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Abstract. Accurate and automatic medical image segmentation is chal-
lenging due to significant size and shape variations of objects (e.g., in
multi-scales) and missing/blurring object borders. In this paper, we pro-
pose a new deeply supervised k-complete-bipartite network with asymmet-
ric convolutions (kCBAC-Net) to exploit multi-scale features and im-
prove the capability of standard convolutions for segmentation. (1) We
leverage a generalized complete bipartite network to reuse multi-scale
features, consolidate feature hierarchies at different scales, and preserve
maximum information flow between encoder and decoder layers. (2) To
further capture multi-scale information, we sequentially connect £ com-
plete bipartite network modules together to facilitate their processing
in different image scales. (3) We replace the standard convolution by
asymmetric convolution block to strengthen the central skeleton parts
of standard convolution, enhancing the model’s robustness on exploiting
more discriminative features. (4) We employ auxiliary deep supervisions
to boost information flow in the network and extract highly discrimina-
tive features. We evaluate our kCBAC-Net on three datasets (ultrasound
lymph node segmentation (2D), 2017 ISIC Skin Lesion segmentation
(2D), and MM-WHS CT (3D)), achieving state-of-the-art performance.

1 Introduction

Accurate image segmentation is critical to medical image analysis, disease diag-
nosis, and clinical applications (e.g., quantitative analysis of lymph node sizes
and shapes [28], melanoma diagnosis [3], and cardiovascular surgical planning [18]).
However, automatic medical image segmentation with high accuracy is a very
non-trivial task due to multiple challenging factors, including (I) multi-scale ob-
jects: the variations of object sizes and appearances can be very large, and in
some extreme cases, the ratio between the largest and smallest objects could
be hundreds; (IT) missing/blurring object borders: due to low contrast or noisy
background, the borders between objects or background may be missing or very
ambiguous. Fig. |1] gives some examples to illustrate such challenges.

Many deep learning based image segmentation methods were proposed to ad-
dress these challenges. There are three main types of methods for dealing with
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Fig. 1. Input image examples (left) and their ground truth (right) (best viewed in
color). (a) 2017 ISIC Skin Lesion segmentation dataset [10]: Lesions vary a lot in sizes
and shapes and their borders could be very ambiguous due to low contrast between
lesion regions and surrounding skin. (b) Ultrasound lymph node images: Multi-scale ob-
jects and unclear borders increase the difficulty of distinguishing real lymph nodes and
regions highly similar to lymph nodes. (¢) 2017 MM-WHS CT dataset [31]: Different
detailed structures are in various scales and boundaries are unclear.

(b)

the issue of multi-scale objects. (1) Encoder-decoder structures: U-Net [20] and
its variants [B0JI6] utilized skip connections to fuse multi-scale features extracted
from the encoder to the counterparts in the decoder. (2) Multi-path diagram:
These frameworks [219] fed multi-scale images to the same network (with shared
weights) and captured features from various scale inputs. (3) Spatial pyramid de-
sign: DeepLabv3 [] utilized an atrous spatial pyramid pooling module containing
multiple parallel atrous convolution layers to extract multi-scale contextual in-
formation. An array of studies sought to tackle the missing/blurring border issue.
In [5], two branches were used to segment the main regions-of-interest (ROIs)
and the corresponding contours separately. In [2728], multiple sub-modules were
built to encourage deep neural networks to learn richer and more comprehen-
sive features. Despite yielding promising performance on various segmentation
tasks, these known methods tended to emphasize on addressing one challenge
while neglecting the other. It is highly desirable to tackle these two major issues
simultaneously for accurate and robust segmentation.

In this paper, we propose a new deeply supervised k-complete-bipartite net-
work with asymmetric convolutions (kCBAC-Net), aiming to extensively exploit
multi-scale features and enhance the capability of standard convolutions on ex-
tracting discriminative features. Specifically, we develop kCBAC-Net with the
following ideas. (1) A generalized complete bipartite network adopted from CB-
Net [6] is employed to reuse and aggregate multi-scale features and boost in-
formation flow between encoder and decoder layers. (2) Following the structure
of kU-Net [7], k complete bipartite network modules for processing different
image scales are systematically connected to enhance and assimilate multi-scale
information. (3) The standard convolution is incorporated with asymmetric con-
volutions [I] to strengthen the central skeleton portions of the standard convo-
lution, reinforcing the network’s robustness on exploiting discriminative features.
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Fig. 2. An overview of kKCBAC-Net with k& = 2. The top-left box illustrates an asym-
metric convolution block. The bottom-left box presents complete bipartite connections
with 5 encoder and decoder blocks. The architecture is shown in 2D manner here;
however, we also implement its 3D version. Best viewed in color.

