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Abstract

We present a new hierarchical navigation interface for
level-of-detail selection and rendering of multiresolution
volumetric data. The interface consists of multiple coordi-
nated views based on concepts from information visualiza-
tion as well as scientific visualization literature. With key
features such as brushing and linking, and focus and con-
text, it gives the users full control over the level-of-detail se-
lection when navigating through large multiresolution data
hierarchies. The navigation interface can also be integrated
with traditional level-of-detail selection methods for more
effective visual data exploration. We test the utility and ef-
fectiveness of this hierarchical navigation interface on a
couple of large-scale three-dimensional steady and time-
varying data sets.

1 Introduction

Direct volume rendering has become a standard tech-
nique for visualizing three-dimensional scalar fields from
scientific, medical, and engineering applications. It works
by mapping the scalar data in the volume to optical quan-
tities such as color and opacity, and projecting the volume
to 2D images. While direct volume rendering techniques
using 3D texture mapping hardware can visualize volumes
of moderate sizes at interactive frame rates, the challenge
is to allow interactive data exploration for even larger data
sets. Nowadays, a large-scale scientific simulation can pro-
duce terabytes or petabytes of data. The available texture
memory in the state-of-the-art high-end graphics hardware,
however, is limited to only several hundred megabytes. Be-
cause of this great disparity, developing visualization sys-
tems that can scale adequately is non-trivial. A viable solu-
tion to address this problem is to reduce the amount of data
being rendered. As visualizing large data sets is usually an
iterative and exploratory process, the user often follows the
“Information Seeking Mantra” - overview first, zoom and

filter, and then details-on-demand stated by Shneiderman
[27]. To give the user a quick overview of the data, it is
useful to first render the data at a lower resolution. As the
user navigates through the data and requests further details
in local regions of interest, different portions of the data are
then retrieved and rendered at their higher resolutions.

Traditionally, the selection of data resolution, or level-
of-detail (LOD), is defined automatically by various user-
specified parameters, such as the tolerance of errors based
on certain metrics, the viewing parameters, or a direct pick-
ing of levels from the hierarchy. This automatic selection
may be sufficient and preferred in some cases since the
need for human interaction is minimal. However, to ob-
tain “insight” into a large amount of data, sometimes it is
necessary to allow direct user control for local LOD adjust-
ments. For example, when the user is interacting with data
at a particular LOD, he/she might want to know whether
there are any features in the data that have not been revealed
yet. When the user is trying to identify features of different
scales, he/she may decide to inspect several data resolutions
in sequence for blocks from particular local regions. This
requires the selection of those blocks at particular levels in
the data hierarchy, and adjustment of their resolutions all
together. The user should also be able to check the error
values of those blocks, and make LOD adjustments only for
these blocks, keeping the resolutions of all the other blocks
intact. Essentially, rather than completely relying on au-
tomatic LOD selections based on global metrics, LOD se-
lection should be done in a more flexible manner: setting
different error tolerance ranges for different regions and al-
lowing local adjustments directly controlled by the user. To
achieve this, there is a need to provide the user with suffi-
cient information about the data hierarchy and also effective
interaction tools.

Although researchers previously have proposed vari-
ous techniques for LOD selection and rendering of large
data sets, fewer studies focused on providing a graphical
user interface (GUI) that helps the user obtain an effective
overview of the various properties related to the multires-



olution data hierarchy, access information of interest, pin-
point the target regions, and make efficient LOD selection
and rendering. In this paper, our main focus is to develop
such a GUI for effective navigation through the data hier-
archy for LOD multiresolution volume rendering. The goal
is not to replace the traditional LOD selection methods nor
the construction and compression of a multiresolution hier-
archy for a large data set, but to work together with them in
terms of presenting the data hierarchy in some visual forms,
allowing the user to glean insight into the data and make the
LOD selection by direct interaction. To achieve the goal,
we present a hierarchical navigation interface for LOD mul-
tiresolution volume rendering of large data sets. The inter-
face consists of multiple coordinated views: the overview
map and the treemap with a focus on visualizing hierarchi-
cal information, and the rendering window that presents the
scientific visualization results. The interface supports inter-
active and flexible navigation through the multiresolution
data hierarchy and gives the user full control over the LOD
selection by providing key features such as brushing and
linking, and focus and context. To demonstrate the effec-
tiveness of the navigation interface, a couple of large three-
dimensional steady and time-varying data sets from scien-
tific simulations are used for illustration throughout the pa-
per.

