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ABSTRACT

Effective techniques for organizing and visualizing large image collections are in growing demand as visual

search gets increasingly popular. Targeting an online astronomy archive with thousands of images, we present

our solution for image search and clustering based on the evaluation of image similarity using both visual and

textual information. Time-consuming image similarity computation is accelerated using GPU. To lay out images,

we introduce iMap, a treemap-based representation for visualizing and navigating image search and clustering

results. iMap not only makes effective use of available display area to arrange images but also maintains stable

update when images are inserted or removed during the query. We also develop an embedded visualization that

integrates image tags for in-place search refinement. To show the effectiveness of our approach, we demonstrate

experimental results, compare our iMap layout with a force-directed layout, and conduct a comparative user

study. As a potential tool for astronomy education and outreach, we deploy our iMap to a large tiled display of

nearly 50 million pixels.
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1. INTRODUCTION

With the booming of digital cameras and image archiving and photo sharing websites, browsing and searching

through large online image collections is becoming increasingly popular. An emerging trend is that images are

now often tagged with names, keywords, hyperlinks and so on to improve the search and understanding. In

this paper, we strive for innovation on the organization and interaction aspects of image search rather than the

search algorithm itself. Specifically, we explore how to arrange images in a layout for better viewing and how to

leverage the connection between image and text for better interaction.
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Many existing applications provide overviews of image collections by presenting a set of thumbnail images

arranged in a spreadsheet-like interface. We advocate a more attractive way for image browsing to enable effective

sense-making of large image collections through image ranking and clustering, and intuitive presentation and

interaction. We analyze image content and design measures to evaluate their similarity using both visual and

textual information. We arrange similar images close to each other and leverage a treemap-based representation

to visualize image search and clustering results to facilitate the understanding. This visual means brings several

benefits such as effective screen utilization, occlusion minimization, and stable update. In addition, we develop

an embedded visualization that integrates image tags for in-place search refinement.

We experiment with our approach using the Astronomy Picture of the Day (APOD),1 a popular online

astronomy archive. Everyday APOD features a picture of our universe, along with a brief explanation written by

a professional astronomer. Since its debut in June 1995, APOD has archived thousands of handpicked pictures,

which makes it the largest collection of annotated astronomical images on the Internet. This makes it perfect

for us to include textual information into similarity analysis and interaction design. Our work complements the

state-of-the-art image search and exploration techniques with new interface and interaction that enable effective

sense-making of a large image collection. This interface guides users to sift through the collection and identify

images of interest, a critical need for many applications involving with large image collections.

The paper is organized as follows. We review related work in Section 2. In Sections 3 and 4, we describe the

distance computation between images, and the ranking and clustering of images. In Section 5, we discuss our

iMap layout design and interaction functions. Results are given in Section 6, followed by a comparison of our

iMap layout with a force-directed layout in terms of screen utilization and overlap reduction in Section 7. In

Section 8, we describe the deployment of iMap to a large display wall. A user study that compares iMap with

existing image search functions provided by online APOD is given in Section 9. Finally, we conclude this work

in Section 10.

2. RELATED WORK

2.1 Image Similarity Analysis

Content-based image analysis is at the heart of modern image searching and retrieval. Its primary goal is to

organize digital image archives by their visual content. Image features capture visual properties of an image,

either globally or locally. To extract image features that help perform meaningful classification and retrieval,

researchers have utilized key visual contributions such as color,2–4 texture,3–5 shape,6 salient points,7 and land-

marks.8 Advances have been made in both deriving new features and constructing signatures based on these

features.9 We leverage the color and spectrum information together with the grayscale version of images for

similarity analysis.



2.2 Image Collection Organization

The most common way to organize a large collection of images is based on a two-dimensional grid of thumbnails,

but it enforces a uniform thumbnail aspect ratio. Furthermore, only parts of the dataset can be seen within line of

sight when the image collection is excessively large. Over the years, different new solutions have been proposed to

improve the organization of image collections. Chen et. al.10 leveraged the Pathfinder network scaling technique,

originally developed for the analysis of proximity data in psychology, to organize a collection of images based

on their color labels, texture, shape orientation etc. Torres et al.11 introduced a focus+context approach based

on spiral and concentric rings for exploring query results in an image database. Yang et al.12 developed a

scalable semantic image browser (SIB) based on the semantic content of images. The multidimensional scaling

layout based on semantic similarities was used for image overview and the value and relation layout was used

for content overview. Gomi et al.13 presented clustered album thumbnails (CAT) for hierarchical browsing large

image collections which shows representative images when zooming out and individual images when zooming in.

Brivio et al.14 proposed a dynamic image browsing mechanism in which the arrangement of the thumbnails is

based on weighted anisotropic Voronoi diagrams and Lloyd relaxation. Tan et al.15 designed ImageHive that

generates a summary image from an image collection. A constrained graph layout algorithm was used to preserve

the relationships between images and avoid occluding their salient parts, and a constrained Voronoi tessellation

algorithm was applied to locally refine the layout and tile the image plane.

2.3 Visualization and Presentation Modes

Common visualization schemes for image collections include relevance-ordered (e.g., Google Images), time-ordered

(e.g., the timeline16 and time quilt17), clustered (e.g., the design gallery layout using multidimensional scaling18),

hierarchical (e.g., Google Image Swirl), and composite (the mix of two or more of the preceding forms). In terms

of user presentation, there are three modes: static (i.e., no motion is involved whatsoever), moving (i.e., constant

motion even without interaction), and interactive (i.e., motion triggered only under user interaction). A recent

study has shown that static presentation is better than moving presentation in terms of recognition success and

user preference.19 We design a layout for organizing a large image collection using the composite visualization

scheme and interactive presentation mode.

3. IMAGE DISTANCE MEASURE

Measuring the similarity or distance between two images is central to any image searching or clustering tasks.