(4) Auxiliary deep supervisions are applied to bolster the network on extracting
discriminative features for tackling the missing/blurring border issue.

Our experiments on kKCBAC-Net with two public datasets (2017 ISIC Skin
Lesion segmentation (2D) [10] and MM-WHS CT (3D) [31]) and one in-house
dataset (for lymph node segmentation in ultrasound images (2D)) show that
kCBAC-Net outperforms state-of-the-art methods on these datasets.

2 Method

Fig. [2 shows the architecture of our kKCBAC-Net. It contains three main com-
ponents: (1) a k-complete-bipartite network (kCB-Net) that extracts and reuses
rich multi-scale features, using complete bipartite connections (CBC) and k se-
quentially connected network modules; (2) KCBAC-Net that exploits more dis-
criminative features via asymmetric convolutions; (3) auxiliary deep supervisions
employed at layers far from the layer for computing loss functions that benefit
effective network training and highly discriminative feature capturing.

2.1 k-Complete-Bipartite Network (kCB-Net)

A common way to reuse multi-scale features is to leverage skip connections. Using
skip connections, multi-scale features extracted by the encoder can be utilized
by the counterparts of the decoder. But, such skip connections may not ensure
full exploitation and reuse of multi-scale features captured by the encoder. To
further exploit multi-scale features, we design KCB-Net with complete bipartite
connections and the structure of sequentially connected k network modules.
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In an encoder-decoder structure (e.g., U-Net) with [ encoder and decoder

blocks, let xz; and y; denote the outputs of the ith encoder and decoder blocks,
respectively. Then x; (or y;) can be computed by a transformation function
from the output z;_1 (or y;—1) of the previous encoder (or decoder) block as
x; = Fi(x;—1) and y; = D;(y;—1), where E; (or D;(z)) can be a composite of
operations such as Max Pooling (Deconvolution (Deconv)), Convolution (Conv),
Batch Normalization (BN), Rectified Linear Unit (ReLU), etc.
Complete Bipartite Connections (CBC). To better reuse multi-scale fea-
tures and enhance information flow among encoder and decoder blocks, the com-
plete bipartite network (CB-Net) [6] used the idea of CBC, introducing one skip
connection between every pair of encoder and decoder blocks, while HR-Net [23]
gradually expands in deeper stages of encoder. Specifically,

yi = Di(E1(20) © -+ © Ei(2i-1) © -+ © Ey(21-1) © ¥i—1)5

where ©® denotes concatenation operation. An example of CBC is given in the
bottom-left box of Fig. With a skip connection between each pair of en-
coder/decoder blocks, multi-scale features can be consolidated in the network
hierarchy, and can be effectively reused at the decoder blocks. In addition, in-
formation flow between encoder and decoder blocks can be enlarged by the in-
troduced skip connections. These characteristics are essential for the network to
exploit and reuse multi-scale information.

kCB-Net Organization. Another common deep learning based solution for
handling multi-scale objects is a multi-path diagram. However, the design using
the same network modules with shared weights may not be suitable for dealing
with objects with significant size and appearance variations. In [7], kKU-Net was
proposed to handle multi-scale objects. Specifically, k U-Nets (without sharing
parameters) working on different image scales are sequentially connected to ex-
tract multi-scale information. This structure has two compelling advantages. (1)
The networks can view different-size regions of the same image with different
scales, which facilitates processing multi-scale objects. (2) The multi-scale infor-
mation extracted by one network can be propagated to the subsequent networks,
which may assist further exploiting multi-scale information.

The organization of our kCB-Net is adopted from kU-Net [7]. First, an image
of scale s; (t =1, ..., k) generated after ¢ — 1 max pooling layers is processed
by a network module CB-Net-t. Second, CB-Net-(t — 1) takes every piece of
information from CB-Net-t in the commensurate layers to well assimilate multi-
scale information. We use this way to connect our CB-Net modules because such
connections yield the best performance in our experiments. Note that the mem-
ory and time costs become larger when & increases. For example, on the lymph
node dataset, for k = 1,2, 3,4, the F1 scores are 0.871, 0.897, 0.903, and 0.902
(see the F1 scores of CB-Net, kCB-Net, 3CB-Net, and 4CB-Net in Table ,
and the memory costs are 5.5GB, 11.8GB, 18GB, and 24.4GB, respectively. The
performance saturates with larger k, and the costs increase largely. Consider-
ing the trade-off between performance and computation, we set k& = 2 in our
experiments.
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Note that it is highly desirable to address the two major issues discussed in
Section [I] simultaneously by the same model. Below we elaborate how to tackle
the other issue, missing/blurring object borders, in our kCB-Net.

