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Abstract. A large labeled dataset is a key to the success of super-
vised deep learning, but for medical image segmentation, it is highly
challenging to obtain sufficient annotated images for model training. In
many scenarios, unannotated images are abundant and easy to acquire.
Self-supervised learning (SSL) has shown great potentials in exploiting
raw data information and representation learning. In this paper, we pro-
pose Hierarchical Self-Supervised Learning (HSSL), a new self-supervised
framework that boosts medical image segmentation by making good
use of unannotated data. Unlike the current literature on task-specific
self-supervised pretraining followed by supervised fine-tuning, we utilize
SSL to learn task-agnostic knowledge from heterogeneous data for var-
ious medical image segmentation tasks. Specifically, we first aggregate
a dataset from several medical challenges, then pre-train the network
in a self-supervised manner, and finally fine-tune on labeled data. We
develop a new loss function by combining contrastive loss and classifi-
cation loss, and pre-train an encoder-decoder architecture for segmenta-
tion tasks. Our extensive experiments show that multi-domain joint pre-
training benefits downstream segmentation tasks and outperforms single-
domain pre-training significantly. Compared to learning from scratch,
our method yields better performance on various tasks (e.g., +0.69% to
+18.60% in Dice with 5% of annotated data). With limited amounts of
training data, our method can substantially bridge the performance gap
with respect to denser annotations (e.g., 10% vs. 100% annotations).
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1 Introduction

Although supervised deep learning has achieved great success on medical image
segmentation [15(17,/24.33], it heavily relies on sufficient good-quality manual
annotations which are usually hard to obtain due to expensive acquisition, data
privacy, etc. Public medical image datasets are normally smaller than the generic
image datasets (see Fig. 1(a)), and may hinder improving segmentation perfor-
mance. Deficiency of annotated data has driven studies to explore alternative
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Fig. 1. (a) The number of images for each medical image segmentation challenge every
year since 2016 at MICCAI (left: 2D images; right: 3D stacks). (b) Diverse medical
image and mask examples: spleen, liver & tumours, cardiovascular structures, knee
bones & cartilages, and prostate.

solutions. Transfer learning fine-tunes models pre-trained on ImageNet for target
tasks [12}/35136], but it could be impractical and inefficient due to the pre-defined
model architectures [18] and is not as good as transferred from medical images
due to image characteristics differences [36]. Semi-supervised learning utilizes
unlimited amounts of unlabeled data to boost performance, but it usually as-
sumes that the labeled data sufficiently covers the data distribution, and needs
to address consequent non-trivial challenges such as adversarial learning [19}[31]
and noisy labels [30134]. Active learning selects the most representative samples
for annotation [28}32/35] but focuses on saving manual effort and does not utilize
unannotated data. Considering these limitations and the fact that considerable
unlabeled medical images are easy to acquire and free to use, we seek to answer
the question: Can we improve segmentation performance with limited training
data by directly exploiting raw data information and representation learning?

Recently, self-supervised learning (SSL) approaches, which initialize mod-
els by constructing and training surrogate tasks with unlabeled data, attracted
much attention due to soaring performance on representation learning [8H10/14,
16,[20}/21,/23] and downstream tasks [4}/5/22,|26}[36}/37]. It was shown that the
learned representation by contrastive learning, a variant of SSL, gradually ap-
proaches the effectiveness of representations learned through strong supervision,
even under circumstances when only limited data or a small-scale dataset is
available [6l/11]. However, three key factors of contrastive learning have not been
well explored for medical segmentation tasks: (1) A medical image dataset is of-
ten insufficiently large due to the intrusive nature of some imaging techniques or
expensive annotations (e.g., 3D(+T) images), which suppresses self-supervised
pre-training and hinders representation learning using a single dataset. (2) The
contrastive strategy considers only congenetic image pairs generated by different
transformations used in data augmentation, which suppresses the model from
learning task-agnostic representations from heterogeneous data collected from
different sources (see Fig. 1(b)). (3) Most studies focused on extracting high-level
representations by pre-training the encoder while neglecting to learn low-level
features explicitly and initialize the decoder, which hinders the performance of
dense prediction tasks such as semantic segmentation.

