value, while a lighter gradient denotes a lower value. Barchart was
considered as an alternate design for this view. However, utilizing
a bar chart to present the feature contribution for 24 hour will
be difficult due to space constraints. Moreover, a circular barplot
resembles a clock. Hence, we chose the circular bar plot for this
view.

Locationwise Overview (Figure 1(a3)) presents the contribu-
tion of the selected features in different spatial locations for the
selected date and hour using a heatmap overlaid on top of the
Hong Kong map. Based on the suggestions from domain experts,
we selected grid cells having monitoring stations as representative
locations to calculate feature contribution as they have the ground
truth data to evaluate the ML model. The color of the heatmap
denotes the selected feature, and the gradient of the color denotes
the value of feature contribution. The users can select a particular
location of interest by clicking on any grid cells on the heatmap.

5.3 Performance View
Performance View (Figure 1(B)) aims to show the performance of
the ML model for the selected pollutant and timestamp and further
facilitate comparing it with the traditional simulation (baseline)
model. The model’s performances are presented in terms of IOA
(Index of Agreement) values, which measures the accuracy of fore-
cast on the monitoring stations, and Spatial map, which showcases
the model’s ability to capture spatial patterns. The mean IOA line
chart (Figure 1(b1)) presents the IOA values of ML and simulation
models, averaged over all sixteen monitoring stations, for the fore-
cast time period. The x-axis represents the forecast period, and the

y-axis represents the mean IOA values. The lines are encoded as
solid and dashed to represent the ML and simulation models. A
tooltip appears on hovering over the lines, displaying the ML and
simulation model’s mean IOA value for the corresponding future
hour. The spatial map (Figure 1(b2)) shows the pollutant concen-
tration forecasted by ML and simulation model using two heat
maps overlaid on top of Hong Kong geographical map, respectively.
The heatmap helps to understand the spatial pattern of the fore-
casted pollutant. The color gradient denotes the concentration of
the pollutant. For example, a darker gradient represents a higher
concentration, and a lighter gradient represents a lower concen-
tration. Tooltip appears on hovering over the heatmaps to display
information like the grid number and pollutant concentration of
the corresponding grid. This view also incorporates a legend on
top, which helps the users understand the visual encodings.

5.4 Raw data View
Raw data View (Figure 1(C)) visualizes the animation of wind tra-
jectories for the input time period. This view can be seen when the
user clicks on the Spatial Map button present in the Performance
View. This view has two heatmaps overlaid on top of the Hong
Kong map, placed side-by-side. The left one shows the ML model’s
forecast for the selected pollutant and timestamp. The right one
shows the movement of wind trajectories overlaid on the top of
heatmap of the target pollutant for the input period from input
hour 12 to input hour 1 using animation. The wind trajectories are
represented using blue lines with arrow marks at the end, which
indicate wind directions, and the lengths of the lines denote the
wind speed. We used the pathline tracing method [21], which is a
type of flow visual, to extract the trajectories from the wind vector
data as it helps in making invisible flow patterns of wind visible. We
adopted animation over static visualization since wind is a highly
dynamic feature and moves in space and time simultaneously. Visu-
alizing wind trajectories overlaid on top of pollutant concentration
heatmap using animation can help in better understanding of how
wind moves pollutants from one place to another.

5.5 Feature Contribution View
Feature Contribution View (Figure 1(D)) visualizes the overall con-
tribution values of the input features aggregated across all spatial
locations for the input time period for the selected instance using a
bar chart. After domain experts select an instance of interest in the
Overview, they can use the Feature Contribution View to understand
what are the highly contributing features for this instance’s fore-
cast. The color and x-axis of the bar chart represent different input
features, as seen in the Overview. The y-axis denotes the Feature
contribution value.

