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Abstract. Craniofacial syndromes often involve skeletal defects of the
head. Studying the development of the chondrocranium (the part of the
endoskeleton that protects the brain and other sense organs) is crucial
to understanding genotype-phenotype relationships and early detection
of skeletal malformation. Our goal is to segment craniofacial cartilages
in 3D micro-CT images of embryonic mice stained with phosphotungstic
acid. However, due to high image resolution, complex object structures,
and low contrast, delineating fine-grained structures in these images is
very challenging, even manually. Specifically, only experts can differen-
tiate cartilages, and it is unrealistic to manually label whole volumes for
deep learning model training. We propose a new framework to progres-
sively segment cartilages in high-resolution 3D micro-CT images using
extremely sparse annotation (e.g., annotating only a few selected slices
in a volume). Our model consists of a lightweight fully convolutional net-
work (FCN) to accelerate the training speed and generate pseudo labels
(PLs) for unlabeled slices. Meanwhile, we take into account the relia-
bility of PLs using a bootstrap ensemble based uncertainty quantifica-
tion method. Further, our framework gradually learns from the PLs with
the guidance of the uncertainty estimation via self-training. Experiments
show that our method achieves high segmentation accuracy compared to
prior arts and obtains performance gains by iterative self-training.

Keywords: Cartilage segmentation · Uncertainty · Sparse annotation

1 Introduction

Approximately 1% of babies born with congenital anomalies have syndromes in-
cluding skull abnormalities [13]. Anomalies of the skull invariably require treat-
ments and care, imposing high financial and emotional burdens on patients
and their families. Although prenatal development data are not available for
study in humans, the deep conservation of mammalian developmental systems
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Fig. 1. Examples of micro-CT images of stained mice. (a) A raw 3D image and its
manual annotation. The shape variations are large: the front nasal cartilage is rela-
tively small (i.e., 3002); the cranial vault is very big (i.e., 900 × 500) but extremely
thin like a half-ellipsoid surface. (b) A 2D slice from the nasal cartilage (top) and its
associated label (bottom); the image contrast is low and there are many hard mimics in
surrounding areas. (c) Two 2D slices from the cranial vault (top) and their associated
labels (bottom); the cartilage is very thin. Best viewed in color.

in evolution means that laboratory mice give access to embryonic tissues that
can reveal critical molecular and structural components of early skull devel-
opment [18, 3]. The precise delineation of 3D chondrocranial anatomy is fun-
damental to understanding dermatocranium development, provides important
information to the pathophysiology of numerous craniofacial anomalies, and re-
veals potential avenues for developing novel therapeutics. An embryonic mouse
is tiny (∼ 2cm3), and thus we dissect and reconstruct the chondrocranium from
3D micro-computed tomography (micro-CT) images of specially stained mice.
However, delineating fine-grained cartilaginous structures in these images is very
challenging, even manually (e.g., see Fig. 1).

Although deep learning has achieved great success in biomedical image seg-
mentation [12, 19, 20, 11], there are three main challenges when applying existing
methods to cartilage segmentation in our high-resolution micro-CT images. (1)
The topology variations of craniofacial cartilages are very large in the anterior,
intermediate, and posterior of the skull (as shown in Fig. 1(a)). Known methods
for segmenting articular cartilages in knees [17, 2] only deal with relatively homo-
geneous structures. (2) Such methods deal with images of much lower resolutions
(e.g., 200×5122), and simple scaling-up would precipitate huge computation re-
quirements. Micro-CT scanners work at the level of one micron (i.e., 1µm), and
a typical scan of ours is of size 1500×20002. In Fig. 1(c), the cropped sub-region
is of size 4002, and the region-of-interest (ROI) is only 5 pixels thick. (3) More
importantly, only experts can differentiate cartilages, and it is unrealistic to man-
ually label whole volumes for training fully convolution networks (FCNs) [12].
While some semi-supervised methods [21, 22] were studied very recently, how to
acquire and make the most out of very sparse annotation is seldom explored,
especially for real-world complex cartilage segmentation tasks.
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Fig. 2. An overview of our proposed framework.