To address these challenges, in this paper, we propose a new hierarchical
self-supervised learning (HSSL) framework to pre-train on heterogeneous unan-
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notated data and obtain an initialization beneficial for training multiple down-
stream medical image segmentation tasks with limited annotations. First, we in-
vestigate available public challenge datasets on medical image segmentation and
propose to aggregate a multi-domain (modalities, organs, or facilities) dataset. In
this way, our collected dataset is considerably larger than a task-specific dataset
and the pretext model is forced to learn task-agnostic knowledge (e.g., texture,
intensity distribution, etc). Second, we construct pretext tasks at multiple ab-
straction levels to learn hierarchical features and explicitly force the model to
learn richer semantic features for segmentation tasks on medical images. Specif-
ically, our HSSL utilizes contrasting and classification strategies to supervise
image-, task-, and group-level pretext tasks. We also extract multi-level features
from the network encoding path to bridge the gap between low-level texture and
high-level semantic representations. Third, we attach a lightweight decoder to
the encoder and pre-train the encoder-decoder architecture to obtain a suitable
initialization for downstream segmentation tasks.

We experiment on our aggregated dataset composed of eight medical image
segmentation tasks and show that our HSSL is effective in utilizing multi-domain
data to initialize model parameters for target tasks and achieves considerably
better segmentation, especially when only limited annotations are available.

2 Methodology

We discuss the necessity and feasibility of aggregating multi-domain image data
and show how to construct such a dataset in Sect. and then introduce our
hierarchical self-supervised learning pretext tasks (shown in Fig. [2) in Sect.
After pre-training, we fine-tune the trained encoder-decoder network on down-
stream segmentation tasks with limited annotations.

2.1 Multi-Domain Data Aggregation

Necessity. As shown in Fig. 1(a), most publicly available medical image segmen-
tation datasets are of relatively small sizes. Yet, recent progresses on contrastive
learning empirically showed that training on a larger dataset often learns bet-
ter representations and brings larger performance improvement in downstream
tasks [6/7,/11]. Similarly, a larger dataset is beneficial for supervised classification
tasks and unsupervised image reconstruction tasks, because such a dataset tends
to be more diverse and better cover the true image space distribution.

Feasibility. First, there are quite a few medical image dataset archives (e.g.,
TCTA) and public challenges (e.g.,|Grand Challenge)). Typical imaging modalities
(CT, MRI, X-ray, etc) of multiple regions-of-interest (ROIs, organs, structures,
etc) are covered. Second, common/similar textures or intensity distributions are
shared among different datasets (see Fig. 1(b)), and their raw images may cover
the same physical regions (e.g., abdominal CT for the spleen dataset and liver
dataset). Therefore, an aggregated multi-domain dataset can (1) enlarge the
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Fig. 2. An overview of our proposed hierarchical self-supervised learning (HSSL) frame-
work (best viewed in color). The backbone encoder builds a pyramid of multi-scale
features from the input image, forming a rich latent vector. Then it is stratified to rep-
resent hierarchical semantic features of the aggregated multi-domain data, supervised
by different pretext tasks in the hierarchy. Besides, an auxiliary reconstruction pretext
task helps initialize the decoder.

data size of a shared image space and (2) force the model to distinguish different
contents from the raw images. In this way, task-agnostic knowledge is extracted.
Dataset Aggregation. To ensure the effectiveness of multi-domain data ag-
gregation, three principles should be considered. (1) Representativeness: The
datasets considered for aggregation should cover a moderate range of medical
imaging techniques/modalities. (2) Relevance: The datasets considered should
not drastically differ in content/appearance. Otherwise, it is easy for the model
to distinguish them and a less common feature space is shared among them. (3)
Diversity: The datasets considered should benefit a range of applications. In this
work, we focus on CT and MRI of various ROIs (i.e., heart, liver, prostate, pan-
creas, knee, and spleen). The details of aggregated dataset are shown in Table

2.2 Hierarchical Self-Supervised Learning (HSSL)

Having aggregated multiple datasets, D = {Dj, Da,..., Dy}, where D; is a
dataset for a certain segmentation task. A straightforward method to use D is
to directly extend some known pretext tasks (e.g., SimCLR [6]) and conduct joint
pre-training. However, such pretext tasks only explicitly force the model to learn
a global representation and are not tailored for the target segmentation tasks.
Hence, taking imaging techniques and prior knowledge (e.g., appearance, ROIs)
into account, we propose to extract richer semantic features from hierarchical
abstract levels and devise the network for target segmentation tasks.