5.6 Spatio-Temporal Contribution View
Spatio-Temporal Contribution View (Figure 1(E)) aims to provide the
contribution of features in spatial and temporal dimension. This
view helps to understand the contribution of features from different
spatial locations of the input time period towards the forecast for
the selected instance. This view uses 12 heatmaps overlaid on top of
the Hong Kong maps showing the feature importance with a color
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gradient for the past 12 input hours. The color of the grid cells rep-
resents the selected feature, and the gradient represents the feature
contribution of the spatial location. For example, a darker gradient
denotes a higher feature contribution, while a lighter gradient de-
notes a lower contribution. The heatmaps in the Spatio-Temporal
View zoom to the target grid location, highlighted via a red cross, to
reveal fine-grained spatial contribution information. On hovering
over the grid cells, a tooltip appears showing information about
grid index and feature contribution value of the grid. Since usually,
grid locations from near past hours have higher contribution values
than the later past hours, we show the past hour 1, 2, 3, 4, and 5
in the main view, and further scrolling down the Spatio-Temporal
View reveals the heatmaps of later timestamps from past hour 6 to
past hour 12.

6 EVALUATION
In this section, we demonstrate two case studies and expert in-
terview with two domain experts to show the effectiveness and
usefulness of AQX in verifying domain knowledge.

6.1 Case Studies
This section describes the case studies observed by two domain
experts (E1, E2). Both E1 and E2 participated in the formative study
and were involved in the iterative design process, and hence they
are familiar with the system. E1 used the system to verify whether
the ML model’s learning (feature contribution information) is con-
sistent with their domain knowledge. And E2 used the system to
analyze and understand the behavior of the ML model during ex-
treme weather conditions and enrich his knowledge.

Case1: Verifying the domain knowledge Firstly, we, along
with E1, summarised and categorized the following key domain
knowledge that needs to be verified based on the information col-
lected during the formative study.
D1: Wind.

• D1(a): Easterly winds have high contribution on air quality
during the summer months.

• D1(b):Wind has high contribution on air quality in places
near sea or open area and less contribution in places near
city center.

D2: Pollutants.

• D2(a): Among PM pollutants (PM10, PM2.5) and O3, strong
correlations can be observed (i.e.) the PM pollutants and O3
can contribute to each other’s concentration.

D3: Spatial and Temporal dimension.

• D3(a): The concentration of pollutants at a particular time
and place exhibits spatial and temporal dependencies (i.e.)
features from the nearest previous timestamps and the near-
est locations have a higher contribution towards the concen-
tration of pollutants at the current location and timestamp.

E1 started the verification process with the Overview (Figure
1(A)); he selected O3 as the target pollutant using the drop-down
menu (Target Pollutant) in the Overview as shown in Figure 1(A). E1
chose O3 since it is a highly toxic pollutant when present at ground