The remainder of the paper is structured as follows. First,
we review related work in Section 2. In Section 3, we
briefly introduce the multiresolution data representations
that we use for large three-dimensional steady and time-
varying data sets. In Section 4, we describe the hierarchical
navigation interface for LOD selection and rendering in de-
tail. The results of our work have been folded into Section 4
via images and supplementary video clips 1. The paper is
concluded in Section 5 with possible future work of our re-
search.

2 Related Work

This section presents a brief overview of related work in
the areas of multiresolution data representation, hierarchi-
cal data exploration, and level-of-detail selection for vol-
ume rendering.

Multiresolution Data Representation: Having the ca-
pability to visualize data at different resolutions allows the
user to identify features in different scales, and to balance
image quality and computation speed. Along this direc-
tion, a number of techniques have been introduced to pro-
vide hierarchical data representations for three-dimensional

1We would like to make special note that the reader should view
this document electronically, or printed in color. The images show-
ing the hierarchical navigation interface heavily rely on colors for the
interpretation. Additionally, some video clips (http://www.cse.ohio-
state.edu/∼wangcha/research/ws-iv05.zip) have been made as the supple-
mentary material to show the usage of this interface.

volumetric data. Examples include the Laplacian Pyramid
[2, 8], octree-based hierarchies [17, 1]) and time-varying
data hierarchies [5, 25, 4].

Wavelets are used to represent functions hierarchically,
and have gained much popularity in several areas of com-
puter graphics [29]. Muraki first proposed the idea of using
wavelet transforms for volumetric data [21, 22]. Over the
past decade, many wavelet-based techniques have been de-
veloped to compress, manage and render three-dimensional
steady [35, 11, 15, 24, 10] and time-varying volumetric data
[36, 9, 28, 19, 34]. They are also used to support fast access
and interactive rendering of data at run time.

Hierarchical Data Exploration: There has been abun-
dant research in finding effective ways to visualize and ex-
plore hierarchical information, such as treemaps [13, 26],
cushion treemaps [31], cone trees [23], reconfigurable disc
trees [12], botanical trees [16], and beamtrees [30]. Inter-
action and distortion techniques that support visual data ex-
ploration include dynamic projection, interactive filtering,
zooming, distortion, brushing and linking [14]. Brushing
has been used as a method for selecting subsets of data in
computer graphics for quite a long time. Brushing tech-
niques can be classified as screen space, data space, and
structure space techniques, and brush manipulation can be
direct or indirect [6, 7].

Level-of-Detail Selection for Volume Rendering: The
extraction of varying levels of detail from a multiresolution
data hierarchy can be decided automatically given the user-
specified parameters. For example, the users can simply
specify a particular level in the hierarchy to visualize, or
decide the LOD based on the viewing parameters [17, 18].
Or, they can specify different error tolerances [25, 4, 19, 33,
34] to traverse the hierarchy, which take into account the
data distortion or variation. The error tolerances can also be
modulated by the viewing parameters [1, 10]. In this paper,
we introduce a hierarchical navigation interface that works
well with traditional LOD selection methods, enhances the
visual data exploration, and facilitates the interactive LOD
multiresolution volume rendering of large data sets.

3 Multiresolution Data Hierarchies

In this section, we briefly describe how we build mul-
tiresolution data hierarchies for large three-dimensional
steady and time-varying data sets, using the wavelet tree and
the wavelet-based time-space partitioning tree respectively.

3.1 The Wavelet Tree

To build a multiresolution data hierarchy from a large 3D
data set, we use wavelet transforms to convert the data into
hierarchical multiresolution representation, called a wavelet
tree [10]. The wavelet tree construction algorithm starts
with subdividing the original three-dimensional volume into



a sequence of blocks of the same size (assuming each has
n voxels). These raw volume blocks form the leaf nodes of
the wavelet tree. After performing a 3D wavelet transform
to each block, a low-pass filtered subblock of size n/8 and
wavelet coefficients of size 7n/8 are produced. The low-
pass filtered subblocks from eight adjacent leaf nodes in the
wavelet tree are grouped into a single block of n voxels,
which becomes the low resolution data block stored in the
parent node. We recursively apply this 3D wavelet trans-
form and subblock grouping process in a bottom-up man-
ner till the root of the tree is reached, where a single block
of size n is used to represent the entire volume. To reduce
the size of the coefficients stored in the wavelet tree, the
wavelet coefficients in each tree node will be set to zero
if they are smaller than a user-specified threshold. These
wavelet coefficients are then compressed using run-length
encoding combined with a fixed Huffman encoder [10].

