
iTree: Exploring Time-Varying Data using Indexable Tree

Yi Gu∗ Chaoli Wang†

Michigan Technological University

ABSTRACT

Significant advances have been made in time-varying data analysis
and visualization, mainly in improving our ability to identify tem-
poral trends and classify the underlying data. However, the ability
to perform cost-effective data querying and indexing is often not
incorporated, which posts a serious limitation as the size of time-
varying data continue to grow. In this paper, we present a new
approach that unifies data compacting, indexing and classification
into a single framework. We achieve this by transforming the time-
activity curve representation of a time-varying data set into a hi-
erarchical symbolic representation. We further build an indexable
version of the data hierarchy, from which we create the iTree for
visual representation of the time-varying data. A hyperbolic lay-
out algorithm is employed to draw the iTree with a large number of
nodes and provide focus+context visualization for interaction. We
achieve effective querying, searching and tracking of time-varying
data sets by enabling multiple coordinated views consisting of the
iTree, the symbolic view and the spatial view.

1 INTRODUCTION

A notable recent research effort in time-varying data visualization
is to treat voxels’ values over time as time-activity curves (TACs)
for studying their temporal behaviors [3]. The TAC representation
has been successfully applied to multiscale data clustering [21],
temporal sequencing [22] and trend identification [10]. Several
challenges, however, still remain. The first challenge is the ever-
growing size and complexity of time-varying data we need to deal
with. A straightforward way of adopting TACs raises the concern of
speed and performance due to the large number of voxels involved
and the potentially long time series present in the time-varying data.
The second challenge is that the ability to index and query TACs in
a coarse-to-fine manner is still missing. While many solutions al-
low multiscale data exploration, data indexing and querying are not
naturally built in. Finally, the third challenge is the lack of tech-
niques to interact with the space-time data. Due to the nature of
four-dimensional spatiotemporal data, there is an increasing need
to transform the data into another space of lower dimension for
more desirable navigation and exploration. Therefore, a solution
that can achieve efficient data compacting, effective data indexing
and intuitive data exploration is highly desirable.

In this paper, we propose a novel solution that unifies data trans-
formation and visual representation into an integrated framework to
address the above challenges and support effective visual data anal-
ysis. Many high-level representations of time series, such as Fourier
transforms, wavelets and piecewise polynomial models, have been
presented for data mining. We utilize the symbolic aggregate ap-
proximation (SAX) technique [12] to represent time-series data in
the TAC form. Compared to other symbolic representations, SAX
not only allows dimensionality reduction, but also guarantees dis-
tance bound. To support fast indexing and coarse-to-fine data anal-

∗e-mail: gyi@mtu.edu
†e-mail: chaoliw@mtu.edu

ysis in a progressive manner, we further organize SAX words into
a multiresolution, bit-aware representation called indexable SAX
(iSAX) [18]. Leveraging extensible hashing, iSAX offers a quan-
tized and reduced SAX representation with variable granularity, en-
abling fast approximate search and exact search. To tailor these
techniques for our needs, we modify the original SAX and iSAX al-
gorithms by incorporating transfer function based breakpoint iden-
tification and a more balanced scheme for symbol splitting.

To support intuitive navigation and exploration of the large iSAX
hierarchy, we design the iTree, a 2D hyperbolic browser that vi-
sually arranges the hierarchical symbolic representation for fo-
cus+context (F+C) visualization. Drawing the iTree in 2D instead
of 3D avoids occlusion and simplifies user interaction. Leveraging
the iTree and the SAX view, we further provide functions for the
user to perform data querying and clustering and make connection
to the original space-time data. These views work hand-in-hand to
enable visual data interrogation, pattern identification and knowl-
edge extraction, which are not possible with only a single view.
We demonstrate the efficiency and effectiveness of our approach
in assisting data analysis and visualization tasks with experimental
results running on several time-varying data sets.

2 RELATED WORK

Data Compacting. Compressing time-varying data to supports
cost-effective data processing, rendering and viewing has been a
central focus of many research efforts. Efficient data structures
for accelerating time-varying data retrieval and rendering have also
been presented. Examples include the multidimensional (4D) tree
[20], time-space partitioning tree (TSP) [17] and space-partitioning
time (SPT) tree [2]. We utilize SAX to compact a voxel’s spatial
neighbors over time into a succinct symbolic representation, which
is less time consuming than typical transform-based compression
solutions. Leveraging iSAX, we organize the compact data in the
SAX form into a hierarchical structure to facilitate data indexing
and querying.