Images themselves provide direct cues to visual comparison. Textual information associated with images, when-

ever available, gives additional hints for us to evaluate their similarity or difference. We therefore compare images
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Figure 1. Four images and their respective grayscale frequency spectrum images. All four spectrum images are enhanced

with the same log transform. We can observe that (a) and (b) are most similar, followed by (a) and (e), and (a) and (g).

using their visual and textual information from multiple perspectives and define five partial distances (DG, DF ,

DH , DK , and DL). The overall distance measure is a weighted summation of all the partial distances.

3.1 Visual Distance

Different images in an image collection come with different dimensions, types, and formats. For simplicity, we

convert all resulting images to the same type and format, and scale them down to a fixed resolution (256× 256).

We consider three aspects of images, namely, grayscale image distance, spectrum image distance, and color

histogram distance, for calculating their visual distance. Note that our solution to visual similarity analysis is

by no means ideal. Rather, we seek a cost-effective solution to serve the basic visual search need.

Grayscale Image Distance. Intuitively, the similarity between two images can be evaluated by identifying

their structural similarity. The structural similarity index proposed by Wang et al.20 considers luminance,

contrast, and structure information of the two images. We use the grayscale version of images for this evaluation

and will consider color information separately when computing the color histogram distance. Given two grayscale

images, we take a local 8×8 window, which moves pixel-by-pixel over the entire image, to evaluate their similarity.

For two corresponding image blocks Ba and Bb, we compute their similarity as

SB(Ba, Bb) =
(2µaµb + c1)(2σab + c2)

(µ2
a + µ2

b + c1)(σ2
a + σ2

b + c2)
, (1)

where µa and µb are the means of Ba and Bb respectively, σa and σb are the standard deviations of Ba and Bb

respectively, and σab is the covariance of Ba and Bb. Small constants c1 and c2 are included to avoid instability

when µa, µb, σa, and σb are very close to zero. As suggested by Wang et al.,20 we set c1 = (0.01 × L)2 and

c2 = (0.03 × L)2 where L is the number of levels in the grayscale images. We define the distance between two

grayscale images Ga and Gb as

DG(Ga, Gb) = 1.0 −
1

m

m
∑

i=1

SB(Bai, Bbi), (2)
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Figure 2. iMap with the spiral layout. Left: image search results. Right: hierarchical clustering results.

where m is the total number of image blocks considered and S denotes the normalized similarity value.

Spectrum Image Distance. The power spectrum of an image is a representation of the magnitude of

its various frequency components that has been transformed using the Fourier transform. The power at each

location in the spectrum indicates the frequency and orientation of a particular feature in the image. We use the

grayscale version of the spectrum image after the log transform. In Figure 1, we compare four astronomy images

using their spectrum images to demonstrate the feasibility of analyzing image similarity in terms of complexity.

Given two grayscale frequency spectrum images Fa and Fb, we compute their similarity through evaluating their

block-wise Pearson linear correlation. Again, we take a local 8× 8 window, which moves pixel-by-pixel over the

entire image. For two corresponding image blocks Ba and Bb, we compute their correlation as

PB(Ba, Bb) =
1

n

n
∑

j=1

(

paj − µa

σa

)(

pbj − µb

σb

)

, (3)

where paj and pbj are the j-th pixel values of Ba and Bb respectively, µa and µb are the means of Ba and Bb

respectively, σa and σb are the standard deviations of Ba and Bb respectively, and n is the number of pixels

in the block. With Equation 3, we compute the distance DF (Fa, Fb) similar to Equation 2 where the absolute

correlation values |PB(Bai, Bbi)| are used instead.

Color Histogram Distance. Image colors provide additional information for similarity comparison. Given

an image, we compute its color histogram by sampling each of the R, G, B channels into eight levels, which

leads to a color histogram of 512 entries. Given two normalized color histograms Ha and Hb, we can use the

Kullback-Leibler divergence (KLD) to evaluate their difference

KH(Ha||Hb) =

b
∑

k=1

ha(k) log
ha(k)

hb(k)
, (4)

where ha(k) and hb(k) are the heights of the kth bin for Ha and Hb respectively, and b is the number of bins
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Figure 3. F+C Visualization. (a) edge expansions of the focus divide the entire space into eight areas. (b) adjust each

area independently. (c) adjust areas by group. In (d) and (e), one image, shown in the dashed rectangle, crosses three

areas.

in the color histogram. Notice that the KLD is not a true metric, i.e., KH(Ha||Hb) 6= KH(Hb||Ha). We thus

actually use the symmetric Jensen-Shannon divergence (JSD) measure instead

DH(Ha,Hb) =
KH(Ha||Hm) + KH(Hb||Hm)

2
, (5)

where Hm = (Ha + Hb)/2.

3.2 Textual Distance

To obtain textual features, we extract meta-tagged keywords in the HTML header. We also extract hyperlinks in

the explanation. These hyperlinks refer to URLs and similar hyperlinks indicate that their corresponding images

may also share similarity. Then, we convert all uppercase letters to lowercase ones for extracted keywords and

hyperlinks and apply the bag-of-words model21 for textual similarity measurement. We point out that semantic-

based methods for detecting text similarity22 can classify text based on the same semantic focus such as an

object or action. Nevertheless, the simple keyword extraction and similarity evaluation technique we propose

performs well as all images in our case share the same theme of astronomy.

Keyword List Distance. We treat two given keywords ka and kb as strings and calculate their edit distance

by computing the minimum number of inserts, deletes, and substitutions required to transform one string into

the other. The distance between ka and kb is calculated as

Dk(ka, kb) =
cini + cdnd + csns

|ka| + |kb|
, (6)

where ci, cd, and cs are the costs of insertion, deletion, and substitution operations respectively, ni, nd, ns are

the numbers of times that these three operations occur respectively, and |ka| and |kb| are the lengths of keywords

ka and kb respectively. We set ci = 2.0, cd = 2.0, and cs = 3.0 since the cost of deletion or insertion operation



Figure 4. Left to right: iMap showing search results with the use of visual distance only, textual distance only, and a

combination of visual and textual distances, respectively.

must be greater than half of the cost of substitution operation. Otherwise, two strings ka and kb will be matched

using the deletion and insertion operation only.