level and is often analyzed with much importance4. E1 then ana-
lyzed the contribution of each features one by one in the Daywise
Overview Figure 1(a1) of Overview part Figure 1(A) (R1). He noticed
that Wind-East has a relatively higher feature contribution during
May which is a summer month in Hong Kong. This observation
verifies the domain knowledge about wind during summer (D1(a)).
While further analyzing, E1 noticed from theDaywise Overview that
during a particular day in May (2018-05-11), the feature contribu-
tion ofWind-East was high as shown in Figure 1(a1). He selected the
day of interest from the Bar chart in Daywise Overview to explore
its feature contribution in Hourwise Overview ((R7)) Guided by the
visual cue (color and height of the circular bar plot), E1 further
narrowed down to a particular hour (05:00:00) which had a darker
color gradient and higher bar height, as highlighted in Figure 1(a2).
He later found that the wind speed at 2018-05-11 05:00:00 HKT was
40-50 km/hr, which is a strong wind, and the Hong Kong observa-
tory issued Typhoon signal-3 warning for the selected timestamp
(2018-05-11 05:00:00 HKT). From the Locationwise Overview as seen
in Figure 1(a3), E1 observed that the color gradient of Wind-East
feature has a relatively darker shade on open areas indicating higher
contribution than in the city center (R1). This verifies the second
domain knowledge about wind as in D1(b). Before analyzing the
instance-level information, E1 went to the Performance View (Fig-
ure 1(B)) to check and compare the performance of the ML model
and CMAQ model (R2, R3) for the selected timestamp (2018-05-11
05:00:00 HKT). From the Mean IOA view as shown in Figure 1(b1),
E1 saw that the IOA values calculated at the monitoring stations for
the results generated by the ML model are higher than that of the
CMAQ model. E1 understood that the ML model performs better in
forecasting at the monitoring stations than CMAQ model. Having
known the performance of the models on monitoring stations, E1
analyzed the capability of the models in capturing the spatial pat-
tern in the Spatial Map view as seen in Figure 1(b2). He understood
that the CMAQmodel and ML model have different results in terms
of spatial patterns as shown in Figure 1(b2). This is because of the
difference in input given to these models. CMAQ (traditional simu-
lation model) takes input like geographical features, elevation data,
traffic data, etc. on the other hand ML model takes only the data
from the monitoring stations as the input. Further, based on his
domain knowledge about O3, E1 mentioned that the CMAQmodel’s
spatial map is more acceptable than the ML model’s as O3 is a small
scale pollutant and its concentration has abrupt spatial changes,
which can be observed from the changes in color intensities of
the spatial map as seen in 1(b2) CMAQ spatial map. In conclusion,
from the Performance View, E1 was able to get a high-level under-
standing of what the ML model can and cannot learn from the ST
(i.e.) air quality data. Upon selecting a location near the sea in the
Hong Kong map from Locationwise Overview 1(a3), E1 analyzed the
instance-level contribution information. From the Feature Contri-
bution View E1 observed that Wind-East has a higher contribution
for the selected instance (Timestamp and grid location). He also
noticed that apart from O3 pollutant, PM pollutants (PM10, PM25)
had relatively high contribution for O3 forecast as seen in Figure
1(D) (R4). This observation verifies the domain knowledge about
the correlation that exists among pollutants (D2(a)). E1 moved to

4https://www.epa.gov/ground-level-ozone-pollution

https://www.epa.gov/ground-level-ozone-pollution
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the Spatio-Temporal Contribution View (Figure 1(E)) to observe how
features from spatial and temporal dimensions contribute to the
final forecast for the selected instance (R5). From the Figure 1(E), he
observed that features from near input past hours like Past Hours 1,
2, 3 have high feature contribution value as noted from the higher
color gradient of neighboring grid cells surrounding the target grid
cell indicated by the red cross sign. This observation validates the
domain knowledge about the spatial and temporal attributes of the
features (D3(a)). Finally, E1 used Raw Data View (Figure 1(C)) to
check the raw wind trajectories for the input time period (2018-05-
11 05:00:00 HKT) (R6). After viewing the animation, E1 noted that
the wind was blowing from the east direction for the input time
period. He also further noticed from Spatio-Temporal Contribution
View as seen in 1(D) that the contribution of features from grid
cells located in east direction has darker color gradient indicating
high feature contribution which is aligned with the wind trajectory.
E1 stated that the above observation made the feature contribu-
tion information shown in other views are more reasonable and
acceptable. Through this case study E1 used AQX to verify some
key domain knowledge.

Figure 5: ML model’s learning during extreme weather con-
ditions. Daywise (a1), Hourwise (a2), and Locationwise (a3)
feature contributions of the selected pollutant. Performance
View showing Mean_IOA (b1) and Spatial Map (b2) of ML
and simulation model. Raw data View (c) showing wind tra-
jectories. Feature Contribution View (d) showing the over-
all feature importance of the selected instance, and Spatio-
Temporal Contribution View (e) showing the grid level con-
tribution.

Case 2: Exploring theMLbehavior during extremeweather
conditions E2 was very interested in analyzing and understand-
ing how the ML model learns from the data and makes forecasts
during extreme weather conditions since the simulation model’s
forecasts are not-so-good during this period. In 2018, Hong Kong
encountered a super typhoon from 15th September 2018 to 17th
September 2018 and E2 wanted to analyze timestamp from this
particular time period. E2 selected O3 as the target pollutant from
the drop-down menu in the Overview (Figure 5(A)) to analyse and
understand further.