To address these challenges, we propose a new framework that utilizes FCNs
and uncertainty-guided self-training to gradually boost the segmentation accu-
racy. We start with extremely sparsely annotated 2D slices and train an FCN to
predict pseudo labels (PLs) for unseen slices in the training volumes and the asso-
ciated uncertainty map, which quantifies pixelwise prediction confidence. Guided
by the uncertainty, we iteratively train the FCN with PLs and improve the gen-
eralization ability of FCN in unseen volumes. Although the above process seems
straightforward, we must overcome three difficulties. (1) The FCN should have
a sufficiently large receptive field to accommodate such high-resolution images
yet needs to be lightweight for efficient training and inference due to the large
volumes. (2) Bayesian-based uncertainty quantification requires a linear increase
of either space or time during inference. We integrate FCNs into a bootstrap en-
semble based uncertainty quantification scheme and devise a K-head FCN to
balance efficiency and efficacy. (3) The generated PLs contain noises. We con-
sider the quality of PLs and propose an uncertainty-guided self-training scheme
to further refine segmentation results.

Experiments show that our proposed framework achieves an average Dice of
78.98% in segmentation compared to prior arts and obtains performance gains
by iterative self-training (from 78.98% to 83.16%).

2 Method

As shown in Fig. 2, our proposed framework contains a new FCN, which can
generate PLs and uncertainty estimation at the same time, and an iterative
uncertainty-guided self-training strategy to boost the segmentation results.

2.1 K-head FCN

Initial Labeling and PL Generation. We consider two sets of 3D data,
A = {Ai}Li=1 and B = {Bi}Ui=1, for training and testing respectively, where each
Ai (or Bi) is a 3D volume and L (or U) is the number of volumes inA (or B). Each
3D volume can be viewed as a series of 2D slices, i.e., Ai = {Aj

i}
iQ
j=1, where iQ is

the number of slices in Ai. To begin with, experts chose representative slices in
each Ai from the anterior, intermediate, and posterior of the skull and annotated
them at the pixel level. Due to the high resolution of our micro-CT images, the
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annotation ratio is rather sparse (e.g., 25 out of 1600 slices). Thus, each Ai can
be divided into two subsets Ali = {lji}

iP
j=1 and Aui = {uji}

iR
j=1, where each slice lji

has its associate label mj
i , and iQ > iR � iP . Conventionally, using such sparse

annotation, a trained FCN lacks generalization ability to the unseen volumes B.
Hence, a key challenge is how to make the most out of the labeled slices. We will
show that an FCN can delineate ROIs in unseen slices of the training volumes
(i.e., Aui) with very sparsely labeled slices. For this, we propose to utilize these
true labels (TLs) and generate PLs to expand the training data.
Uncertainty Quantification. Since FCN here is not trained by standard pro-
tocol, its predictions may be unreliable and noisy. Thus, we need to consider
the reliability of the PLs (which may otherwise lead to meaningless guidance).
Bayesian methods [7] provided a straightforward way to measure uncertainty
quantitatively by utilizing Monte Carlo sampling in forward propagation to gen-
erate multiple predictions. Prohibitively, the computational cost grows linearly
(either time or space). Since our data are large volumes, such cost is unbear-
able. To avoid this issue, we need to design a method that is both time- and
space-efficient. Below we illustrate how to design a new FCN for this purpose.

There are two main types of uncertainty in Bayesian modelling [8, 16]: epis-
temic uncertainty captures uncertainty in the model (i.e., the model parameters
are poorly determined due to the lack of data/knowledge); aleatoric uncertainty
captures genuine stochasticity in the data (e.g., inherent noises). Without loss
of generality, let fθ(x) be the output of a neural network, where θ is the pa-
rameters and x is the input. For segmentation tasks, following the practice
in [8], we define pixelwise likelihood by squashing the model output through
a softmax function S: p(y|fθ(x), σ2) = S( 1

σ2 fθ(x)). The magnitude of σ deter-
mines how ‘uniform’ (flat) the discrete distribution is. The log likelihood for
the output is: log(p(y = c|fθ(x), σ2)) = 1