We formulate three hierarchical levels (see Fig. 3(a)). (1) Image-level: Each
image I is a learning subject; we want to extract distinguishable features of I
w.r.t. another image, regardless of which dataset it originally comes from or what
ROlIs it contains. Specifically, we follow the state-of-the-art SimCLR @ and build
positive and negative pairs with various data augmentations. (2) Task-level: Each
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Fig. 3. (a) An example of the hierarchical structure of a multi-domain dataset. Each
chosen dataset/task D; forms a domain consisting of a set of images {Izk }kN’:"l, where
N, is the total number of images in D;. Multiple tasks form a multi-domain cluster
called a group (G;). (b) t-SNE projection of extracted features (best viewed in color).
Top-left: Fvga—19; top-right: Fimage; bottom-left: Fiosp (forming single-domain task-
level clusters as in Table ; bottom-right: Fyroup (forming multi-domain group-level
clusters as in Table .

D; is originally imaged for a specific purpose (e.g., CT for spleen). Generally,
images belonging to a same dataset are similar inherently. As shown in Fig. 3(b),
images of different modalities and ROIs are easier to distinguish. For abdomi-
nal CTs of spleen and liver, although the images are similar, their contents are
different. Thus, each task’s dataset forms a single domain of certain ROI and
image types. (3) Group-level: Despite the differences among different segmen-
tation tasks, the contents of images may show a different degree of similarity.
For example, in the physical space, liver CT scans have overlapping with spleen
CT scans; cardiac MRIs scanned for different purposes (e.g., diverse cardiovas-
cular structures) contain the same ROI (i.e., the heart) regardless of the image
size and contrast. In this way, we categorize multiple domains of images into a
group, which forms a multi-domain cluster in the feature space. Assigned with
both task-level and group-level labels, each image constitutes a tuple (1,4, 49),
where ¢ and ¢ are task-class and group-class, respectively (see Table .
Further, to better aggregate low- and high-level features from the encoder, we
compress multi-scale feature vectors from the feature pyramid and concatenate
them together, and then attach three different projection heads to automatically
extract hierarchical representations (see Fig. [2)).
Image-Level Loss. Given an input image I, the contrastive loss is formulated

as: Z(I’ I) = 1Og exp{sim(i,2););I})iﬂzmzi(:/;i)é;g{sim(i,z)/-r}’ where Z = B(E(I»’ z=
P(E(I)), z = P(E(I)), P(-) is the image-level projection head, E(-) is the
encoder, I and I are two different augmentations of image I (i.e., I = #(I) and
I = t(I)), I € A~ consisting of all negative samples of I, and #, t € T are
two augmentations. The augmentations 7 include random cropping, resizing,
blurring, and adding noise. sim(-,-) is cosine similarity, and 7 is a temperature

scaling parameter. Given our multi-domain dataset D, the image-level loss is
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Table 1. Details of our data obtained from public sources. The left two columns: their
task-classes and group-classes based on our multi-domain data aggregation principles.

Task ID|Group ID| ROI-Type Segmentation class 7## of slices| Source

1 1 Heart-MRI 1: left atrium 1262 |LASC |27]]
2 2 Liver-CT 1: liver, 2: tumor 4342 LiTS (3] |
3 3 Prostate-MRI| 1: central gland, 2: peripheral zone 483 MSD 25?
4 2 Pancreas-CT 1: Pancreas, 2: tumor 8607 MSD [25] |
5 2 Spleen-CT 1: spleen 1466 MSD 25?

T: femur bone, 2: tibia bone, -
6 4 Knee-MRI 3: femur cartilage, 4: tibia cartilage 8187 Knee [29;
7 1 Heart-MRI 1: left ventricle, 2: right ventricle, 1891 ACDC |2]
8 1 Heart-MRI 3: myocardium 3120 M&Ms [1]]

defined as: Lipmg = ﬁ > ov(.i)ed+ [I(I,1)+1(I,)], where At is a set of all
similar pairs sampled from D.
Task-Level Loss & Group-Level Loss. Given task-class and group-class, we
formulate task- and group-level pretext tasks as classification tasks. The training
objectives are: Ligsk = — 3oy 42108(pL); Lorowp = — S, y9 log(pd), where
pt = P(E(I)), p¢ = P,(E(I)), Pi(-) (or Py(-)) is the task-level (or group-level)
projection head, F(-) is the encoder, y. (or y¢) is the task-class (or group-class)
of input image I, and T (or G) is the number of classes of tasks (or groups).
We visualize some sample learned features in Fig. 3(b), in which the hier-
archical layout is as expected, implying that our model is capable of extracting
richer semantic features at different abstract levels of the input images.
Decoder Initialization. A decoder is also indispensable for semantic segmen-
tation tasks. We devise a multi-scale decoder and formulate a reconstruction
pretext task. The loss is defined as: L. = ﬁZIeD [|S(E(I)) — I||2, where

E(-) is the encoder, S(-) is the decoder, and || - ||2 is the Ly norm.

