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Abstract. Automatic and accurate cardiovascular image segmentation
is important in clinical applications. However, due to ambiguous borders
and subtle structures (e.g., thin myocardium), parsing fine-grained struc-
tures in 3D cardiovascular images is very challenging. In this paper, we
propose a novel deep heterogeneous feature aggregation network (HFA-
Net) to fully exploit complementary information from multiple views of
3D cardiac data. First, we utilize asymmetrical 3D kernels and pool-
ing to obtain heterogeneous features in parallel encoding paths. Thus,
from a specific view, distinguishable features are extracted and indis-
pensable contextual information is kept (rather than quickly diminished
after symmetrical convolution and pooling operations). Then, we employ
a content-aware multi-planar fusion module to aggregate meaningful fea-
tures to boost segmentation performance. Further, to reduce the model
size, we devise a new DenseVoxNet model by sparsifying residual con-
nections, which can be trained in an end-to-end manner. We show the
effectiveness of our new HFA-Net on the 2016 HVSMR and 2017 MM-
WHS CT datasets, achieving state-of-the-art performance. In addition,
HFA-Net obtains competitive results on the 2017 AAPM CT dataset, es-
pecially on segmenting subtle structures among multi-objects with large
variations, illustrating the robustness of our new segmentation approach.

1 Introduction

Cardiovascular diseases are a leading cause of death globally. Segmenting the
whole heart in cardiovascular images is a prerequisite for morphological and
pathological analysis, disease diagnosis, and surgical planning [6]. However, au-
tomatic and accurate cardiovascular image segmentation remains very challeng-
ing due to large variations in different subjects, missing/ambiguous borders, and
inhomogeneous appearance and image quality (e.g., see Fig. 1(a-b)).

Recent studies showed that deep learning based methods [11, 2–4, 12] can
learn robust contextual and semantic features and achieve state-of-the-art seg-
mentation performance. 3D fully convolutional networks (FCNs) are a main-
stream approach for cardiac segmentation due to their ability to integrate both
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Fig. 1. Examples of cardiovascular images from (a) the MM-WHS CT dataset [14] in
the axial plane and (b) the HVSMR dataset [6] in the sagittal plane. (c) Myocardium
boundaries in the axial plane are easier to recognize.

inter- and intra-slice information in 3D images. However, two key factors have
not been well explored: (1) the imaging qualities in different anatomical planes
are not the same, and thus the degrees of segmentation difficulty from different
views are unequal; (2) subtle structures (e.g., myocardium, pulmonary artery)
have different orientations in different anatomical planes. Symmetrical convolu-
tional and pooling operations may cause quick diminishment of subtle structures
or boundaries, incurring segmentation errors. As shown in Fig. 1(c), myocardium
boundaries in the axial plane are easier to recognize; with asymmetrical pooling
along the longitudinal axis, more complementary inter-slice information can be
kept which in return benefits segmentation in the axial plane.

Many recent studies tried to tackle the anisotropic issue of 3D biomedical
images. But still, they could not segment myocardium or pulmonary artery well.
Known methods that explored anisotropic 3D kernels in FCNs can be categorized
into two types. (1) The methods in [8, 2] focused on designing repeatable cell
structures and replaced all 3D convolutions systematically, called short-range
asymmetrical cell. However, symmetrical pooling was used and deep features
were fused periodically (with distinctive features vanishing quickly). (2) The
methods in [3, 5] dealt with the anisotropic problem in 3D images using 2D FCNs
to extract intra-slice features and 3D FCNs to aggregate inter-slice features. But,
they did not exploit the fact that complementary information in the other planes
(xz- and yz-planes) can also benefit the xy-plane, especially in less anisotropic
3D data (e.g., when the spacing resolution in the z-axis is only 3 ∼ 5× larger
than that of the x- and y-axes).

To address the above two key factors, we propose a new heterogeneous feature
aggregation network (HFA-Net), which is able to fully exploit complementary
information in multiple views of 3D cardiac images and aggregate heterogeneous
features to boost segmentation performance. To handle the issue in [8, 2], we
utilize long-range asymmetrical branches to maintain distinguishable features
associated with a specific view. Besides asymmetrical convolutional operations,
we also apply asymmetrical pooling operations to maintain spatial resolution in
the other planes. To address the issue in [3, 5], we utilize parallel encoding paths
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Fig. 2. An overview of our new HFA-Net framework.

to extract heterogeneous features from multiple geometric views of the 3D data
(i.e., the axial, coronal, and sagittal planes). There is a good chance that an
object can be distinguished from at least one of the geometric views. Thus, we
encourage richer contextual and semantic features to be extracted. Further, to
improve the parameter-performance efficiency and reduce GPU memory usage,
we devise a sparsified densely-connected convolutional block for our model, and
our HFA-Net thus designed can be trained end-to-end.