E2 started analyzing the contribution of features for O3 forecast
one-by-one using the filter in the Daywise Overview (Figure 5(a1))
(R1) for September month for the target pollutant. He found that
Wind-East had a higher contribution than other features especially
wind from other directions during September. Particularly on 12-16
September 2018, during which hurricane struck Hong Kong. Since

the HK government issued a warning signal 10 (Highest warning
signal) on 16th September 2018, E2 selected the corresponding bar
to explore further (R7). In the Hourwise Overview chart based on
darker shade and the height of the bar as shown in Figure 5(a2), E2
picked second hour of the day as a point of interest as Wind-East
has high contribution value at this particular hour. During this
particular hour of the day, the wind speed was 144km/hr. E2 then
wanted to analyze the performance of the ML and CMAQ model
(R2, R3) during this extreme weather condition by checking the
IOA chart as shown in Figure 5(b2). He noted that IOA values on
monitoring stations for CMAQwas low and ML model was high. E2
stated that he expected the CMAQ to have low performance but was
surprised to note the performance of the ML model. E2 checked the
Spatial map (Figure 5(b2)) , to analyze the performance of themodels
in terms of capturing spatial patterns. From observing Figure 5(b2),
E2 mentioned that CMAQ model’s forecast has acceptable spatial
patterns than the ML model as CMAQ’s spatial map has rapid
changes in color gradients in the grid cells which correlates with
behaviour of O3 pollutant. After examining the Performance view
(Figure 5(B)), E2 selected a location in the center of the city from the
Locationwise Overview (Figure 5(a3)) to understand its instance-level
feature contribution. From the Feature Contribution view Figure 5(d)
, E2 noticed that thewind from the east has high importance. Further
observing the spatiotemporal importance of the input features in
Figure 5(E), E2 noticed that grid locations from past hours 1 and 2
has relatively high importance than the later past hours (R5). The
above observation indicates that sudden changes in wind speed and
directions has happened during these nearby timestamps. So, E2
moved to the Raw data View (Figure 5) to check the wind trajectory
animation and validate the contribution information shown (R6).
E2 observed that wind indeed moved from the east to the west for
the input time period during which its direction changes rapidly,
as seen in Figure 5(C). Through this case, E2 understood how the
ML model behaves during extreme weather and the information
captured by it. E2 concluded that the ML model was able to capture
the sudden change of the pollutant in extreme weather conditions
better than the CMAQ model. He also said that while in the spatial
dimension, CMAQ maintained a better spatial consistency.

6.2 Expert Interview
For the expert interview, we invited two (E4, E5) domain experts,
who were not involved in the formative study and case studies, to
evaluate the system based on its usability and effectiveness. E4 is a
researcher who predominantly works on modeling regional or local
air quality and is interested in understanding the MLmodel’s behav-
ior on air pollutant datasets, and E5 is also a researcher interested
in XAI for environmental science.