In summary, we combine the hierarchical self-supervised losses at all the levels
and the auxiliary reconstruction loss to jointly optimize the model: Liptq; =
MLimg + AoLiask + A3Lgroup + AaLrec, where Xi(i = 1,2, 3,4) are the weights to
balance loss terms. For simplicity, we let Ay = Ao = A3 = 1/3, A4 = 50.
Segmentation. Once trained, the encoder-decoder can be fine-tuned for down-
stream multi-domain segmentation tasks. For a give task D;, we acquire some
annotations (e.g., 10%) and optimize the network with cross-entropy loss.

3 Experiments and Results

Datasets and Experimental Setup. We employ multiple MRI and CT im-
age sets from 8 different data sources with distribution shift, and sample 2D
slices from each stack (see Table 1| for a summary of their sample numbers and
downstream tasks). Each dataset is split into Xy, X,a, and Xy, in the ratios
of 7:1:2. We use all images for the pre-training stage and then fine-tune the
pre-trained network with labeled images from X;,. We experiment with different
amounts of training data X7, where s € {6%,10%, 100%} denotes the ratio of

trs
X3 . . . .
<= The segmentation accuracy is measured by the Dice-Sgrensen Coefficient.
N
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Table 2. Quantitative results on Task-1 (heart), Task-3 (prostate), and Task-5
(spleen). Dice scores for each class are listed and the average scores are in parentheses.
TFS: training from scratch. Same network architecture is used for fair comparison in all
the experiments. Our HSSL achieves the best performance in most settings (in bold).

Task-#| Anno. TFS Rotation I§] In-painting Iﬂ MoCo m SimCLR Ia HSSL (Ours)

5% 71.56 72.83 65.40 75.97 73.45 81.46

1 10% 79.64 82.31 81.99 79.07 81.19 81.79
100% 85.81 87.43 86.56 87.19 87.06 87.65
5% [20.65; 47.56 (34.10)|28.74; 67.11 (47.93)|20.13; 52.16 (36.14)|29.55; 64.95 (47.25)|39.67; 68.35 (54.01)| 35.30; 70.08 (52.69)

3 10% [40.10; 66.95 (53.53)|44.15; 70.63 (57.39)| 33.81;67.14 (50.48) |40.16; 67.98 (54.07)| 46.04; 70.39 (58.22) |46.97; 72.21 (59.59)
100% |50.19; 76.74 (63.47)|55.21; 78.21 (66.71)| 53.19 77.97 (65.59) |56.31; 77.59 (66.95)| 56.53; 77.86 (67.20) |58.80; 78.35 (68.58)
5% 48.75 56.74 47.86 54.91 63.40 67.35

5 10% 67.44 74.68 71.30 68.22 78.25 80.95
100% 85.88 86.96 85.96 85.75 87.76 88.45
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Fig. 4. Quantitative results of TF'S vs. single-domain CL vs. multi-domain CL vs. HSSL
for Task-1/-3/-5/-8 with different ratios (5%, 10%, 100%) of labeled data, respectively.

Percentage (%)

Implementation Details. For self-supervised pre-training, we use ResNet-
34 as the base encoder network, FC layers to obtain latent vectors, and
sequential DeConv layers to reconstruct images. Detailed structures can be found
in Supplementary Material. The model is optimized using Adam with a linear
learning rate scaling for 1k epochs (initial learning rate = 3e~*). For segmen-
tation tasks, we optimize the network using Adam with the “poly” learning
rate policy, L, x (1 — ;f;(flgh)o'g, where the initial learning rate L, = 5e~* and
#epoch = 10k. Random cropping and rotation are applied for augmentation. In
all the experiments, the mini-batch size is 30 and input image size is 192 x 192.