Experiments on three public challenge datasets [6, 14, 10] show that our new
method achieves competitive segmentation results over state-of-the-art methods.

2 Method

Our HFA-Net has three main components (see Fig. 2): (1) Long-range asymmet-
rical branches (LRABs) that preserve subtle structures via asymmetrical convo-
lutions and poolings; (2) a content-aware fusion module (CAFM) that combines
multiple asymmetrical branches together, utilizing both raw images and feature
maps from LRABs; (3) a new 3D sparse aggregation block (SAB) to reduce GPU
memory usage and enable end-to-end training of the entire network.

2.1 Long-Range Asymmetric Branch (LRAB)

A straightforward way to exploit multiple geometric views of 3D images is to
replace conventional 3D convolutional (Conv) layers by short-range asymmetrical
cell (SRAC) [8, 2]. As shown in Fig. 3(a), a 3D Conv kernel is decomposed
into m parallel streams, each having n pseudo 2D kernels and a corresponding
orthogonal pseudo 1D kernel. But, the typical decompositions they exploited are
{m = 1, 2;n = 1, 2}, which may not make the best out of all geometric properties
of 3D data. Further, such SRAC only governs the specific layer-wise computation
but neglects the outer branch/network level which controls spatial resolution
changes. Most importantly, feature maps are added together periodically after
each SRAC, which causes homogeneous feature maps in deeper layers and that
parallel streams do not benefit richer feature extraction anymore. To address
these issues, our method aims to fully exploit all the three orthogonal views and
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Fig. 3. (a) Short-Range Asymmetric Cell; (b) Long-Range Asymmetric Branch; (c)
Content-Aware Fusion Module. I: raw image; F

sj
i : feature maps (see Sect. 2.2).

encourage extracting heterogeneous features from different scales. For this goal,
we need to carefully design both the layer-level and branch-level operations.

Notation. We denote a 3D Conv layer as Conv(Kk1,k2,k3
/Ss1,s2,s3), where ki

and si are the kernel size and stride step size in each direction. Conventionally,
k1 = k2 = k3 and s1 = s2 = s3. A 3D kernel K3,3,3 can be decomposed into an
SRAC (with m = 1 and n = 1) by K3,3,1⊗K1,1,3, K3,1,3⊗K1,3,1, or K1,3,3⊗K3,1,1,
where ⊗ is convolution. Similarly, we denote a 3D deconvolutional (DeConv)
layer as DeConv(Kk1,k2,k3

× Ss1,s2,s3). A pooling layer is denoted as Ps1,s2,s3 .

Fig. 3(b) shows the concept of our long-range asymmetrical branch (LRAB).
We utilize three LRABs (m = 3) to operate on three orthogonal geometric views
separately, thus increasing the independency among m parallel encoding paths.
The original symmetrical Conv(Kka,ka,ka/Ssa,sa,sa) is replaced by an asymmet-
rical counterpart in each branch (i.e., (Kka,ka,1/Ssa,sa,1), (Kka,1,ka/Ssa,1,sa), or
(K1,ka,ka/S1,sa,sa)). Also, the consecutive 3D Conv kernel (Kkb,kb,kb/Ssb,sb,sb) is
decomposed in the same orientation in each branch. Besides, since in each LRAB,
Conv kernels are along the same orientation, conventional symmetrical pooling
is no longer suitable (otherwise, inter-slice features may vanish quickly before
being extracted). In our problem, cardiovascular segmentation is highly challeng-
ing especially due to the missing/ambiguous boundaries between the regions of
interest and background or among various sub-structures. Thus, asymmetrical
pooling (i.e., Ps,s,1, Ps,1,s, or P1,s,s) is utilized to maintain spatial resolution in
the orthogonal direction so that there is a bigger chance that subtle distinguish-
able features can be kept in at least one of the geometric views.