Coupled with the construction of the wavelet tree, a hi-
erarchical error metric [33] is used to calculate the approx-
imation error for each of the tree nodes. The calculation
considers the mean square error (MSE) between the data
in a parent node and the data in its eight immediate child
nodes, adding the maximum error value of the child nodes.
The error metric can be rapidly computed, and also guar-
antees that the error value of a parent node will be greater
than or equal to those of its eight child nodes. This hier-
archical error metric is useful for controlling the tradeoff
between the image quality and the rendering speed when
we perform the wavelet tree traversal and multiresolution
volume rendering at run time.

3.2 The Wavelet-Based Time-Space Partitioning
Tree

Originating from the time-space partitioning (TSP) tree
[25], the wavelet-based time-space partitioning (WTSP)
tree [34, 32] is a space-time hierarchical data structure used
to organize multiresolution time-varying volume data. To
construct the WTSP tree, a blockwise two-stage wavelet
transform and compression process is performed. The first
stage is to build a spatial hierarchy in the form of an oc-
tree (similar to a wavelet tree) for each time step, where
each node in the tree represents a subvolume with a certain
spatial resolution at that particular time step. In the sec-
ond stage, for the nodes that have the same spatial location
and resolution in all the octrees, we perform 1D wavelet
transforms along the time dimension on their wavelet co-
efficients to create the temporal hierarchy. Using Haar
wavelets, this will produce a binary time tree similar to
the error tree algorithm described in [20]. As a result, the
1D wavelet transform process merges all the spatial octrees
across time into a single unified spatio-temporal hierarchi-
cal data structure. In essence, the WTSP tree is an octree
(spatial hierarchy) of binary trees (temporal hierarchy), as

illustrated in Figure 1. There is only one octree skeleton,
and at each octree node, there is a binary time tree. Each
time tree spans the entire time sequence and combines data
from multiple octrees. Similar to how we compute the hi-
erarchical error metric for the wavelet tree, a hierarchical
spatial and temporal error metric [34] is used to calculate
the approximation spatial and temporal errors for each of
the time tree nodes. At run time, the user specifies separate
spatial and temporal error tolerances to select data blocks
with various spatio-temporal resolutions for the rendering.

Figure 1. The WTSP tree hierarchical structure. In this
figure, the time-varying data has four time steps.

The three-dimensional steady and time-varying data sets
used for illustration in the following section are listed in
Table 1. To build the multiresolution hierarchies, we con-
sidered one voxel overlapping boundaries between neigh-
boring blocks in each dimension when loading the volume
data in order to produce correct rendering results.

4 Hierarchical Navigation Interface for LOD
Selection and Rendering

In this section, we first introduce our hierarchical navi-
gation interface, then describe in detail the key features and
main interactions that support the LOD selection and ren-
dering of large data sets. The interface is shown in Fig-
ure 2. It consists of three main interactive components: the
rendering window, the overview map, and the treemap.

4.1 The Rendering Window

The rendering window shows the ultimate volume ren-
dering result. The user can toggle between the rendering of
the wireframe and the actual volume, or show both to better
illustrate the spatial locations and sizes of the subvolumes
corresponding to the wavelet tree nodes in the current LOD,
as shown in Figure 2 (a).

4.2 The Overview Map

The overview map is a conceptual drawing illustrating
the hierarchical wavelet tree structure, the error distribution
among all the tree nodes, and the current selections of LOD,
as shown in Figure 2 (b). The purpose of the overview map



data (type) RMI (byte) PLUME (float) SPOT (float)
range (threshold) [0, 255] (0) [0.0, 21.307] (0.001) [0.0, 10.109] (0.001)

volume dimension 2048 × 2048 × 1920 504 × 504 × 2048 512 × 512 × 256 × 30
block dimension 128 × 128 × 64 32 × 32 × 128 64 × 64 × 32

wavelet transform Haar with lifting Daubechies 4 Daubechies 4 (space) + Haar (time)

Table 1. The three-dimensional steady and time-varying data sets used for illustration.