2.2 KkCBAC-Net: Leveraging Asymmetric Convolutions

Recent studies attempting to tackle the missing/blurring border issue tended to
focus on leveraging multiple modules to deal with the objects and boundaries
separately, or encouraging the networks to learn richer and more distinguish-
able features. Such methods did not explore the possibility of identifying miss-
ing/blurring object borders by enhancing the network’s capability via exploiting
more discriminative features from the perspective of convolution operations.

An asymmetric convolution block (ACB) [II] adds additional 1 x d and d x 1
Conv layers on the basis of a standard d x d Conv layer, to strengthen the central
skeleton parts of standard Conv, as:

ACB(x) = BN (Convgxq(x)) + BN (Convixq(z)) + BN (Convgxi(x))

where d is an integer and + denotes element-wise sum. It is more sophisti-
cated than inception-v2 [22] that decomposes only standard Conv. The added
asymmetric convolutions can enhance the network’s robustness with respect to
rotational distortions, thus improving its capability to learn more distinguish-
able and discriminative features. This extension is important for us to address
missing/blurring borders, as it can reduce ambiguities of object borders more ef-
fectively than standard convolution. Hence, we replace the standard convolution
layers in our kCB-Net by ACBs, and call the resulted network kCBAC-Net.
The architecture of KCBAC-Net is shown in Fig. [2] The structure of CBAC-
Net is adopted from CB-Net [6], with five encoder and decoder blocks. Each
encoder or decoder block contains two ACBs, with each ACB followed by a
ReLU. Starting from the first encoder block, we double the number of feature
channels, and half the number of feature channels in the decoder blocks. The
structure of kCBAC-Net uses the organization of kCB-Net (see Section [2.1]).

2.3 Deep Supervision (DS)

Effectively training deep learning networks (especially deeper networks with a
large number of parameters) is non-trivial, as the gradient can be gradually
vanishing when it is propagated back to early layers. Hence, the layers that are far
away from the layer computing loss functions may not be trained well [2]. Deep
supervision [13] is a technique to address this issue. However, simply adding deep
supervisions to the network may collapse task-relevant information at shallow
layers, and thus hurt the performance [24].

An important question is: At which layers should we add deep supervisions?
It was shown experimentally [I] that (1) adding deep supervisions at layers far
away from the layer computing loss functions can effectively address performance
deteriorate, and (2) the last layer of the encoder in U-Net is its farthest layer
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Table 1. Comparison of segmentation results on the ultrasound lymph node dataset.
CB-Net w/o CBC is a deeper U-Net with one more scale of encoding and decoding
block. The best results are marked in bold (the same for the other tables in this paper).

Method ToU Precision Recall F1 Score
U-Net [20] 0.661 0.834 0.761 0.796
Zhang et al. [27] 0.810 0.901 0.889 0.895
kCB-Net 0.814 0.907 0.888 0.897
kCB-Net + ACB (kCBAC-Net) 0.819 0.900 0.900 0.900
kCBAC-Net + DS 0.829 0.909 0.904 0.906

Ablation Study
CB-Net w/o CBC (deeper U-Net) 0.757 0.869 0.854 0.861

CB-Net 0.771 0.893 0.849 0.871
3CB-Net 0.824 0.908 0.898 0.903
4CB-Net 0.822 0.911 0.894 0.902

Table 2. Comparison of segmentation results on the 2017 ISIC Skin Lesion dataset.