To calculate the distance between two lists of keywords, we take into account all keyword pairs from the two

lists. Our solution is to calculate the average of the minimum distance values of keyword pairs, i.e.,

DK(Ka,Kb) =
AK(Ka,Kb) + AK(Kb,Ka)

2
, (7)

where AK(Ka,Kb) is the average of the minimum distances (Equation 6) for each keyword in list Ka to any

keyword in list Kb. All DK are normalized for use.

Hyperlink List Distance. Given two hyperlinks, we compute their similarity by first determining if we

are comparing an internal link (i.e., a URL in the same website) to an external link (i.e., a URL in a different

website). For simplicity, we only check these links not the actual content these links refer to. If the two hyperlinks

are internal and external links, we define their similarity as 0. If both links are internal, the similarity is 1 if

they match exactly; otherwise, the similarity is 0. If both links are external, we ignore any directories and only

take into account each hyperlink’s subdomains. Each hyperlink is first split into a list, where each element in

the list is a subdomain (for example, www.nasa.gov is split into the list www, nasa, and gov). We then compare

each subdomain in the first hyperlink to each subdomain in the second hyperlink starting from the end of each

list and moving backwards. At any step, if two subdomains being compared do not match exactly, then we do

not proceed further. Let la be a hyperlink with |la| subdomains, lb be a hyperlink with |lb| subdomains, and n

be the number of subdomains matched. We define the similarity between two hyperlinks la and lb as

Sl(la, lb) =
n

max(|la|, |lb|)
. (8)



Figure 5. Left to right: iMap showing clustering results with the use of visual distance only, textual distance only, and a

combination of visual and textual distances, respectively.

To find the similarity between two lists of hyperlinks, we use the average of the maximum similarity values

SL(La, Lb) =
AL(La, Lb) + AL(Lb, La)

2
, (9)

where AL(La, Lb) is the average of the maximum similarity values (Equation 8) for each hyperlink in list La to

any hyperlink in list Lb. We normalize all similarity values to [0, 1] and define the distance between La and Lb

as DL(La, Lb) = 1.0 − SL(La, Lb).

3.3 GPU Acceleration.

Our experiment shows that the bottleneck stages of image distance computation are grayscale image distance

(DG) and spectrum image distance (DF ) calculations. It is slow because we need to compute SB (Equation

1) and PB (Equation 3) on a local 8 × 8 window which moves pixel-by-pixel over the entire image. To speed

up the performance, we leverage the GPU to perform distance computation in parallel. Specifically, all the

thumbnail images are loaded into the GPU memory to reduce the time cost of fetching each pixel. We assign

a large number of blocks and threads in the calculation for efficiency. A straightforward solution allocates N

blocks and N threads within each block, where N is the number of images. In this way, each thread only needs

to calculate the distance for at most one pair of images. However, this assignment has two drawbacks. First,

due to the symmetry of distance matrix, we only need to calculate half of the distance matrix. This leads to

an imbalanced workload for different blocks. Second, in our case, the number of images N is larger than the

maximum number of threads in one block. This implies that some threads have to calculate for multiple image

pairs while others are idle, which results in an imbalanced workload for different threads within a block. As

a matter of fact, this straightforward solution also leads to a CUDA error CUDA ERROR LAUNCH TIMEOUT, which

occurs when a time-consuming computation runs on a graphics card that is used for both graphics rendering and

CUDA computation. To avoid this problem, we evenly distribute the number of image pairs to all threads in a



(a) spiral, 5 layers, 145 images (b) spiral, 7 layers, 289 images (c) row-and-column, 144 images

Figure 6. Query by color: images are ranked according to their percentages of brown pixels. F+C visualization is shown

in (b) where the focused image is expanded and highlighted in the yellow boundary.

round-robin fashion to balance the workload, and utilize a second graphics card in our PC for dedicated GPU

computation.

4. IMAGE RANKING AND CLUSTERING

With the overall image distance defined, we build a symmetric distance matrix recording the distance between

any two images in the collection. During image search, the user selects a query image and all other images in the

collection are ranked accordingly. The user can change the weights for partial distances to update the distance

matrix and search results.

For image clustering, we apply the hierarchical quality threshold algorithm due to its simplicity and efficiency.

The algorithm uses a list of distance thresholds with increasing values {δ0, δ1, δ2, . . . , δl} to create a hierarchy up

to l + 1 levels (δ0 = 0, δl = 1). Initially, each image in the collection is in its own cluster. At the first iteration,

we build a candidate cluster for each image I by including all images that have their respective distance to I

smaller than δ1. We save the cluster with the largest number of images as the first true cluster and remove all

images in this cluster from further consideration. In the true cluster, image I is treated as its representative. We

repeat with the reduced set of images until all images are classified. In the following iterations, the input is all

representative images gathered from the previous iteration. We continue this process for the following iterations

until we finish the lth iteration or until we only have one cluster left in the current iteration.

5. IMAGE LAYOUT AND INTERACTION

Once image are ranked, image layout is important as it determines how images should be arranged for viewing.

For a large image collection, it is desirable to maintain good visual overview while allowing flexible exploration

and detailed examination. An appropriate image layout should fulfill the following criteria:



Figure 7. Image search via keyword input. Left to right: the search results corresponding to keyword(s) “spiral”, “galaxy”,

“spiral” OR “galaxy”, and “spiral” AND “galaxy”, respectively. There are 222, 461, 474, and 208 images matched from

left to right, respectively. The first 145 images, ordered by their dates, are shown in each search.