Procedure. The interview was a semi-structured one conducted
with experts separately, each of which lasted for 50 minutes. We
first introduced the objective of the research, the data we used,
and our visualization system (AQX). After this, we presented the
case study found by E1 and E2. Followed by this, we invited the
experts to explore and analyze the functionalities of the system.
Finally, we collected their feedback regarding the visual designs,
interactions, and the overall usability of the system. We summed
up our observations and the experts’ feedback as follows.
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System Usefulness Both the experts mentioned that AQX is a
useful system for verifying domain knowledge. The experts com-
mented that the Overview helps them see the overall pattern and
narrow the analysis to the point of interest. They further stated that
separating the feature contribution and aggregating it in different
levels of temporal and spatial resolution is intuitive. Furthermore,
it aids in verifying domain knowledge that can be observed in
temporal and spatial dimensions separately. However, they also
mentioned that the systemmust include interactions to facilitate the
comparison of different features’ contributions inDaywise Overview.
E4 also mentioned that “It is difficult to remember so much infor-
mation when comparing with the contribution information in other
month.” expressing their difficulty in remembering when compar-
ing contribution information of all months in Daywise Overview.
The experts commented that the Performance View gives them a
high-level understanding of what the model can and cannot learn.
This view helped them quickly understand that even though the
ML model’s forecast accuracy is better than the simulation model
on the monitoring stations, and it fails to capture the pollutant’s
spatial patterns that the simulation model can achieve. Both the
experts stated that the Feature Contribution View is intuitive and
easy to understand. E3 stated that “The bar chart showing the impor-
tance of various features is easy to understand and is indeed a useful
information to visualize.” For the Spatio-Temporal Contribution view,
E4 stated that it is interesting to know how the spatial importance
changes over the input time period and how the grid locations in
the direction of wind have high importance value as shown in the
case study. E5 added that this view helps her understand how the
ML model uses the spatial attribute of the input feature. In terms
of Raw data View, both experts commented that visualizing wind
trajectory to verify the other view’s information is intuitive. E4
stated that “Air pollution forecast is a complex mechanism. It de-
pends on multiple features like physical, chemical and geographical.
However, the wind is regarded as an important feature though we
might not have statistical data to support because of the changes
in climatic condition. So visualizing wind trajectory to support the
feature importance information is cool and intuitive.”

Visual Designs and Interactions. We also collected feedback
regarding various visuals used in the system. Both experts felt
that system navigation is easy to understand and follow. They also
mentioned that the visualizations were elegant and self-explanatory.
E5 said, “the Feature Contribution view is very useful and easy to
understand which feature is more important for the forecast.” The
experts complimented the interactions supported by the system.
E4 appreciated the zoomed display of the target grid location in
the spatial importance view upon selecting the target grid location
in the spatial map view. He further added that “The zoom option
helps me to gain a clear picture of spatial contribution information.”.
However, E5 suggested that the system should incorporate some
visual cues to indicate the available interactions. She stated that “For
the Spatial-Temporal importance view shows the spatial importance
for past 12-hours, the system should indicate that the view is scroll-able
to reveal the spatial importance at later time stamps.”

7 DISCUSSION
In this section, we discussed the social impact of our research, the
limitations of the designs, and the possible future work for the
study.

7.1 Social impact of the research
In this paper, we propose a visual analytics system to aid domain ex-
perts in verifying theMLmodel’s learning with their domain knowl-
edge. Air pollution is critical domain. And forecasting, analysing
andmonitoring air quality is essential for policymaking tomaintain
a healthy environment. If ML models can produce highly accurate
forecasts, then verifying and validating domain knowledge can aid
in establishing appropriate trust in ML solutions or approaches.
Moreover, this can further increase the possibility of adopting ML
solutions to air pollution and other domains instead of adopting
it without understanding or completely ignoring it because of its
black-box nature.

7.2 Limitations and future work
Scalability Some of the views like the Feature Contribution view
might suffer from scalability issues when the number of input
features increases. For example, in the Feature Contribution View,
it might not be easy to visually differentiate features using color
when the number of features increases to more than nine.

Visual Cognitive Load The system currently supports the ex-
ploration of the contribution of features one at a time. However,
the domain experts in the expert interview expressed that hav-
ing interactions to facilitate the comparison of the contribution
of multiple features in the Overview might be helpful. This design
requirement can be added to R1 to enhance its usability in future
work. The experts also mentioned that they have to retain a lot of
information in the memory to compare the contribution of a feature
across different months in the Daywise Overview. This increases
the cognitive load in the users.

Limited number of subjects The limited number of domain
experts is due to the availability of experts in air quality field within
our university. However, the experts in the formative study and
final evaluation were deeply involved throughout the process. The
feedback and design requirements derived from the formative study
can hold valid despite the number of subjects involved in the study,
while including more subjects might help in fine-tuning the design
requirements.