Figure 2. The hierarchical navigation interface illustrated with the RMI data set. (a) The rendering window shows the volume
rendering result with subvolume boundaries drawn. (b) The overview map illustrates the tree hierarchy, the error distribution among
tree nodes, and the current LOD as a cut through the hierarchy. (c) The treemap shows the nodes in the current LOD in an uncluttered
view which helps the user pinpoint the target regions. (d) The control panel of the interface. The nodes selected in the current LOD
are highlighted with red boundaries, red squares, and white crosses in the rendering window, the overview map, and the treemap
respectively.

is to inform the user about the errors involved with the cur-
rent LOD being rendered, and the overall error distribution.
It also serves as a starting point for the user to perform local
LOD adjustments. Similar to the structure-based brushing
interface [6, 7], to show the wavelet tree structure, we first
draw an equilateral triangle frame with the apex of the tri-
angle representing the root of the wavelet tree and the base
representing all the leaves of the tree. Next, we draw equal-
distance horizontal line segments in the triangle frame to
depict different intermediate tree levels. Each node in the

wavelet tree is mapped to a point on the horizontal line seg-
ment of its corresponding level. All the nodes at the same
tree level are arranged equidistantly from left to right as
points on its line segment. Note that the node-point map-
ping in the overview map is performed in the data space
and thus is independent of the run-time orientation of the
volume.

To visualize the error value at each node, we fill the tri-
angle frame by filling small triangle fans representing all
the parent-children branches of the wavelet tree. For such a



Figure 3. A “hole” remains in between if we only fill the
two neighboring triangle fans.

triangle fan, one vertex is a parent node while the remaining
eight are its immediate children. The color assigned to each
vertex is determined by the error value of its corresponding
tree node. For example, we could use a rainbow color map
and assign red colors to the ones with high errors and vio-
let colors to the ones with low errors, as shown in Figure 2
(b). The colors in the triangle fan are linearly interpolated.
Besides direct linear mapping from error to color, to better
utilize the colors for the hierarchy with a large error range,
we could first transform the errors into their square root or
logarithmic values and then map the transformed values into
colors linearly. The filling of all these triangle fans would
leave “holes” in the triangle frame. Figure 3 illustrates one
of those holes - the quad with two vertices corresponding
to two neighboring parent nodes (V 1 and V 4) and the re-
maining two, one being the last child (V 2) of a parent node
(V 1), and the other the first child (V 3) of the other parent
node (V 4). Keeping the holes gives the tree hierarchy a
fractal appearance and makes it difficult to observe the er-
ror distribution in the hierarchy. This is addressed by filling
all the quads with linearly interpolated colors of their four
vertices. The color-filled triangle frame gives the user an in-
stant overview of the error distribution in the whole wavelet
tree, which guides him/her in navigating through the hierar-
chy and selecting a proper LOD for the rendering.

The current LOD is highlighted as a cut through the tri-
angle frame, with each node along the cut drawn as a small
square indicating its corresponding point location. The con-
nections of the points follow the same order, as those nodes
would appear in the depth-first-search (DFS) order. Figure 2
(b) shows such a cut.

4.3 The Treemap

The treemap [13, 26] is a space-filling method for pre-
senting hierarchical information. It is formed by recur-
sively subdividing a given display area based on the hierar-
chical structure, alternating between vertical and horizontal
subdivisions, and presenting individual node’s information
through visual attributes such as the color and the size of
the bounding rectangle. The treemap is utilized here to dis-
play the nodes’ information in the current LOD in an un-
cluttered way, and help the user pinpoint the target regions
to adjust the LOD, which will be explained in Section 4.4.
Remember in the overview map, all the wavelet tree nodes
are represented as points along the horizontal line segments