• Stable layout : the layout should accommodate image ordering and maintain stable update when images

are inserted or removed during the query;

• Screen utilization: for efficiency, the layout should display as many images as users can comfortably view

them;

• Occlusion minimization: for effectiveness, images displayed should not occlude each other in the layout or

their overlap should be minimized;

• In-place interaction: the layout itself should also serve as an interface for in-place interaction to attract

user attention and facilitate image identification.

5.1 iMap

Since most displays and images are in the form of rectangle, we opt to use the rectangular shape for image layout

so that the available display area can be best utilized. We propose to use the treemap23 to visualize a large

image collection due to its simplicity and effectiveness. We refer to the treemap-based representation of image

collections as the iMap (“i” stands for image). Each node in iMap corresponds to a rectangle that displays an

image thumbnail. The sizes of these rectangles can be determined by the importance of their images, such as

search rank or hit count.

Layout Design. The original “slice-and-dice” treemap layout generates rectangles of arbitrary aspect ra-

tios. Squarified treemaps24 create rectangles with smaller aspect ratios but give up on node ordering. Ordered

treemaps25 offer a good tradeoff among stable updates, order preserving, and low aspect ratios. Quantum

treemaps developed for PhotoMesa26 guarantee that the regions showing groups of photos have dimensions that

are integer multiples of the dimensions of the photos (i.e., they must be sized to contain quantum, or indivisi-

ble contents). Spiral treemaps27 place nodes along the spiral pattern which guarantees that neither the overall

pattern nor the specific node ordering will change drastically as the data evolve over time.



Figure 8. iMap and tag cloud. Left: the page of the most frequent keywords. Middle: a page of keywords in the

alphabetical order. Right: all images that contain the keyword “sun” are ordered by their IDs and displayed.

For iMap, we propose a hybrid layout that combines the advantages of both quantum and spiral treemaps:

the use of quantum with a fixed aspect ratio simplifies the layout for images of different aspect ratios; and

the adoption of spiral pattern maintains stable update when we insert or remove images. The 1D spiral also

accommodates image ordering, such as the chronological order or rank order. Our layout results with image

search and clustering are given in Figure 2. To organize clustering results, we apply a two-level layout: the

quad-tree layout for different levels of hierarchy and the spiral layout for images within each level. Much as in

human vision, we display the focus image at the center of display area (focal point) and arrange less important

images in its surrounding (periphery). By default, we display the focus image in normal size and reduce the

width and height by half for the successive layers. The user can adjust the number of repetition layers r needed

to keep the current width and height. In Figure 2, we set r = 2 for image search and r = 1 for image clustering.

iMap Interaction. The interaction with image search function includes the following: left mouse click for

showing the overlay full-resolution image in its original aspect ratio; middle mouse click for showing metadata

information; and right mouse click for updating search with respect to the image selected. Each image comes

with an ID and we also store the number of pixels similar to a list of given representative colors. This allows

us to enable “search by ID” (selecting an image ID via slider) and “search by color” (picking a representative

color via radio button) functions for updating the query image besides “search by image” (directly clicking on an

image displayed in iMap). The interaction with image clustering function is the same except that right mouse

click on an image is for displaying its next level of images in the hierarchy.

We also implement a focus+context (F+C) function to further improve the readability of iMap as the user

mouses over the images. Our F+C approach aims to apply a simple strategy to achieve an acceptable result for

a single focus. As shown in Figure 3, in a general case, the expansions of the four edges of the focused image

divide the entire space into eight areas. When the focus is enlarged, its edges move accordingly, so do the edges

of the eight areas. However, if we simply scale each area to fit into the new layout, the four areas adjacent to the



Figure 9. iMap with embedded search. Left: image search results using visual and textual distances. Middle/right: the

user clicks on the keyword “space shuttle”/“columbia” from the embedded list for result filtering.

focus, i.e., Areas 2, 4, 7, and 5, will suffer from more serious distortion than other areas (Figure 3 (b)). Taking

Areas 1 and 2 for example, when the focus grows, the horizontal edges of Area 2 will expand while its vertical

edges shrink; but for Area 1, both its horizontal and vertical edges will shrink. Thus, the aspect ratio of Area 2

changes more significantly than that of Area 1. To balance these changes, we group each area adjacent to the

focus to the one at the corner, i.e., Areas 1 and 2, 3 and 5, 4 and 6, 7 and 8 will be grouped together, respectively.

This strategy is similar to the solution proposed by Kustanowitz and Shneiderman in their two-level auto-layout

technique for photo browsing.28 Then we apply the transformation to each group, so that the overall distortion

can be reduced (Figure 3 (c)). However, for the spiral layout, an image that is larger than the focus might cross

three areas, as shown in Figure 3 (d). Figure 3 (e) shows an example where the current query image at the center

crosses Areas 1, 2, and 3. In this case, Areas 1, 2, and 3 must be in one group to ensure that every image is still

a rectangle. For other areas, we will group Areas 4 and 6, 5 and 8, respectively, and leave Area 7 ungrouped

(since it is the smallest one).

In our implementation, the focused image will be scaled up to the same size as the centered query image

before the deformation. To better preserve the original aspect ratio for the areas out of focus, the center of

the focused image might move. Take the horizontal direction for example, the left and right boundaries of the

focused image after deformation are decided in a way such that the left and right remaining areas are squeezed

proportionally to their original widths. Once the boundaries of the focused image are determined, we compute

the boundaries of each area and uniformly deform the context images within each area.

5.2 Integrating Text into Image Search

Building the overall distance matrix that includes the keyword and hyperlink distances for image search implicitly

utilizes the textual information. In this case, all keywords or all hyperlinks associated with images must be taken

into account. Nevertheless, these keywords or hyperlinks can also be explicitly utilized to customize or refine the

search. We present three different ways to explicitly integrate text into image search.