Scope of the paper The scope of the study is to develop a visual
analytics XAI tool for experts to verify their knowledge. However,
the study can be further extended to understand whether domain
knowledge verification alleviates the trust in the ML model and
whether it persuades the domain experts to use it in their application
domain through a large-scale qualitative study. Furthermore, the
design requirements and VA system can also be extended to develop
a tool for debugging and improving the performance of the ML
model, where distilling domain-specific knowledge to theMLmodel
can improve its performance.

Generalizability We discuss the generalizability of the design
requirements and the system based on its applicability to other
stakeholders as well as other domains. Other Stakeholders: Our
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study considers domain experts with little-to-no technical back-
ground as the target users. Political leaders from the environmental
bureau with domain knowledge can use the system to understand
the ML model’s behavior and decide whether to use ML models
for policy-making. Domain experts with ML knowledge (Model de-
velopers) can utilize the design requirements and the visualization
system with modifications to understand the ML model’s ability
to learn key domain knowledge and further steer and improve the
model. Medical professional can also utilize the visual system to
understand the behavior of ML models and better use these models
to anticipate and manage the health risks related to poor air quality.
Other Scenarios: AQX can be generalized to domains other than
air quality domain. Precipitation-nowcasting forecasts future rain-
fall over a study area with data collected frommonitoring stations at
regular intervals. This domain uses meteorological data like wind
and satellite images to perform the forecast. In particular, wind
plays a vital role in precipitation nowcasting. Therefore, with some
minor changes in the view, AQX can be adopted for precipitation
nowcasting. Furthermore, a few design requirements and views of
AQX can be used in the aerodynamics domain, where prediction
of pressure field around the aircraft helps to isolate and localize
the source of air acoustics. When an aircraft lands and takes off
from a runway, its interaction with the wind changes the pressure
around the aircraft and produces noise. The domain experts have
critical knowledge about the changes in pressure field depending
on wind speed and its direction, which can be analyzed and verified
using Raw data view, and Spatio-temporal Contribution view. In ad-
dition, AQX is model agnostic and can support feature contribution
explanation for any differentiable ML model.

8 CONCLUSION
In this paper, we formulated the need to explain the ML model’s
learning to domain experts and verify it with their knowledge.
We conducted a formative study and identified that feature con-
tributions towards the final air pollution forecast, along with the
prediction accuracy and raw data information, are essential for the
domain experts to verify their knowledge. We introduced AQX, a
visual analytics system designed to help experts validate and verify
the ML model’s learning with their domain knowledge. We pre-
sented two case studies and expert interviews to demonstrate the
effectiveness and usefulness of the proposed system. The feedback
from the experts states that AQX has helped verify and validate their
knowledge. As a future work, we want to conduct more longitude
studies on improving the tool to build domain experts’ appropriate
trust in ML models and the awareness of the risk.
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A FORMATIVE STUDY:
A.1 Question and Answers
Q1: How to evaluate machine learning model?

• Usually for ST forecasts, especially air quality forecast ac-
curacy is evaluated based on the performance of the model
at the monitoring stations, which is measured in terms of
IOA (Index of Agreement). And the spatial pattern of the
model’s forecast, which can be evaluated from the spatial
consistency and coherence of the spatial map.

• In terms of IOA, a model with an error of 15 percent or
accuracy of above 80 percent is acceptable.

Q1(a): How to evaluate spatial consistency and coherence?

• Spatial coherence/consistency can only be evaluated using
domain knowledge as it is location and feature dependent.
E.g., Temperature is a large-scale feature, and it has the same
value for a large geographical extent. In contrast, air pollu-
tants are small-scale features, and they can have different
values in two different streets located in the same area.

• There are no quantitative metrics to evaluate Spatial coher-
ence and consistency. It can be evaluated with the help of
domain experts by visualizing the spatial map of the model’s
forecast. They can help to verify if it is acceptable or not.
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• But if there is a need for a baseline for comparison, the spatial
map of the CMAQmodel’s forecast can be used. If the spatial
map of the ML model’s forecast is similar to the spatial map
CMAQ model’s forecast, then it can be accepted.