within the triangle frame. As we go down the tree hierarchy,
tree nodes quickly clutter together and go beyond sub-pixel
resolutions within increasingly limited display areas. This
would undoubtedly hinder the user from selecting desired
nodes and making effective LOD decisions. We notice that
only the nodes in the current LOD are the active nodes for
further LOD selection and refinement. Therefore, unlike in
the overview map, we only show the current active nodes in
the treemap, as shown in Figure 2 (c). This means that we
have many more pixels in the screen space to represent the
active nodes in the wavelet tree, which makes it much eas-
ier for the user to identify and pick individual subvolumes
for LOD adjustments. The spatial arrangement for such an
active node is deduced from its corresponding tree level and
the ordinal among its siblings. Its error is color-coded and
its level is size-coded in the corresponding rectangular re-
gion in the treemap. Specifying a small error tolerance to
decide the LOD could result in getting nodes with rather
similar error values, which means that the treemap may end
up with showing some indistinguishable colors. In this case,
we can use an alternate error metric, which is the same as
the hierarchical error metric described in Section 3.1, ex-
cept that it does not include the maximum error value of the
child nodes and only shows the difference between the par-
ent and the child nodes. This alternate error-color mapping
may help the user better discern the differences of the errors
between active nodes that belong to the same parent.

4.4 Brushing and Linking

Often we are interested in exploring certain regions of
interest after having an overview of the data. One way to
achieve this is through brushing, which allows the user to
select a subset of data for further operations, such as high-
lighting, deleting, or analysis [6, 7]. In our hierarchical nav-
igation interface, brushing is used to select a subset of nodes
from the current LOD for further operations such as join or
split, which will be described in Section 4.6. Brushing can
be performed in any of the three views and the result of
the selection is highlighted in all views, as shown in Fig-
ure 2. Using brushing and linking, all the three views are
linked together and updated dynamically whenever one of
the views changes. This allows the user to detect corre-
spondences and correlations among the three different vi-
sual representations.

Brushing in the overview map comes in handy when the
user would like to join or split all the nodes at particular
levels in the tree hierarchy. As for brushing in the treemap,
it is advantageous when the user would like to change the
resolutions of the blocks in a local vicinity according to
their corresponding nodes’ error values. Since the sizes
and colors of rectangle regions corresponding to the nodes
in the current LOD are both preattentive features, the user
can readily know where to pick the nodes and perform join



(a) The PLUME data set (b) Brushing using point (c) Brushing using plane (d) Brushing using box

Figure 4. Brush manipulation in the rendering window illustrated with the PLUME data set. (a) A rendering of the data set. (b)
Brushing by specifying a point location (x, y, z) = (400, 448, 1536). (c) Brushing by specifying a cutting plane x = 288. (d)
Brushing by specifying a filtering box where 144 ≤ x ≤ 352, 144 ≤ y ≤ 352, and 576 ≤ z ≤ 1408. The nodes selected are
highlighted with red boundaries.

and/or split operations by examining the treemap. In the
overview map and the treemap, brushing is performed di-
rectly in the 2D views via mouse. From the current LOD,
the user can simply click a node, or specify a rectangular
region to select multiple nodes simultaneously. The selec-
tion result is dynamically linked backward to the rendering
window.

Brushing in the rendering window is useful if the user
wants to directly interact with the data set. When the user
navigates through the data in the rendering window, he/she
may identify certain 3D blocks of interest in the current
LOD, and needs to know which squares in the overview
map and which rectangle regions in the treemap correspond
to those blocks. This requires brushing manipulation in the
rendering window and links the selection result forward to
the other two views. We provide sliders for the user to spec-
ify the brush coverage in the data space as a 1D point, a 2D
plane, or a 3D box, as shown in Figure 4. These brush-
ing tools can help the user identify and pinpoint the target
regions, and make LOD decisions as desired.

Additionally, since the error values of the nodes in the
tree hierarchy are mapped to colors in the overview map
and the treemap, we allow the user to perform brushing by
specifying the brush coverage in the color space. The user
can adjust two sliders provided, both in the range of [0, 1],
and set the minimum and maximum color values for brush-
ing. All the nodes in the current LOD and within the spec-
ified color range (and accordingly, the corresponding error
range) would be selected for further operations. Rather than
giving only a binary-style global error tolerance to deter-
mine the LOD, this brushing manipulation gives the user
another option: selecting nodes from a certain error range
in a fuzzy manner, and changing their resolutions accord-
ingly. This is useful, for example, when the user would like
to reduce the resolutions of some nodes in the current LOD
while not degrading too much the rendered image’s quality.

(a) Color space brushing (b) Join selected nodes

Figure 5. The overview maps with brush manipulation
in the color space, illustrated with the RMI data set. Both
overview maps are zoomed in for better observation. The
two white bars along the color map in (a) indicate the mini-
mum and maximum color values for brushing.