Method Jaccard Index Dice Sensitivity Specificity
Yuan et al. [26] 0.765 0.849 0.825 0.975
Li et al. [15] 0.765 0.866 0.825 0.984
Lei et al. [14] 0.771 0.859 0.835 0.976
Mirikharaji et al. [17] 0.773 0.857 0.855 0.973
Xie et al. [25] 0.788 0.868 0.884 0.957
kCB-Net 0.784 0.881 0.827 0.984
kCBAC-Net 0.788 0.884 0.848 0.980
kCBAC-Net + DS 0.794 0.887  0.847 0.984

to the layer computing loss functions. To boost information flow in our network
and extract more discriminative features to further handle the missing/blurring
border issue, we employ three auxiliary deep supervisions in our KCBAC-Net
(see Fig. . Specifically, we first add two auxiliary deep supervisions at the last
layer of the Bridge block, which is the farthest layer of each CBAC-Net; then we
add an auxiliary deep supervision to the last layer of Decoder 1 of CBAC-Net-2
to further boost information flow. We denote the auxiliary losses at the last layer
of the Bridge and Decoder 1 blocks of CBACNet-2 as LosSqyuz1 and LosSgyz2,
respectively, and the auxiliary loss at the last layer of the Bridge of CBACNet-1
as LosSquzs. Adding these three auxiliary losses to the main loss (LosSmain),
our total loss (LosSioter) becomes:

3

Lossiotal = E Ai L0853 quzi + L0SSmain
=1

where )\; is a balancing weight, and Lossqqz; and LosSyqin are computed using
the auxiliary output and main output of kCBAC-Net. Our kKCBAC-Net employs
DS in multiple modules rather than only in a certain one (e.g., U-Net-++ [30]).

3 Experiments and Results

Two 2D Datasets and One 3D Dataset. (1) The ultrasound lymph node
segmentation dataset: This in-house ultrasound lymph node dataset contains
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Table 3. Comparison of segmentation results on the 2017 MM-WHS CT dataset. Note:
“—” means that the corresponding results were not reported by that method.

Method Metric LV RV LA RA LV-myo AO PA Mean
Payer et al. [19] Dice 0.918 0.909 0.929 0.888 0.881 0.933 0.840 0.900
Dou et al. [12] Dice 0.888  — 0.891 — 0.733 0.813 — —
Chen et al. [4] Dice 0.919 — 0.911 — 0.877 0.927 — 0.909

Dice 0.946 0.893 0.925 0.897 0.910 0.964 0.830 0.909
HFA-Net [29] Jaccard 0.898 0.810 0.861 0.816 0.836 0.930 0.722 0.839

Hausdorff [voxel] 7.148 33.128 42.173 22.903 36.954 12.075 37.845 27.461
ADB [voxel] 0.076 0.562 0.210 0.334 0.225 0.103 1.685 0.456

Dice 0.950 0.894 0.929 0.913 0.916 0.968 0.837 0.915

LCB-Net Jaccard 0.905 0.811 0.869 0.841 0.845 0.938 0.730 0.849
Hausdorff [voxel] 8.887 12.639 14.630 24.229 10.642 20.713 33.663 17.915

ADB [voxel] 0.074 0.338 0.205 0.244 0.122 0.074 1.467 0.361

Dice 0.951 0.894 0.939 0.909 0.920 0.966 0.843 0.917

LCBAC-Net Jaccard 0.907 0.812 0.886 0.834 0.851 0.934 0.742 0.852

Hausdorff [voxel] 5.534 13.315 15.296 14.670 7.649 17.451 30.758 14.953
ADB [voxel] 0.075 0.339 0.139 0.268 0.115 0.068 1.391 0.342
Dice 0.951 0.902 0.938 0.911 0.922 0.974 0.837 0.919
Jaccard 0.907 0.825 0.883 0.838 0.855 0.949 0.734 0.856
Hausdorff [voxel] 5.500 14.940 12.403 15.081 7.337 6.848 32.499 13.516
ADB [voxel] 0.074 0.285 0.163 0.248 0.119 0.059 1.403 0.336

kCBAC-Net + DS

137 training and 100 test images. The task is to segment lymph nodes in 2D
ultrasound images. (2) The 2017 ISIC Skin Lesion segmentation dataset:
This public dataset [I0] contains 2000 training, 150 validation, and 600 test
images. The task is to segment lesion boundaries in 2D dermoscopic images.
Following [25126], we resize the images to 224 x 224, and apply a dual-threshold
method to generate the final results. (3) The 2017 MM-WHS CT dataset:
This public dataset [3I] contains 20 unpaired 3D CT images. Similar to [29],
the dataset is randomly split into 16 images and 4 images for training and test.
The task is to segment seven cardiac structures: the left/right ventricle blood
cavity (LV/RV), left/right atrium blood cavity (LA/RA), myocardium of the
left ventricle (LV-myo), ascending aorta (AO), and pulmonary artery (PA).