Q2:Why CMAQ is widely accepted?

• Usually, a model is widely accepted depending on the sce-
nario in which the model is being used. There are two tradi-
tional ways to forecast meteorological features like temper-
ature. One way: Give the average of measured recordings
from previous years at a particular timestamp as the forecast
for the same timestamp next year. Second, give the previous
hour or previous minute recorded measurement as the fore-
cast for future timestamp (persistent forecast). These two
methods can be used alternatively depending on the scenario
and the feature we want to forecast. However, CMAQ has
better performance than these two methods for all features,
which is why it is widely accepted.

Q3: What are the most important features in air quality
forecast?

• Air pollutant’s concentration depends on multiple factors
like emission source, emission duration, meteorological con-
dition, location of the monitoring stations, season, time pe-
riod of the day, geographical boundaries, etc.

• All the factors/ features are equally important. If we have to
point out the most important or influential feature, it should
be wind.

• Wind is a critical and highly regarded feature. Even though
we do not have statistically significant data to prove this
claim given the variations in seasons and climatic conditions,
it is a commonly accepted fact that wind is important in
scattering the pollutants and thereby affects the forecasts.

Q3(a): How does wind affect air pollutant concentration?

• Wind’s influence over air pollutants varies between different
seasons and geographical locations.

• In the summer months of May to September, the air quality
is affected by wind from the East as it is the prevailing wind
direction during the summer season.

• In the winter months of November to February, the air qual-
ity is largely affected by wind from the North as it is the
prevailing wind direction during the winter season. These
are some high-level seasonal patterns that can be observed.

• In terms of high-level spatial pattern, the wind has a higher
impact on air quality in open areas (i.e.) places near the sea
than the city center.

Q3(b):Does air pollutants affect concentration of another
air pollutant?

• PM10 and PM2.5 are positively correlated with each other.
PM pollutants and O3 are sometimes negatively correlated
and sometimes positively correlated. So, PM and O3 pollu-
tants can influence each other’s concentration in a given
location and time.

• But PM pollutants are less similar to NO2 and SO2. So, cor-
relation of any kind cannot be observed amongst these pol-
lutants.

• It is because PM10 and PM2.5 are large scales, long term fea-
tures, and NO2, SO2 are local or small-scale features because
of their highly reactive nature.

• NO2, SO2 and O3 doesn’t have any correlation. This is be-
cause NO2 and SO2 are highly reactive and stay in the air
for very short time period, thus they have less contribution
for concentration of pollutants like O3, PM pollutants

Q4: Effect of wind on different pollutants?
• Wind has a similar effect on all the five major air pollutants
(PM10, PM25, O3, SO2, NO2).

• All the five pollutants are microscopic, and PM10 is the
largest among them, but they can still be scattered by the
wind for long distances (a few kilometers). The only differ-
ence is that SO2 and NO2 are highly reactive, so they exist
for a shorter time.

Q5: Any other information about wind?
• As wind flows from one location to another, it might bring
pollutants along with it, and this might increase pollutant’s
concentration in one location and decrease in another loca-
tion.

• Knowing thewindmovement can help understand the source
of pollutants or why there is a sudden change in the air
quality at a given point of time or location.

• And also, wind moves both spatially and temporally. Usually,
air quality in a place will be highly influenced by the wind
from the nearest previous timestamps and flowing from the
nearest spatial location. As wind flowing from farther times-
tamps and farthest location lose its speed as it travels and
might not have a heavy influence.

Q9: What are the influential features other than wind?
• Temperature is another important meteorological feature.
The influence of temperature over air quality can be consid-
ered for analysis depending on the data quality (data should
be reliable, with no missing or erroneous values).

• As temperature increases, the air moves faster, and thereby
the pollutants can get scattered easily.

• Temperature and PM pollutants are positively correlated
features.

• But since the temperature is large-scale (remains same for
entire study area) and long term (remains same for longer
time period) feature and is not as dynamic and fluctuating
as wind. It will be more insightful to understand how wind
influences air pollutants.
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