CPU GPU

similarity image step loading computing saving block thread loading computing saving

type number size time (s) time (s) time (s) number number time (s) time (s) time (s)

grayscale 4560 1 × 1 1.91 976,200 1.04 16384 512 0.2194 53,886 0.0338

2 × 2 0.2906 12,162 0.0098

4 × 4 0.215 3,015 0.0077

8 × 8 0.214 762 0.0098

spectrum 4560 1 × 1 1.52 787,149 2.43 16384 1024 0.2158 31,944 0.0077

2 × 2 0.222 7,993 0.0071

4 × 4 0.2138 2,017 0.0077

8 × 8 0.2136 515 0.0015

histogram 4560 N/A 1.08 176.52 2.6 16384 1024 0.0021 3.2596 0.0086

Table 1. Parameter values and timing results for grayscale image distance, spectrum image distance, and color histogram

distance calculations. CPU loading and saving are loading image data from disk and saving the distance matrix to disk.

GPU loading and saving are copying the data from main memory and saving the distance matrix to main memory. For

GPU computation of grayscale image distance and spectrum image distance, we also report timing with different step

sizes for the local 8× 8 window.

Keyword Input. In this mode, the user inputs a keyword into a text widget and we search and display

images that contain such a keyword. The keyword input could be partially or exactly matched with image

keywords and/or text explanations in the HTML files. Multiple keywords are allowed with logical operators

(OR, AND). Images founded can be ordered by their IDs or other attributes such as hit count. They can also

be arranged according to their rank order from the previous image search results.

Tag Cloud. Unlike keyword input, tag cloud displays pages of keywords from which the user clicks on a

keyword of interest to find related images. The order of keywords in the tag cloud can be determined by their

alphabetical or frequency order. Their visual attributes such as size can be determined by their frequency.

Embedded Text. Both keyword input and tag cloud display text in another widget or window separate

from iMap. Another different design is to embed image tags for in-place selection and search, which obviates

the need to use a list of words separately. This concept is similar to PhotoMesa,26 a zoomable image browser (in

terms of in-place interaction) and scented widgets29 (in terms of improving navigation cues). Zoomable interfaces

make navigation straightforward and avoid getting lost. Improving navigation cues lowers the cost structure of

seeking and accessing information. We therefore advocate a solution that integrates tag information into iMap

for further interaction and embedded search. For the APOD collection, tags are only associated with the image,

not specific objects. We thus overlay a layer of tags for user selection and search refinement. Much as in tag

clouds, the size, color, or order of tags for an image can be adjusted to provide additional hints such as how

many images will match selected tags. The user can select multiple tags to add into the current search.



Figure 10. Comparing the search results with different step sizes for the local 8× 8 window used in computing grayscale

image distance and spectrum image distance. The ground truth search results are shown in Figure 2. From left to right:

search results with step size of 2× 2, 4× 4, and 8× 8, respectively.

6. RESULTS

We collected APOD webpages that contain meta-tagged keywords (since Sep. 26, 1997) till a cut-off date (Apr.

3, 2010). Occasionally, APOD runs videos instead of images. In this experiment, we did not consider videos and

therefore excluded those webpages from our collection. For images in the GIF format though, we extract the first

frame as the representative of the entire image sequence. The resulting data set consists of 4560 images with text

information including keywords, hyperlinks, and explanations extracted from the HTML files. At preprocessing,

we computed five distance matrices (DG, DF , DH , DK , and DL) to record the distance for all pairs of images.

These distance matrices are used at runtime to update the final overall distance. In the following, we present

iMap results with screenshots captured from our program.

6.1 Image Layout

Figure 2 shows iMap layout. For image search, the query image of the International Space Station is displayed

at the center of iMap as the focus. Results based on both visual and textual distances are ranked and arranged

along the spiral circling out. The effectiveness of image search can be verified by the similar images retrieved

and displayed. For image clustering, the user explores the cluster hierarchy by clicking the image of interest

which will be highlighted with a yellow bounding box, and its next level of detail is displayed. By displaying all

levels of hierarchy currently explored, we give the user the freedom to jump between non-consecutive hierarchical

levels during the exploration. In Figure 4, we can see that using only visual distance picks up images of similar

brownish-yellow colors while using only textual distance pulls up the ranks for grayscale images related to the

Mars. A combination of both visual and textual distances finds a balance in between. In Figure 5, we show

that if no other textual search is provided, clustering images with the incorporation of visual distance would

be more effective for users to identify images of interest in their exploration. Our current implementation only

provides the top-down exploration of the hierarchy, it would be interesting to consider the bottom-up exploration
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Figure 11. The four different forces we consider for the force-directed layout adjustment for overlap reduction and topology

maintenance: (a) bidirectional repulsive force, (b) unidirectional repulsive force, (c) spring force, and (d) attractive force.

as well. For example, the user can search a leaf image via keyword and all corresponding intermediate levels in

the hierarchy are automatically extracted and displayed.

Figure 6 shows an example of “search by color” where images are ranked according to how much percentages

of brown pixels they contain. Compared to the row-and-column layout, the spiral layout effectively highlights

top-ranked images while maintaining stable update when the number of image layers changes. We also show

the results with different numbers of layers displayed and the effect with F+C visualization. Note that our

F+C strategy might result in larger distortion when the focused image is close to the corner. In this case, some

divided areas could be small, whose size will change dramatically during the deformation. A more sophisticated

F+C visualization for this kind of application remains an open problem. To keep the shape of each image as

a rectangle, it will be challenging to minimize the distortion while preserving their relative positions without

creating voids. The variation of image size in the spiral layout makes the problem more complicated, since those

large images will greatly limit the possible moves we can take. Producing a smooth animated transition of the

deformation could be even more difficult.