Figure 5 (a) shows such an example, where a brush cov-
erage of 3% of the whole color range is specified and the
nodes within this coverage are selected. These neighboring
nodes that have small error values are then joined into their
parent nodes, as shown in Figure 5 (b).

4.5 Focus and Context

When visualizing large and high-dimensional data sets,
focus and context techniques are usually used to show por-
tions of the data of interest in detail, while the rest of the
data at a lower resolution as a context for orientation [3].
Focus and context techniques are employed in our hierar-
chical navigation interface to better assist the user in the
data exploration and LOD selection process. These tech-
niques include:

Interactive filtering: When the user navigates through
the data hierarchy, the nodes in the current LOD but outside
the viewing frustum would be culled away and not shown



in the rendering window. Accordingly, those nodes are de-
activated from selection, as no squares would be drawn at
their corresponding point locations in the overview map
(although the line segments are still drawn through those
points to show the cut for the context). Similarly, their cor-
responding rectangle regions are filled with grey colors in
the treemap (although they are still drawn to provide the
context). Figure 2 (b) and (c) show this interactive filtering.

Direct Transformation: Direct transformation is pro-
vided for interactivity and examining fine details. Using
the mouse, the user can translate, scale, and rotate the 3D
volume in the rendering window. Similarly, the user can
translate and scale the 2D maps in the overview map and
the treemap.

(a) Without modulation (b) With modulation

Figure 6. The treemaps without (a) and with (b) opacity
modulation illustrated with the RMI data set. Both treemaps
have exactly the same LOD and are zoomed in for bet-
ter comparison. The black rectangle regions correspond to
empty nodes in the wavelet tree.

Opacity Modulation: In the overview map, the user can
instantly observe the error distribution of all the nodes si-
multaneously in the tree hierarchy (although there could be
severe visual cluttering towards the leaf level). However,
in the treemap, only the errors of the nodes in the current
LOD are shown. For the nodes displayed in the treemap,
if the user could know beforehand the errors distribution
among their child nodes, he/she would immediately know
which regions contain more data variation (and thus may
need further refinement), and which regions are more uni-
form within themselves. Thus, the user can perform LOD
decisions in a more informed manner, rather than by ran-
dom picking or exhaustive checks. To provide such a con-
text, we draw in the treemap the current LOD and its next
LOD in two different layers and blend them together in the
treemap. More specifically, for each non-leaf node in the
current LOD, we show the error distribution of its eight im-
mediate children by blending it with the parent node. Rather
than blending the colors of the parent with the colors of its
children, here we use the error values of its children to mod-
ulate the opacity of the parent, as shown in Figure 6 (b).
That is, the eight children use the same (r, g, b) color as

their parent node, while their opacity values are weighted
by their relative errors among its siblings. All the parent
nodes are assigned with the same opacity α, and accord-
ingly, the maximum opacity any child node may receive is
(1 − α), where α ∈ [0, 1]. The opacity assigned to each of
the children is in proportion to its relative error to its sib-
lings. As a result, if a child node has relative large/small
error compared with its siblings, its corresponding subre-
gion would appear more/less opaque. In this way, the user
can observe the error distributions of both the current LOD
and its next LOD simultaneously, which provide additional
hints for LOD selections.

4.6 LOD Selection on The Wavelet Tree

To perform the LOD selection, the user starts with a de-
fault LOD decided by specifying a tree level or an error
tolerance. Then, the user can choose one or multiple nodes
from the current LOD by brushing in any of the three views,
and perform either join or split operations. For multiple se-
lected nodes, they are put into a queue and processed one by
one. A join operation merges a selected node together with
its siblings into its parent node (i.e., selects a lower reso-
lution for the aggregate region of the child nodes), while
a split operation breaks a selected node into its eight child
nodes. Joining the root node would take no effect, and split-
ting a leaf node would take no effect either. Provided with
multiple brushing manipulation and interaction tools, the
user can make efficient LOD selections as desired.