For example, a T × T × T tensor after three P2,2,2 becomes a T
8 ×

T
8 ×

T
8

tensor but becomes T
8 ×

T
8 × T after three P2,2,1. Hence, additional informa-

tion of subtle structures along the z-axis is kept and will be utilized by sub-
sequent processing. Observe that the designs in [3, 5] can be viewed as spe-
cial cases of our LRAB since these methods only used (pre-trained) 2D FCN
to extract deep feature maps from 3D data slice by slice independently with
m = 1. Thus, our method is more cautious in heterogeneous feature aggregation.
Specifically, as shown in Fig. 2, our first LRAB is composed of stacking layers
of Conv(K3,3,1/S2,2,1), SAB(K3,3,1/S1,1,1), P2,2,1, and SAB(K3,3,1/S1,1,1), where
SAB(K3,3,1/S1,1,1) refers to sparse aggregation block (SAB) composed of stacked
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Conv(K3,3,1/S1,1,1). We will present SAB in Sect. 2.3. In the ith LRAB, feature
maps from different scales (sj , j = 1, 2, . . . , k) are recovered by asymmetrical
DeConv layers accordingly, denoted by F

sj
i . We will discuss how to aggregate

useful information from these heterogeneous feature maps in Sect. 2.2.

2.2 Content-Aware Fusion Module (CAFM)

To maximally exploit the extracted heterogeneous features maps F
sj
i from paral-

lel LRABs, we need to selectively leverage the correct information and suppress
the incorrect one. It is quite possible that each voxel is correctly classified in at
least one geometric view; thus, a key challenge is how to deal with agreement
and disagreement in different views. For this, we present a content-aware fusion
module (CAFM, see Fig. 3(c)) to generate aggregated deep features.

The input of CAFM includes two parts: a raw image I and heterogeneous

feature maps F
Sj
i of the same shape, where i is for the ith LRAB and Sj is for

the selected scales in LRABs. HFA-Net has m = 3 LRABs; thus i ∈ {1, 2, 3}.
There are three scales in each LRAB and we choose the last two scales; thus
j ∈ {2, 3}. To recover the asymmetrical feature maps to the original resolution
of the input image I, we use asymmetrical DeConv accordingly (e.g., we use
stacked {DeConv(K4,4,1×S2,2,1), DeConv(K4,4,1×S2,2,1)} to obtain FS3

1 for the
1st LRAB). Then we average the feature maps from the same scale but different

branches together to obtain hierarchical features FSj = 1
m

∑m
i=1 F

Sj
i . This aver-

aging provides a compact representation of all F
Sj
i ’s while still showing the image

areas where the heterogeneous features have agreement or disagreement. Next,
each FSj is concatenated with the raw image I and fed to an encoder SAB,
and all the intermediate feature maps are integrated in the middle of CAFM
for extracting better representations. The raw image I provides a reference for
helping further find detailed features and guide the feature aggregation process.

The loss function is computed as `(X,Y ; θ) = `mse(P̃ , Y )+λ1`mse(P̃aux, Y )+∑
i

∑
j λij`mse(S(F

Sj
i ), Y ), where Y is the corresponding ground truth of each

training sample X, `mse is the multi-class cross-entropy loss and S(·) is the
softmax function. See supplementary material for more details on HFA-Net.

2.3 Sparse Aggregation Block (SAB)

DenseVoxNet [11] is a state-of-the-art model for cardiovascular image segmen-
tation, built on DenseBlock with dense residual connections. It aggregates all
the previously computed features to each subsequent layer, computed as x` =
H`([x0, x1, . . . , x`−1]), where x0 is the input, x` is the output of layer `, [·] is the
concatenation operation, and H`(·) is a composite of operations such as Conv,
Pooling, BN, and ReLU. The dense connections help transfer useful features
from shallower to deeper layers, and in turn, allow each shallow layer to re-
ceive direct supervision signal, thus alleviating the gradient vanishment issue in
training deep ConvNets and achieving better parameter-performance efficiency.
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Table 1. Datasets and training details. “GT = 7”: the ground truth of the data is
kept by the organizers for fair comparison. The initial learning rate Lr = 5 × 10−4.

Dataset
Train Test

# Class Optimizer # Iter. Learning rate policy
# stack GT # stack GT

2016 HVSMR [6] 10 3 10 7 2 Adam: β1 = 0.9,

β2 = 0.999, ε = 1e-10

45,000
Lr ×

(
1 − iter

#iter

)0.92017 MM-WHS CT [14] 16 3 4 3 7 60,000
2017 AAPM CT [10] 36 3 12 7 5 60,000

However, for a DenseBlock of depth N , the number of skip connections and
parameters grows quadratically asymptotically (i.e., O(N2)). This means that
each layer generates only a few new outputs to an ever-widening concatenation
of previously seen feature representations. Thus, it is hard for the model to make
full use of all the parameters and dense skip connections [13].