Data Indexing. Bitmap indexing [16] is an approach for acceler-
ating multidimensional, multivariate range queries for read-mostly
data. In its simplest form, a bitmap index consists of a vector of bits
(i.e., bitmap) on an indexed attribute, where the size of each bitmap
equals the cardinality of the indexed relation. Bitmap indexing is
well suited for value range queries of multivariate data with flexible
support of boolean operations [19], while SAX/iSAX is mainly de-
signed for indexing and finding patterns or trends in time-varying
data. Dynamic time warping (DTW) is an algorithm for measuring
similarity between two sequences which may vary in time or speed.
DTW and its variant SUBDTW have been utilized in finding trends
in time-varying multivariate data [11, 10]. DTW has been shown to
be better than the Euclidean distance for most data mining tasks in
most domains, yet the difference diminishes when the data sets get
larger [23]. SAX and iSAX use the Euclidean distance while they
also allow indexing under DTW as well.

Visual Representation. To assist scientific visualization tasks, it
is often useful to transform the data or the visualization process into
another visual means commonly used in information visualization
for exploring complex parameter and data relationships. Early ex-
amples include the image graph [15] and spreadsheet-like interface
[7]. More recent examples include the storyboard [14], attribute

cloud [6] and TransGraph [4]. Our iTree addresses two difficulties
in time-varying data analysis and visualization: supporting efficient
data compacting and querying, and controlling the exploration of
data relationships in an adaptive manner.

3 SAX AND ISAX

The simplest way to construct SAX/iSAX representations from a
time-varying data set is to treat each voxel over time as a TAC.
However, it may not be cost-effective for a large time-varying data
set with a large number of voxels and/or a large number of time
steps. Since we will visualize the iSAX hierarchy, it is important to
effectively reduce the number of SAX words constructed. One solu-
tion is to organize spatially neighboring voxels into a group (such as
2×2×2) and rearrange their corresponding TACs time step by time
step (i.e., going through voxel by voxel for the first time step, then
the second etc.), treating it as the TAC for the entire group. Fur-
thermore, breaking the long time steps into time intervals would al-
low us to cluster data with finer temporal granularity. Therefore, to
strike a good balance, we suggest to use group-wise voxels in con-
junction with time intervals for generating input TACs. SAX has
been applied to detect frequent or outlier patterns for time-varying
data [5]. We modify the original algorithms [12, 18] to accom-
modate the characteristics of time-varying volumetric data in order
to better differentiate SAX words, improve computation efficiency,
and reduce the number of nodes shown in the iTree.
3.1 SAX

A SAX word is a symbolic aggregate approximation of a TAC,
which reveals the trend of the TAC and allows indexing in iSAX. A
SAX word can be represented by symbols (e.g., a, b, c and d etc.)
or bits (e.g., 00, 01, 10 and 11 etc.). SAX achieves saving in storage
by dimension reduction of time steps and bit compression.

Before transforming a TAC to a SAX, the user first specifies the
value dimension α which indicates how many levels the entire value
range will be partitioned into. It is essential to appropriately choose
the “breakpoints” that determine the partitioning. Lin et al. [12]
normalized each TAC to have zero mean and unit variance. Assum-
ing the value distribution of a normalized TAC fulfills the Gaussian
distribution, they determined a set of breakpoints by evenly parti-
tioning the area covered by the distribution. Normalizing a TAC
may better differentiate the value difference but the information of
the original value range is lost. Moreover, solely considering the
values may lead us to distinguish the value ranges not even show-
ing up in the transfer function (i.e., the corresponding opacity is
zero), which is not desirable either.

To resolve these issues, we present our transfer function based
strategy to choose the breakpoints. Specifically, we first convert
the TACs to the piecewise aggregate approximation (PAA) repre-
sentations, then construct a global histogram H ′ based on all PAA
representations. After that, we combine H ′ with the transfer func-
tion to generate a new histogram H. From H, we calculate a set
of breakpoints and finally apply a further transformation to obtain
discrete symbolic representations.

PAA Conversion. Given a TAC T with length of n, we convert
T into a PAA by compressing n values into w dimensions. The ith
element in the PAA representation C is calculated as

C[i] =
w

n

n
w

i

∑
j= n

w
(i−1)+1

T [j], (1)

In practice, n does not need to be an exact multiple of w and we
modify the summation to adopt fractional values when w does not
evenly divide n.