6.2 Image and Text

Figure 7 shows an example of interactive image filtering via keyword input. The user can choose either partial

or exact keyword match in the search. Figure 8 shows the use of tag cloud in iMap. Tag clouds organize all

keywords in a certain order and the user can go over pages to identify the keyword of interest. As an option, the

frequency count for each keyword may also be displayed. When the user clicks on the keyword, iMap updates

the search result and displays all images containing the selected keyword. Figure 9 shows an example where the

user first searches images based on the use of visual and textual distances as usual. Upon identifying the images

of interest, the user can then turn on the embedded keyword list associated with the query image to refine the

search by clicking on a certain keyword. All images that do not contain the selected keyword will be filtered out

from the query result while the rank order from the previous search is utilized to maintain the relative stable

update. The embedded search allows users to perform in-place interaction to refine their search results without

shifting their focus among different windows, which makes it easy for users to follow and take actions.



(a) (b) (c)

Figure 12. Force-directed layouts based on the iMap result shown in Figure 6 (a). (a) the initial force-direct layout. (b)

the force-directed layout after overlap reduction. (c) quad drawing showing the actual overlap in (b). First row: scaling

down the images so that the summation of all image sizes accounts for 75% of the display area as the input. o = 14.00%,

u = 66.39%. Second row: removing the last layer of images from the iMap result as the input. o = 20.46%, u = 65.00%.

6.3 Performance

For the APOD data set, the one-time computation of the five distance matrices took days to complete on a single

Intel 3.2GHz CPU. The dominant timing was spent on calculating DG and DF where we computed SB (Equation

1) and PB (Equation 3) on a local 8×8 window which moves pixel-by-pixel over the entire image. Leveraging an

nVIDIA GeForce GTX 580 graphics card to perform distance computation in parallel for multiple images, we are

able to reduce the computation of the three image distance matrices significantly. The configurations and timing

results are shown in Table 1. We can see that GPU computation provides about 18X, 24X, and 54X speedup for

grayscale image distance, spectrum image distance, and color histogram distance calculations, respectively. The

reason that we only allocate 512 threads in the calculation of grayscale image distance is due to its complexity.

It requires more local memory and registers than the other two, thus using more threads causes the crash of

GPU.

This timing performance can be further improved by taking an approximate solution: setting a step size

larger than one pixel for moving the local window. Table 1 shows the timing with three approximate solutions

(with step size of 2 × 2, 4 × 4, and 8 × 8, respectively). The speedup is nearly linear to the reduction rate (i.e.,



(a) (b) (c)

Figure 13. Force-directed layouts based on the iMap result shown in the left image of Figure 2. (a) the initial force-direct

layout. (b) the force-directed layout after overlap reduction. (c) quad drawing showing the actual overlap in (b). First

row: scaling down the images so that the summation of all image sizes accounts for 75% of the display area as the input.

o = 11.08%, u = 68.46%. Second row: removing the last layer of images from the iMap result as the input. o = 19.84%,

u = 75.45%.

4X, 16X, and 64X for 2 × 2, 4 × 4, and 8 × 8, respectively). When using the step size of 8 × 8 (in this case,

the local sliding window does not overlap each other), the total GPU computation time for generating the three

image distance matrices is reduced to less than 30 minutes, which is quite affordable. In Figure 10, we show that

these approximate solutions do not lead to dramatic changes of image search results. All five distances (three

image distances and two textual distances) take an equal weight in the final distance measure. We can see that

there are changes of ranking for the similar images with respect to the query image as we adjust the step size

for the local window, but compared with the ground truth, the overall approximate results are fairly good even

with a large step size of 8× 8. In fact, for results with these three step sizes shown in Figure 10, 99.76% (2× 2),

99.52% (4 × 4), and 99.04% (8 × 8) of images are the same as the images shown in Figure 2. At run time, only

the clustering step takes a few minutes to complete. All other tasks and interactions are interactive.

7. COMPARISON WITH FORCE-DIRECTED LAYOUT

We compare our iMap layout with a force-directed layout in terms of screen utilization and overlap reduction. We

apply the Fruchterman-Reingold algorithm30 to draw an initial force-directed graph layout due to its popularity



and simplicity. For the initial layout, we use images retrieved from the same query using iMap as the input for

nodes. As we know, iMap produces no image overlapping and could fully utilize the display area. This would

not be possible for the force-directed layout. For meaningful comparisons, we have to either reduce the number

of images displayed, or proportionally scale down the size of each image (the images with the smallest size may

remain unchanged for easy readability). To reduce image overlap while maintaining the relative positions among

different images, we apply a triangulation scheme31 to the initial layout and use the resulting mesh to perform

constrained layout adjustment. Similar to the algorithms described by Cui et al.,32 we consider four kinds of

forces to reposition the nodes to reduce their overlap while maintaining the topology of the layout:

• Bidirectional repulsive force: This force pushes away two nodes va and vb from each other and is effective

if and only if va and vb overlap each other. The bidirectional repulsive force is defined as f1(va, vb) =

k1 × min(x, y), where k1 is a given weight and x and y are the width and height of the overlapping region

as shown in Figure 11 (a). This force is applied to every pair of nodes in the layout.

• Unidirectional repulsive force: This force pushes away a node vb from a node va and is effective if and only

if vb is inside va. The unidirectional repulsive force is defined as f2(va, vb) = k2 × min(x, y), where k2 is a

given weight and x and y are the width and height of the gap region as shown in Figure 11 (b). Once this

force pushes vb away from va and they become overlapping, the previous bidirectional repulsive force will

be effective in subsequent iterations to move them further apart.

• Spring force: This force is used to balance the graph by offsetting the two repulsive forces introduced.