σ2 f
c
θ (x) − log

∑
c′ exp( 1

σ2 f
c′

θ (x)) =

1
σ2 log

exp(fcθ (x))∑
c′ exp(f

c′
θ (x))

− log
∑
c′ exp(

1
σ2
fc
′
θ (x))

(
∑
c′ exp(f

c′
θ (x)))

1
σ2
≈ 1

σ2 logS(fθ(x))c − 1
2 logσ2, where

f cθ (x) is the c-th class of output fθ(x), and we use the explicit simplifying as-

sumption
(∑

c′ exp(f c
′

θ (x))
) 1
σ2 ≈ 1

σ

∑
c′ exp( 1

σ2 f
c′

θ (x)). The objective is to min-

imize the loss given by the negative log likelihood:

LUC(θ, σ2) = − 1

N

N∑
i

M∑
m

1m=clog(p(yi = c|fθ(xi), σ2)), (1)

where N is the number of training samples and 1m=c is the one-hot vector of
class c. In practice, we make the network predict the log variance s := logσ2 for
numerical stability. Now, the aleatoric uncertainty is estimated by e−s, and we
can quantify the epistemic uncertainty by the predictive variance by 1

K

∑K
k ŷ

2
k−(

1
K

∑K
k ŷk

)2
, where ŷk = fθ(x) is the k-th sample from the output distribution.

K-head FCN. To sample K samples from the output distribution, we adopt
the bootstrap method into the FCN design. A näıve way would be to maintain a
set of K networks {fθk}Kk=1 independently on K different bootstrapped subsets
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Fig. 3. The network architecture of our proposed method, K-head FCN. The output
layer branches out to K bootstrap heads and an extra log-variance output.

(i.e., {Dk}Kk=1) of the whole datasetD and treat each network fθk as independent
samples from the weight distribution. However, it is computationally expensive,
especially when each neural net is large and deep. Hence, we propose a single
network that consists of a shared backbone architecture with K lightweight
bootstrapped heads branching on/off independently. The shared network learns
a joint feature representation across all the data, while each head is trained only
on its bootstrapped sub-sample of the data. The training and inference of this
type of bootstrap can be conducted in a single forward/backward pass, thus
saving both time and space. Besides, in contrast to previous methods where σ2

is assumed to be constant for all inputs, we estimate it directly as an output
of the network [7, 16]. Thus, our proposed network consists of a total of K + 1
branches — K heads corresponding to the segmentation prediction map and an
extra head corresponding to σ2. In all the experiments, K is set as 5, and the
input image size is 512× 512.

Fig. 3 shows the detailed structure of our new K-head FCN. There are 7
residual blocks (RBs) and max-pooling operations in the encoding-path to de-
liver larger reception fields, each RB containing 2 cascaded residual units as in
ResNet [6]. To save parameters, we maintain the number of channels in each
residual unit and a similar number of feature channels at the last 4 scales. Rich
contextual and semantic information is extracted in shallower and deeper scales
in the encoding-path and is up-sampled to maintain the same size for the input
and output and then concatenated to generate the final prediction. The out-
put layer splits near the end of the model for two reasons: (1) ease the training
difficulty and improve the convergence speed; (2) incur minimal computation
resource increases (both time and space) in training and inference. To train
the network, we randomly choose one head in each iteration and compute the
cross-entropy loss LCE . It is combined with the uncertainty loss LUC to update
the parameters in the chosen head branch and the shared backbone only (i.e.,
freezing the other K − 1 head branches). Specifically, L = LCE + 0.04LUC .

2.2 Iterative Uncertainty-Guided Self-Training

Since both Ali and Aui come from the same volume Ai and are based on the as-
sumption that the manifolds of the seen/unseen slices (of Ai) are smooth in high
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dimensions [15], our generated PLs bridge the annotation gap. However, the K

predictions obtained, {m̂j,k
i }Kk=1, from the output distribution for each uji ∈ Aui

could be unreliable and noisy. Thus, we propose an uncertainty-guided scheme
to reweight PLs and rule out unreliable (highly uncertain) pixels in subsequent
training. Specifically, we calculate the voxel-level cross-entropy loss weighted by