Main Results. Our approach contributes to the “pre-training + fine-tuning”
scheme in two aspects: hierarchical self-supervised learning (HSSL) and multi-
domain data aggregation. (1) Effectiveness of HSSL. We compare with state-
of-the-art pretext task training methods @@ on seven downstream seg-
mentation tasks, and quantitative results of three representative tasks are sum-
marized in Table 2. First, our method surpasses training from scratch (TFS)
substantially, showing the effectiveness of better model initialization. More can
be found in Supplementary Material. Second, our approach outperforms known
SSL-based methods in almost all the settings, indicating a better capability
to extract features for segmentation tasks. Third, our HSSL can more effec-
tively boost performance, especially when extremely limited annotations are
available (e.g., +18.60% with 5% annotated data on Task-3), implying po-
tential applicability when abundant images are acquired but few are labeled.
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Table 3. Quantitative results of different models on Table 4. Ablation study of
Task-1/-3/-5 with 5%, 10%, and 50% annotated data, loss functions on Task-1 &
respectively. Our HSSL achieves the best performance Task-5 w/ 5% anno. data.

in most the settings (highest scores in bold).

Lyec Limg Ltask Lgroup|Task-1|Task-5
Param.| Task-1 (heart) Task-3 (prostate) | Task-5 (spleen) v 65.71 | 46.13

Methed (M) [5% [ 10% [ 50% | 5% | 10% [ 50% | 5% | 10% | 50% v 73.45 | 63.40
UNet [24] | 39.40 |75.43]77.7286.75 | 38.19 [49.44 | 62.61 | 54.71 | 62.81 | 81.48 v o v 77.26 | 65.01
UNet3+ |15]] 26.97 |78.48|78.81 [87.52]42.06 | 50.94 | 63.50 | 60.05 | 64.83 | 82.74 v o vov 79.32 | 66.67
HSSL (Ours)| 22.07 |81.46|81.79]87.02|52.69]59.59/66.64|67.35/80.95|85.86 v v v v | 81.46 | 67.35

Image Train from scratch Inpainting Rotation SimCLR

Ground truth  HSSL (5%)

Image Ground truth

5% Anno. 10% Anno.

Unet

HSSL (10%) HSSL (50%) HSSL (100%)

Image Ground truth  HSSL (10%) Ground truth HSSL (10%)

Unet 3+

Image

Fig. 5. Qualitative comparison (best viewed in color). (a) Top: results of different meth-
ods on Task-5 (10% annotated data); Bottom: results of our HSSL with different ratios
of annotated data. (b) Results of Task-2/-3/-6/-7 (10% annotated data). (c) Results
of different models on Task-1 trained with 5% and 10% annotated data, respectively.

Fourth, with more annotations, our method can further improve accuracy and
achieve state-of-the-art performance (e.g., +1.84% to +2.57% with 100% anno-
tated data over TFS). Qualitative results are given in Fig. [5|and Supplementary
Material. (2) Effectiveness of Multi-Domain Data Aggregation. We conduct pre-
training on single-domain and aggregated multi-domain data, and compare the
segmentation performances. “Single-domain CL” and “Multi-domain CL” are
all based on the state-of-the-art SimCLR, [6]. As sketched in Fig. 4, one can see
that multi-domain data aggregation consistently outperforms (sometimes signif-
icantly) single-domain pre-training (e.g., with 10% annotated data on Task-5,
multi-domain CL and HSSL outperform single-domain CL by 3.74% and 6.41%,
respectively). This suggests that more data varieties can provide complementary
information and help improve the overall performance.

Discussions. (1) Comparison with State-of-the-Art Models. As shown in Ta-
ble [8) our method outperforms the state-of-the-art UNet3+ [15] significantly
in almost all the settings. Further, with limited annotated data (e.g., 5%), our
method bridges the performance gap significantly w.r.t. the results obtained by
training with more annotated data. Also, our model is most lightweight, and thus
efficient as well. Qualitative results are given in Fig.[5{c). (2) Ablation Study. As
shown in Table |4] each hierarchical loss contributes to representation learning
and leads to segmentation improvement.
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4 Conclusions

In this paper, we proposed hierarchical self-supervised learning, a novel self-
supervised framework that learns hierarchical (image-, task-, and group-levels)
and multi-scale semantic features from aggregated multi-domain medical image
data. A decoder is also initialized for downstream segmentation tasks. Exten-
sive experiments demonstrated that joint training on multi-domain data by our
method outperforms training from scratch and conventional pre-training strate-
gies, especially in limited annotation scenarios.
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