Given two nodes va and vb, the spring force is defined as f3(va, vb) = k3 × l, where k3 is a given weight and

l is the length of the line segment connecting the centers of va and vb that lies outside of their boundaries

as shown in Figure 11 (c). This force is applied to every pair of nodes in the graph.

• Attractive force: This force is used to maintain the underlying triangle mesh we construct for the graph.

During the layout adjustment, if a mesh triangle is flipped, as shown in Figure 11 (d), then the topology

of the triangle mesh changes. Our goal is to maintain a stable update of the graph by introducing an

attractive force to flip the triangle back. The attractive force is define as f4(v) = k4 × t, where k4 is a

given weight and t is the distance from node v to edge e. We also consider virtual triangle edges connecting

extreme nodes in the graph to the four corners of the drawing area. This is to ensure that all graph nodes

do not go out of bound.

Figures 12 and 13 show two examples of the force-direct layouts based on Figure 6 (a) (five layers, 145 images)

and the left image of Figure 2 (seven layers, 417 images), respectively. We compute the amount of image overlap

(in pixels) and derive the percentage of image overlapping as follows



Figure 14. iMap shown on the 24-monitor tiled display that can display nearly 50 million pixels simultaneously.

o =

∑

i∈N,j∈N,i<j Ai ∩ Aj

A
, (10)

where Ai ∩ Aj is the number of pixels overlapped by images i and j, N is the total number of images in the

layout, and A is the number of pixels in the entire display area. The percentage of screen utilization is computed

as u = Ā/A, where Ā is the number of pixels that are occupied by at least one image in the layout.

In Figure 12, we either reduce the number of images from 145 to 85 images by removing the outmost layer

of the iMap result, or proportionally scale down the size of each image (except the last two layers) so that the

summation of all image sizes accounts for 75% of the display area. After applying overlap reduction, the force-

directed layout still has 14 to 20% image overlap with about one third of pixels not utilized. These numbers

improve slightly with seven layers of images in Figure 13. As a comparison, the iMap layout has zero image

overlap while all pixels are utilized. Besides this major advantage, we find that the iMap layout is clearer as we

only consider the similarity between the query image and each of the other images in the layout. In contrast,

the force-directed layout considers the similarity between all pairs of images in the layout.

8. DEPLOYMENT OF IMAP TO TILED DISPLAY

To transform iMap into a tool for astronomy education, we deploy our system to a large tiled display at Michigan

Technological University’s Immersive Visualization Studio. The tiled display consists of 6× 4 thin-bezel 46-inch

Samsung monitors, each with 1920 × 1080 pixels. These 24 monitors are driven by eight computing nodes for

computation and visualization and each node connects to three monitors. In total, the tiled display can display

nearly 50 million pixels simultaneously. In order to forward the iMap window from the local desktop’s monitor

to the tiled display wall, we leverage the open-source libraries Chromium,33 a system for interactive rendering

on clusters of workstations. Chromium provides a number of key features for large tiled display wall rendering.

For example, it can synchronize parallel graphics commands to implement various parallel rendering techniques.



It can also aggregate the output of multiple graphics cards to form a single display with higher performance.

Furthermore, since Chromium streams the graphics pipeline based on the industry standard OpenGL API, it is

transparent to the programmers and allows many OpenGL programs to run without modification. By specifying

the hardware configuration into the Chromium config file, users can easily set up Chromium and fit it into their

own tiled display architecture.

Some photo results showing the running of iMap on the tiled display are shown in Figure 14. Currently, we

are using this facility for showing iMap demos to visitors and teaching middle and high school students through

Michigan Tech’s Youth Programs. Initial feedback from several groups of visitor is fairly positive as they comment

that running iMap on this life-size tiled display is much more expressive and fun to watch compared with on a

regular desktop display. The advantage of using the display wall is that it allows more than a dozen of people to

comfortably view and discuss the results together in such a collaborative environment. Nevertheless, with the

dramatic expanding of display area, it takes more effort for a viewer to correlate and compare images that are

on the opposite sides of the display wall, especially for those small images close to the wall’s boundary.

9. USER STUDY

We performed a user study to evaluate the effectiveness of iMap by comparing it with the existing image search

functions (archive, index, and text search) provided by online APOD. A desktop version of iMap was used in

the study, running on a 27-inch monitor with 1920 × 1080 screen resolution. We used a design of 2 conditions

(iMap vs. online APOD) × 3 tasks (text, image, and image + text). We assigned a target image for each of the

six combinations except for Task 1, where users were asked to identify two images with very different numbers

of images retrieved. So, a total of eight images were selected. These images cover different topics: astronaut,

aurora, black hole, Earth, Jupiter, Mars, Moon, and Sun.

9.1 Hypotheses

We postulated four hypotheses for the study. Since the users’ respond time varies for each task, hypotheses

about response time of search under both conditions will be considered based on different tasks. Furthermore,

we only considered the overall accuracy due to the high probability of finding the exact image.

• Hypothesis 1. Given the keywords and description only (Task 1), iMap is faster to search than online

APOD.

• Hypothesis 2. Given the image only (Task 2), iMap is faster to search than online APOD.

• Hypothesis 3. Given the image and keywords (Task 3), iMap is faster to search than online APOD.

• Hypothesis 4. Overall, for image search, using iMap makes fewer errors than online APOD.



9.2 Interactions

Detailed interactions with iMap are described in Section 5. For online APOD, three search modes are provided:

archive, index, and text search. The archive mode provides the dates and titles of all images and arranges them

in the reverse chronological order. The index mode offers various keywords organized by category. Clicking on

any keyword shows keyword-related thumbnail images with their dates, titles, and short explanations. The text

search mode provides OR or AND search for multiple keywords. Since the way to search online APOD is similar

to other websites, we assume that all users are familiar with it.