Implementation Details. Our new network is implemented with TensorFlow,
trained on an Nvidia Tesla V100 Graphics Card with 32GB GPU memory using
the Adam optimizer (81 = 0.9, B2 = 0.999, ¢ = le—10). The “poly” learning rate
Fiter
the maximum number of iterations is 140k for the ultrasound lymph node and
2017 ISIC Skin Lesion datasets, and 180k for the 2017 MM-WHS CT dataset
(using about 26, 21, and 92 hours, respectively, for training). Standard data
augmentation (e.g., image crop, flip, and rotation in 90, 180, and 270 degrees)
is utilized to reduce overfitting. The balancing weights A1, Ao, and A3 are set
as 0.25, 0.50, and 0.75 for the ultrasound lymph node and 2017 MM-WHS CT
datasets and 1.0, 1.0, and 1.0 for the 2017 ISIC Skin Lesion dataset.

Quantitative Results. Table [I] gives quantitative comparison of our method
with U-Net [20] and the best-known method [27] on the ultrasound lymph node
dataset. First, our kCB-Net already obtains a new state-of-the-art performance.
We attribute this to the compelling advantages of CBC and the structure of k
connected network modules (without sharing parameters) on exploiting multi-

policy, L, x <1 — , is applied, with the initial learning rate = 5e — 4, and
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scale features. Second, by leveraging ACB and DS, our method further improves
the state-of-the-art performance (1.9% IoU and 1.1% F1 score over Zhang et
al. [27]), showing the capability of ACB and the employed DS for capturing
more distinguishable and discriminative features to handle the missing/blurring
border issue. Results on the 2017 ISIC Skin Lesion dataset are given in Table
We compare our results with five recent skin lesion segmentation methods, in-
cluding the 2017 ISIC Challenge winner [26], dense deconvolution network [15],
dense convolution U-Net [I4], FCN with a star shape prior [I7], and a state-of-
the-art method [25]. First, kKCB-Net attains comparable Jaccard index score (the
only evaluation metric used by the challenge organizers to rank competitors) as
the state-of-the-art method [25]. This indicates the effectiveness of CBC and the
structure of k& connected network modules on exploiting multi-scale information.
Second, by utilizing ACB and DS, our method achieves the highest Jaccard in-
dex, Dice, and specificity, though its sensitivity is slightly lower than that of
some other methods. We attribute the improvement to the effects of ACB and
DS on handling missing/blurring borders. To further show the effectiveness of
our method on 3D images, we experiment with the 2017 MM-WHS CT dataset,
and compare with four representative methods. As shown in Table[3] our method
yields better results than the other methods on all the evaluation measures and
achieves new state-of-the-art performance. Qualitative results showing our strong
capability of delineating missing/blurring borders and handling multi-scale ob-
jects are given in Fig.

Ablation Study. We conduct ablation study using the ultrasound lymph node
dataset to examine the importance of CBC and the structure of k& connected
network modules on exploiting multi-scale features. As shown in Table [1} (1)
when removing CBC from CB-Net, the F1 score drops by 1%; (2) when exper-
imenting with CB-Net (i.e., setting k = 1), the F1 score drops by 2.6%. These
observations demonstrate that CBC and the structure of k connected network
modules indeed play a meaningful role in exploiting multi-scale features.

4 Conclusions

In this paper, we presented a new deeply supervised k-complete-bipartite net-
work with asymmetric convolutions (kCBAC-Net) for medical image segmenta-
tion. Our KCBAC-Net leverages a generalized complete bipartite network and
the structure of k£ connected network modules to exploit and reuse multi-scale
features for dealing with the multi-scale object issue. To further enhance the
capability of our model on handling the missing/blurring border issue, ACB and
auxiliary deep supervisions are employed. Experiments on two public datasets
and one in-house dataset demonstrated the effectiveness of our kKCBAC-Net.

Acknowledgement. This research was supported in part by NSF grants IIS-
1455886, CCF-1617735, CNS-1629914, and I1S-1955395.
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Fig. 3. Some visual qualitative results on the ultrasound lymph node dataset (a) and
2017 MM-WHS CT dataset (b), showing the capability of our new method (kCBAC-
Net with deep supervisions) on handling the issues of multi-scale objects and miss-
ing/blurring borders. Magenta arrows mark some errors.
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