the epistemic uncertainty σji for uji : LCE(mj
i , m̃

j
i ) =

∑
v e
−σvLce(mv,m̃v)∑

v e
−σv , where

mj
i is the prediction at the current iteration and m̃j

i =
∑K
k=1 m̂j,k

i ; mv and m̃v

are the values of the v-th pixel (for simplicity, we omit i and j); σv is the sum
of normalized epistemic and aleatoric uncertainties at the v-th pixel; Lce is the
cross-entropy error at each pixel. Note that we do not choose a hard threshold
to convert the average probability map m̃j

i to a binary mask, as inspired by
the “label smoothing” technique [14] which may help prevent the network from
becoming over-confident and improve generalization ability.

With the expansion of the training set (TLs ∪ PLs), our FCN can distill
more knowledge about the data (e.g., topological structure, intensity variances),
thus becoming more robust and generalizing better to unseen data B. However,
due to the extreme sparsity of annotation at the very beginning, not all the
generated PLs are evenly used (i.e., highly uncertain and assigned with low
weights). Hence, we propose to conduct this process iteratively.

Overall, with our iterative uncertainty-guided self-training scheme, we can
further refine the PLs and FCN at the same time. In practice, it needs 2 or 3
rounds, but we do not have to train from scratch, incurring not too much cost.

3 Experiments and Results

Data Acquisition. Mice were produced, sacrificed, and processed in compliance
with animal welfare guidelines approved by the Pennsylvania State University
(PSU). Embryos were stained with phosphotungstic acid (PTA), as described
in [10]. Data were acquired by the PSU Center for Quantitative Imaging using
the General Electric v|tom|x L300 nano/micro-CT system with a 180-kV nanofo-
cus tube and were then reconstructed into micro-CT volumes with a resulting
average voxel size of 5µm and volume size of 1500 × 20002. Seven volumes are
divided into the training set A = {Ai}4i=1 and test set B = {Bi}3i=1. Only a very
small subset of slices in each Ai is labeled for training (denoted as Ali) and the
rest unseen slices Aui and B are used for the test. Four scientists with extensive
experience in the study of embryonic bones/cartilages were involved in image
annotations. They first annotated slices in the 2D plane and then refined the
whole annotation by considering 3D information of the neighboring slices.
Evaluation. In the 3D image regions not considered by the experts, we select 11
3D subregions (7 from B and 4 from Aui), each of an average size 30× 3002 and
containing at least one piece of cartilages. These subregions are chosen for their
representativeness, i.e., they cover all the typical types of cartilages (e.g., nasal
capsule, Meckel’s cartilage, lateral wall, braincase floor, etc). Each subregion
is manually labeled by experts as ground truth. The segmentation accuracy is
measured by Dice-Sørensen Coefficient (DSC).
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Fig. 4. Qualitative examples: (a) Raw subregions; (b) ground truth; (c) U-Net∗ (TL);
(d) K-head FCN (TL); (e) K-head FCN-R3-U (TL∪PL). (XX) = (trained using XX).

Implementation Details. All our networks are implemented with TensorFlow
[1], initialized by the strategy in [5], and trained with the Adam optimizer [9]
(with β1 = 0.9, β2 = 0.999, and ε = 1e-10). We adopt the “poly” learning rate

policy, Lr×
(
1− iter

#iter

)0.9
, where the initial rate Lr = 5e-4 and the max iteration

number is set as 60k. To leverage the limited training data and reduce over-
fitting, we augment the training data with standard operations (e.g., random
crop, flip, rotation in 90◦, 180◦, and 270◦). Due to large intensity variance among
different images, all images are normalized to have zero mean and unit variance.

Main Results. The results are summarized in Table 1. To our best knowledge,
there is no directly related work on cartilage segmentation from embryonic tis-
sues. We compare our new framework with the following methods. (1) A previous
work which utilizes U-Net [19] to automatically segment knee cartilages [2]. We
also try another robust FCN model DCN [4]. For a fair comparison, we scale
up U-Net [19] and DCN [4] to accommodate images of size 5122 as input and
match with the number of parameters of our K-head FCN (∼11.6M) (denoted
as U-Net∗ and DCN∗). (2) A semi-supervised method that generates PLs and
conducts self-training (i.e., 1-head FCN-R3).