9.3 Tasks and Procedure

Three tasks were implemented to compare the performance of iMap and online APOD. In each task, users were

asked to identify the three most related or similar images. Ideally, the exact image should be found and if not,

they were asked to find up to three most related ones.

• Task 1. Text search: given a short text description and several recommended keywords, users were asked

to find the three most related images. Two images will be tested for each condition, one search generated

a large number of retrieved images while the other generated a small number.

• Task 2. Image search: given target images without any keyword or description, users were asked to find

the three most similar images. We assumed that the users could figure out the content of the images with

their very basic astronomy knowledge.

• Task 3. Image + text search: given target images with several keywords, users were asked to find the three

most similar images.

For iMap, there was a 15-minute training session and a further 5-minute free exploration time (practice

search) preceding the actual tasks. This was the same for online APOD, except that there was no training. A

post-test survey for user preference and comments was conducted immediately after a user finished all the tests.

A total of 16 users (eight graduate and eight undergraduate students) participated in this study and each user

used both iMap and online APOD. Users were required to finish tasks in the order given. Users recorded the date

of images they selected, and we helped them record the starting and ending time for completing each task. Each

user was asked to perform 8 trials, and therefore, we had a total of 128 (16 × 8) trials. Each experiment was

conducted individually and took approximately 40 minutes, including the training, practice task, experimental

tasks for both conditions, and questionnaire.
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Figure 15. Comparing iMap to online APOD. (a) mean response time by task. (b) mean error rate. (c) mean overall

rating. (d) mean rating by statement. The four statements are: (S1) It was enjoyable to use; (S2) It was easy to search

images with only keywords given; (S3) It was easy to search images with only images given; and (S4) It was easy to search

images with keywords and images given.

9.4 Results and Discussion

We present results from the study in three aspects: completion time, accuracy, and subjective preferences. A

paired t-test with a standard significance level α = 0.05 was performed to determine statistical significance

between the two conditions.

Completion Time. Figure 15 (a) shows the mean response time results when comparing iMap to online

APOD for each task.

• For Task 1, iMap was significantly faster than online APOD with only keywords given and a large number

of images retrieved (iMap: 82.39s, online APOD: 215.36s; p = 0.007). This is because iMap provides a

good overview of the image collection to facilitate the visual search. However, no significant difference was

found with only keywords given and a small number of images retrieved. Possible reasons include: the text

descriptions were confusing to some users; users were more proficient for online search while it took time

for them to adjust to using iMap; and users needed to switch among multiple views or tabs in iMap while

there was only one view in online APOD.

• For Task 2, iMap was significantly faster than online APOD with only images given (iMap: 38.86s, online

APOD: 72.29s; p = 0.0127). Two reasons explain this. First, using online APOD, users were able to scroll

up and down the result page to view about ten images at a time, while they could view hundreds of image

simultaneously using iMap. Second, neighboring images in iMap are similar while neighboring images have

no connection at online APOD.

• For Task 3, no significant difference in response time was found with keywords and images given. Since

the images we selected for this task got a very small number of images retrieved (10 to 20 images), it was

easy for users to search under both conditions.



Therefore, Hypothesis 1 was fully supported when the number of images retrieved is large. Hypothesis 2 was

also fully supported while Hypotheses 3 was not supported.

Accuracy. Since almost all users were able to find the exact image correctly, we compute the error as the

number of failed trials (i.e., image misidentified) over the number of total trials. With online APOD, 4.69% (6

out of 128) tests failed and with iMap, 1.56% (2 out of 128) tests failed. Figure 15 (b) shows the average error

results when comparing iMap and online APOD. In terms of accuracy, iMap was not distinguishable from online

APOD, which contradicts Hypothesis 4. We found that almost every user could find the exact image under both

conditions.

Subjective Preferences. The 16 users completed a survey after their experiment. They were asked which

condition they preferred overall and which interface they perceived to be more useful for each of the three tasks.

Four statements were provided as follows

• Statement 1. “It was enjoyable to use.”

• Statement 2. “It was easy to search images with only keywords given.”

• Statement 3. “It was easy to search images with only images given.”

• Statement 4. “It was easy to search images with keywords and images given.”

Each statement was answered with a 5-point scale (1 = strongly disagree, 5 = strongly agree). We ran a paired

t-test with a standard significance level α = 0.05 and found a significant effect for iMap.

Figure 15 (c) shows the mean overall rating when comparing iMap to online APOD. The rating for iMap is

significantly higher than online APOD (iMap: 3.89, Online APOD: 2.89; p = 0.039), which indicates that the

users prefer using iMap over online APOD.

Figure 15 (d) shows the mean rating when comparing iMap to online APOD for the four statements:

• For Statement 1, iMap was judged to be more enjoyable to use (iMap: 4.19, online APOD: 2.94; p = 0.0017).

• For Statement 2, iMap was not significantly easier to search images with only keywords given (iMap: 2.94,

online APOD: 2.56; p = 0.5544).

• For Statement 3, iMap was significantly easier to search images with only images given (iMap: 4.06, online

APOD: 2.634; p = 0.0001).

• For Statement 4, iMap was significantly easier to search images with keywords and images given (iMap:

4.38, online APOD: 3.44; p = 0.0098).



10. CONCLUSIONS AND FUTURE WORK

We have presented iMap, an analysis and visualization framework that supports effective searching, browsing,

and understanding of large image collections. iMap strikes a good balance among simplicity, intuitiveness,

and effectiveness by addressing issues such as stable layout, screen utilization, and in-place interaction. Our

user study confirms that iMap provides a more effective solution for image search, ranking, and identification

compared with traditional archive and keyword search methods. While the layout itself will work for other

image collections beyond APOD, we would improve our image distance measure by considering image aesthetics

measures, high-level image features, and relationships between words so that the similarity ranking would be

applicable to other image collections as well. In the future, we will also develop a web version of iMap for APOD

so that any users can easily access our system online.
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