To further ease the training of our HFA-Net, we devise a new sparsified
densely-connected convolutional block, called sparse aggregation block (SAB), to
improve parameter-performance efficiency. The output x` of layer ` is computed
as x` = H`([x`−c0 , x`−c1 , x`−c2 , x`−c3 , . . . , x`−ck ]), where c > 1 is an integer and
k ≥ 0 is the largest integer such that ck ≤ `. For an SAB of total depth N , this
sparse aggregation introduces no more than logc(N) incoming links per layer, for
a total of O(N log(N)) connections and parameters. We use c = 2 and N = 12
in all experiments. See supplementary material for more details.

3 Experiments and Results

Three 3D Datasets. (1) The 2016 HVSMR dataset [6] aims to segment
myocardium and great vessels (blood pool) in cardiovascular MRIs. The re-
sults are evaluated using three criteria: Dice coefficient, average surface distance
(ADB), and symmetric Hausdorff distance. A score S =

∑
class(

1
2Dice− 1

4ADB−
1
30Hausdorff ) is used to measure the overall accuracy of the results and for rank-
ing. (2) The 2017 MM-WHS CT dataset [14] aims to segment seven cardiac
structures (the left/right ventricle blood cavity (LV/RV), left/right atrium blood
cavity (LA/RA), myocardium of the left ventricle (LV-myo), ascending aorta
(AO), and pulmonary artery (PA)). Following the setting in [1], we randomly
split the dataset into the training (16 subjects) and testing (4 subjects) sets,
which are fixed throughout all experiments. (3) The 2017 AAPM CT dataset
[10] aims to segment five thoracic structures (esophagus, spinal cord, left/right
lung, and heart); esophagus and spinal cord are highly difficult cases.
Implementation Details. Our proposed method is implemented with Python
using the TensorFlow framework and trained on an NVIDIA Tesla V100 graphics
card with 32GB GPU memory. All the models are initialized using a Gaussian
distribution and trained with the “poly” learning rate policy. We perform data
augmentation to reduce overfitting. More details can be found in Table 1.
Quantitative Results. Table 2 (top) shows quantitative comparison of HFA-
Net against other methods from the 2016 HVSMR Challenge Leaderboard, in-
cluding a conventional atlas-based method [9] and 3D FCN based methods [4,
11]. First, our re-implementation of DVN achieves the state-of-the-art perfor-
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Table 2. Segmentation results on the 2016 HVSMR dataset (top), 2017 MM-WHS CT
dataset (middle), and 2017 CT AAPM dataset (bottom).

Method
Myocardium Blood pool Overall

scoreDice ADB [mm] Hausdorff [mm] Dice ADB [mm] Hausdorff [mm]

Shahzad et al. [9] 0.747 1.099 5.091 0.885 1.553 9.408 -0.330
3D Unet [4] 0.762 0.943 5.618 0.932 0.826 7.015 -0.016
DVN [11] 0.821 0.964 7.294 0.931 0.938 9.533 -0.161

DVN (ours) 0.829 0.701 3.431 0.933 0.921 8.489 0.078
S-DVN 0.822 0.689 3.729 0.936 0.900 8.770 0.065

Gonda et al. [2] 0.793 0.783 4.002 0.934 0.853 7.043 0.087
Li et al. [3] 0.802 0.876 4.243 0.930 0.978 7.481 0.012
HFA-Net 0.837 0.627 3.301 0.942 0.751 5.875 0.239

Model Metrics
Structures

mean
LV RV LA RA LV-myo AO PA

Payer et al. [7] Dice 0.918 0.909 0.929 0.888 0.881 0.933 0.840 0.900
Dou et al. [1] Dice 0.888 - 0.891 - 0.733 0.813 - -

DVN

Dice 0.942 0.891 0.933 0.879 0.908 0.959 0.824 0.905
Jacard 0.891 0.806 0.874 0.786 0.832 0.922 0.713 0.832

ADB[voxel] 0.084 0.448 0.199 0.459 0.180 0.132 1.710 0.459
Hausdorff[voxel] 6.752 39.156 71.189 101.570 35.422 27.810 59.982 48.840

S-DVN

Dice 0.929 0.890 0.914 0.899 0.895 0.956 0.828 0.902
Jaccard 0.870 0.805 0.843 0.817 0.811 0.916 0.718 0.826

ADB[voxel] 0.610 0.666 1.384 0.307 0.362 0.210 1.594 0.733
Hausdorff[voxel] 21.214 55.473 85.726 73.757 62.053 80.511 77.181 65.131

HFA-Net

Dice 0.946 0.893 0.925 0.897 0.910 0.964 0.830 0.909
Jaccard 0.898 0.810 0.861 0.816 0.836 0.930 0.722 0.839