4.7 LOD Selection on The WTSP Tree

To render a time-varying data set with the multiresolu-
tion representation using the WTSP tree, the user starts with
a particular time step. Then he/she specifies an octree level
and a time tree level, or tolerances for both spatial and tem-
poral errors for the rendering. We traverse the WTSP tree
and a sequence of data blocks (each corresponding to a par-
ticular node in its time tree) with different spatio-temporal
resolutions are identified in back-to-front order for the ren-
dering. Similar to the way we represent a wavelet tree node
in the current LOD, we use the information of an octree
node in the current LOD to draw its corresponding block
boundary, square, and rectangle region in the rendering win-
dow, the overview map, and the treemap respectively. To
show the error distribution of the WTSP tree in the overview
map, we use either the spatial error or the temporal error as-
sociated with the root (as a summary error value) of each
time tree in the octree skeleton. Brushing can be performed
in all the three views in the same manner as presented in
Section 4.4.

For the time tree corresponding to an octree node in the
current LOD, the LOD selection only covers the time tree
nodes along the path from the leaf (corresponding to the



(a) The 8th time step (b) Node selection

Figure 7. The treemap for LOD selection on time tree
nodes illustrated with the SPOT data set. (a) A rendering of
the data set at the 8th time step. (b) Portion of the treemap
is zoomed in to show the selected time tree nodes in the cur-
rent LOD, colored with encoded temporal errors and high-
lighted with white crosses.

time step in query) to the root. An example is shown in
Figure 1, where the time-varying data has four time steps
and the third time step is the one in query. In the figure,
the LOD selection on the time tree is to select one node
from the nodes (drawn in black) along the path. To make
the LOD selection, the user starts with selecting a subset of
octree nodes from the current LOD by brushing. For such
a selected octree node, its corresponding rectangle region
is further split equally into smaller ones to display all the
time tree nodes (with one of them pre-selected in the cur-
rent LOD) along the path. The arrangement of a time tree
node along such a path is deduced from its corresponding
level in the time tree. The resulting smaller rectangle re-
gions are filled with colors, encoded with their spatial or
temporal errors, as shown in Figure 7 (b). Then, the user
makes the LOD decision by moving the selected time tree
nodes in the current LOD up or down along their respec-
tive paths. In this way, time tree nodes of different spatial
and temporal resolutions, indicated by different sizes and
relative positions of their respective rectangle regions, can
be selected. For a time-varying data set having a relatively
large number of time steps, to avoid visual cluttering, a slid-
ing window technique is employed to display only a subset
of nodes along the path at a time. The user is allowed to
move the window along the path as needed. For example,
in Figure 7 (b), a window of size three is used while the
depth of each time tree is six.

4.8 Summary

The hierarchical navigation interface provides a platform
for the user to make LOD decisions in an effective and ef-
ficient manner. To explore a large data set, the user starts
with an overview of the data rendered in its lower resolu-
tion. By observing and interacting with the corresponding
overview map and the treemap, the user gets to know how

the error values are distributed in the data hierarchy, how
the current LOD may change in relation to local error range
adjustments, and how the relative error relationship among
parent-child nodes may vary within the current LOD etc.
This insight of the data provides the user with the guidance
as to where to explore and how to proceed with the current
LOD. Equipped with tools and techniques, such as brushing
and linking, and focus and context, the user can easily zoom
and filter the data and quickly identify and pinpoint local
regions of interest. Higher resolutions of the data can be
retrieved and rendered on demand as the user makes LOD
decisions by performing join or split operations on selected
target nodes. As can be seen, this GUI addresses the con-
cerns posted in Section 1 by providing the user with suf-
ficient visual information and interaction tools, which are
not supported and thus could not be achieved by traditional
automatic LOD selection methods.

5 Conclusions and Future Work

We have presented a hierarchical navigation interface for
LOD multiresolution volume rendering of large data sets.
The navigation interface presents the data hierarchy in three
views - the rendering window, the overview map, and the
treemap, which help the user interact with the hierarchy
more directly and thus obtain better insight. With key fea-
tures such as brushing and linking, and focus and context,
this interface supports interactive and flexible navigation
through the multiresolution data hierarchy. Demonstrating
with three-dimensional steady and time-varying data sets
that contain multiple gigabytes, we showed that the inter-
face enhances the visual data exploration and facilitates in-
teractive LOD multiresolution volume rendering of large
data sets. Although illustrated with the wavelet tree and
the WTSP tree, this navigation interface is not limited to
these two structures and the volume rendering algorithms.
It is readily applicable to other multiresolution LOD selec-
tion and rendering applications using different hierarchical
structures and different ways of error measurement. Future
work includes performing user study for this new interac-
tion tool and extending this technique for large multivariate
or multifield data visualization.
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