First, compared with known FCN-based methods, our K-head FCN yields
better performance for cartilages in different positions. We attribute this to its
deeper structures and multi-scale extracted feature fusion design, which leads to
larger receptive fields and richer spatial and semantic features. Hence, our back-
bone model can capture significant topology variances in skull cartilages (e.g.,
relatively small but thick nasal parts, and large but thin shell-like cranial base
and vault). Second, to show that our K-head FCN is comparable with Monte
Carlo sampling based Bayesian methods, we implement 1-head FCN and con-
duct sampling K times to obtain PLs. Repeating the training process 3 times
(denoted as ‘-R3’), we observe that using PLs, K-head FCN-R3 achieves similar
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Table 1. Segmentation results. Top: DSC (%) comparison of cartilages in the ante-
rior, intermediate, and posterior skull, w/ annotation ratio of 3.0%. TL: true labels;
PL: pseudo labels. Bottom-left: “K-head FCN-R3-U (TL∪PL)” w/ annotation ratio of
3.0%. Bottom-right: “K-head FCN-R3-U (TL∪PL)” w/ different annotation ratios.

Method Anterior Intermediate Posterior Overall

U-Net∗ [19] (TL) 80.03 81.19 64.39 76.06

DCN∗ [4] (TL) 80.87 81.68 64.07 76.42

K-head FCN (TL) 82.23 84.46 67.52 78.98

1-head FCN-R3 (TL∪PL) 85.15 87.53 69.46 81.69

K-head FCN-R3 (TL∪PL) 85.77 88.34 70.30 82.45

K-head FCN-R3-U (TL∪PL) 86.31 89.17 70.98 83.16

Data
Iteration

1 2 3

{Aui}Li=1 83.19 86.39 87.08

{Bi}Ui=1 78.98 82.70 83.16

Data
Annotation Ratio

1.5% 3.0% 12.0%

{Aui}Li=1 80.12 87.08 89.20

{Bi}Ui=1 75.73 83.16 85.65

Fig. 5. Visualization of uncertainty. From left to right: a raw image region, ground
truth, prediction result, estimated epistemic uncertainty, and estimated aleatoric un-
certainty. Brighter white color means higher uncertainty.

performance as 1-head FCN-R3. However, in each forward pass, we obtain K
predictions at once, thus saving ∼ K× the time/space costs. Qualitative results
are shown in Fig. 4. Third, we further show that under the guidance of uncer-
tainty, our new method (K-head FCN-R3-U) attains performance gain (from
82.45% to 83.16%). We attribute this to that unreliable PLs are ruled out, and
the model optimizes under cleaner supervisions.

Discussions. (1) Iteration Numbers. We measure DSC scores on both unseen
slices in the training volumes ({Aui}Li=1) and unseen slices in the test volumes
({Bi}Ui=1) during the training of “K-head FCN-R3-U” (see Table 1 bottom-left).
We notice significant performance gain after expanding the training set (i.e.,
TLs → TLs ∪ PLs, as Iter-1 → Iter-2). Meanwhile, because the uncertainty of
only a small amount of pixels changes during the whole process, the performance
gain is not substantial from Iter-2 to Iter-3. (2) Annotation Ratios. As shown
in Table 1 bottom-right, the final segmentation results can be improved using
more annotation, but the improvement rate decreases when labeling more slices.
(3) Uncertainty Estimation. We visualize the samples along with estimated seg-
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mentation results and the corresponding epistemic and aleatoric uncertainties
from the test data in Fig. 5. It is shown that the model is less confident (i.e.,
with a higher uncertainty) on the boundaries and hard mimic regions where the
epistemic and aleatoric uncertainties are prominent.

4 Conclusions

We presented a new framework for cartilage segmentation in high-resolution 3D
micro-CT images with very sparse annotation. Our K-head FCN produces seg-
mentation predictions and uncertainty estimation simultaneously, and the itera-
tive uncertainty-guided self-training strategy gradually refines the segmentation
results. Comprehensive experiments showed the efficacy of our new method.
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