ADB[voxel] 0.076 0.562 0.210 0.334 0.225 0.103 1.685 0.456
Hausdorff[voxel] 7.148 33.128 42.173 22.903 36.954 12.075 37.845 27.461

Model Metrics
Structures

mean
Esophagus Spinal Cord Lung R Lung L Heart

DVN [4]
Dice 0.676 0.851 0.960 0.960 0.917 0.873

ADB[mm] 2.227 0.867 1.212 1.295 2.418 1.604
Hausdorff[mm] 7.748 2.298 3.938 4.100 6.781 4.973

HFA-Net
Dice 0.697 0.874 0.962 0.964 0.920 0.883

ADB[mm] 1.974 0.766 1.266 0.967 2.336 1.462
Hausdorff[mm] 5.883 2.190 4.149 3.370 6.557 4.430

mance and our S-DVN with SAB achieves competitive results while reducing
the number of parameters by ∼ 60% (4.3M vs. 1.6M). Second, recall the two
types of the known anisotropic 3D methods (see Sect. 1). We choose at least
one typical method from each type for comparison. The method [2] is based on
the short-range asymmetrical cell design, which utilizes 3D kernel decomposi-
tion on the orthogonal planes to predict a class label for each voxel. The method
[3] extracts features from the xy-plane by a 2D FCN and applies a 3D FCN
to fuse inter-slice information. Our HFA-Net outperforms these methods across
nearly all the metrics with a very high overall score of 0.239. The results for the
2017 MM-WHS CT dataset are given in Table 2 (middle). First, our baselines
(DVN and S-DVN) already achieve better results than the known state-of-the-art
methods [7, 1]. Second, our HFA-Net further improves the accuracy on most the
categories across nearly all the metrics, especially for subtle structures such as
LV-myo and AO. To further show that our method is robust and effective in de-
lineating subtle structures, we experiment with HFA-Net on the 2017 AAPM CT
dataset. Quantitative results in Table 2 (bottom) show promising performance
gain, especially for esophagus and spinal cord (2% gain in Dice coefficient).

Qualitative Results. As shown in Fig. 4, our HFA-Net attains better results
and shows a strong capability of delineating missing/ambiguous boundaries.
More qualitative results can be found in supplementary material.
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Fig. 4. Visual qualitative results: the 2016 HVSMR dataset (a), 2017 MM-WHS CT
dataset (b), and 2017 CT AAPM dataset (c) (some errors marked by magenta arrows).

4 Conclusions

In this paper, we presented a new deep heterogeneous feature aggregation network
(HFA-Net) for cardiovascular segmentation in 3D CT/MR images. Our proposed
HFA-Net extracts rich heterogeneous features using long-range asymmetrical
branches and aggregates diverse contextual and semantic deep features using a
content-aware fusion module. Sparse aggregation block is utilized to give HFA-
Net a better parameter-performance efficiency. Comprehensive experiments on
three open challenge datasets demonstrated the efficacy of our new method.

Acknowledgement. This research was supported in part by the U.S. National
Science Foundation through grants IIS-1455886, CCF-1617735, CNS-1629914,
DUE-1833129 and NIH grant R01 DE027677-01.

References

1. Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.A.: Unsupervised cross-modality
domain adaptation of convnets for biomedical image segmentations with adversar-
ial loss. In: Twenty-Seventh International Joint Conference on Artificial Intelli-
gence. pp. 691–697 (2018)

2. Gonda, F., Wei, D., Parag, T., Pfister, H.: Parallel separable 3D convolution for
video and volumetric data understanding. arXiv preprint arXiv:1809.04096 (2018)

3. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-DenseUNet: Hybrid
densely connected UNet for liver and tumor segmentation from CT volumes. IEEE
Transactions on Medical Imaging 37(12), 2663–2674 (2018)

4. Liang, P., Chen, J., Zheng, H., Yang, L., Zhang, Y., Chen, D.Z.: Cascade decoder:
A universal decoding method for biomedical image segmentation. In: IEEE, ISBI
2019. pp. 339–342 (2019)

5. Liu, S., Xu, D., Zhou, S.K., Pauly, O., Grbic, S., Mertelmeier, T., Wicklein, J.,
Jerebko, A., Cai, W., Comaniciu, D.: 3D anisotropic hybrid network: Transferring



HFA-Net 9

convolutional features from 2D images to 3D anisotropic volumes. In: MICCAI.
pp. 851–858 (2018)

6. Pace, D.F., Dalca, A.V., Geva, T., Powell, A.J., Moghari, M.H., Golland, P.: In-
teractive whole-heart segmentation in congenital heart disease. In: MICCAI. pp.
80–88. Springer (2015)
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