Breakpoint Identification. From the PAA representations, we
construct a fine-grained global histogram H ′. Figure 1 illustrates
such a histogram H ′ and the corresponding opacity transfer func-
tion. We treat the opacity as the weight for each bin and generate a
new histogram H. Given H and the value dimension α , we find a set

data

min

data

max

H H' opacity curve

Figure 1: H ′ is the histogram after logarithm and normalization of the
original histogram of the earthquake data set. H is the new histogram
which results from multiplying H ′ by the opacity value. Blue and red
arrows indicate the breakpoints determined by the original histogram
and H, respectively.

of breakpoints to mark those ranges with zero opacity and evenly
partition the rest of H. We first identify the continuous value ranges
with zero opacity. For each of these ranges, we assign two break-
points to mark the beginning and ending data values. If the begin-
ning (ending) value is the minimum (maximum) value of the data
set, we remove this breakpoint. Assuming m and n are the numbers
of value ranges with zero and non-zero opacity respectively, we
have three cases. If n + m = α , the algorithm stops. If n + m < α ,
we successively pick the value range covering the largest area in H
and split it into two ranges with equal area. The value for splitting
marks the new breakpoint. If n + m > α , we successively choose
the two neighboring non-zero opacity ranges with the smallest zero
opacity value range in between to merge. The beginning and ending
values of the new range after merging are the breakpoints left.

In Figure 1, the final breakpoints determined by H ′ and H are
marked with blue and red arrows, respectively. As we can see,
our transfer function based solution not only avoids focusing on
the value ranges with zero opacity, but also better balances the fre-
quencies of all SAX symbols in the final representation. Figure 4
(a) and (b) show a comparison and it is clear that using our transfer
function based solution leads to a more meaningful layer-by-layer
data classification as shown in (b).

SAX Word Generation. Once the breakpoints are obtained, we
construct an alphabet Φ and transform C into an array of symbols
Ĉ to form the SAX word. We assign the symbol Ĉ[i] by comparing
C[i] with the value ranges bounded by breakpoints β j−1 and β j

Ĉ[i] = Φ j, iff β j−1 ≤C[i] < β j. (2)

Given two symbols Ĉ[i] and Ĉ[j] with the same value dimension α ,
the distance between them is defined as

d(Ĉ[i],Ĉ[j])=

{

0, if
∣

∣Ĉ[i]−Ĉ[j]
∣

∣ ≤ 1
βmax(Ĉ[i],Ĉ[j])−1 −βmin(Ĉ[i],Ĉ[j]), otherwise

(3)

where Ĉ[i] and Ĉ[j] are the indices of the corresponding symbols
that are between 0 and α −1.

The distance between two SAX words Ĉ1 and Ĉ2 is defined as

d(Ĉ1,Ĉ2) =

√

1

w

w

∑
i=1

(

d(Ĉ1[i],Ĉ2[i])
)2

. (4)

Note that the distance measure defined based on two SAX words
is the lower bound of the Euclidean distance defined based on the
PAA representation of the original time series. This allows us to
transform TACs into vectors of discrete symbols and work on these
symbols directly to speed up the performance.

3.2 iSAX

After converting all TACs to SAX words, we build the iSAX hier-
archy through clustering. In the hierarchy, a node represents a set
of TACs with the same or similar SAX words. When the number
of SAX words at a node exceeds a certain threshold δn, the node

C1C2

[0, 1] [1, 1.4]

C3C2 C4C2

[0, 0.7] [1, 1.4] [0.7, 1] [1, 1.4]

C5C2 C6C2

[0, 0.5] [1, 1.4] [0.5, 0.7] [1, 1.4]

C1C2

[0, 1] [1, 1.4]

C3C2 C4C2

[0, 0.7] [1, 1.4] [0.7, 1] [1, 1.4]

C3C7 C3C8

[0, 0.7] [1, 1.25] [0, 0.7] [1.25, 1.4]

(a) (b)

Figure 2: Comparing SAX symbol splitting using our algorithm (a)
and the original algorithm [12] (b). Red indicates which symbol to
split and blue indicates the largest value range.

is split into two children with bit promotion of a symbol. This is
to keep the number of SAX words corresponding to each terminal
node small enough for efficient search.

The key of this process is to find the proper symbol to split. Shieh
and Keogh [18] always chose the symbol with the left-most smallest
bit cardinality to split, which guarantees that the difference between
the largest and smallest bit cardinalities in each SAX word is less
or equal to 1. We choose a symbol covering the largest value range
to split in order to maximize the difference between SAX words.
Figure 2 illustrates a comparison using our algorithm and the orig-
inal algorithm. After two iterations, our algorithm has three SAX
words C5C2, C6C2 and C4C2 (i.e., leaf nodes of the hierarchy). The

difference between C5C2 and C4C2 is
√

((0.7−0.5)+0)/2 = 0.32.
The other two differences are both zero because the corresponding
SAX symbols are either the same or have neighboring value ranges.
The three SAX words generated by the original algorithm are C3C7,
C3C8 and C4C2. The differences among them are all zero. Thus,
we can see that our algorithm maximizes the distances of the SAX
words and minimizes the largest value range. Figure 4 (a) and (b)
show a comparison and we can see that our symbol splitting scheme
leads to a more balanced data classification result. It also produces
a less number of nodes in the iTree which we will create from the
iSAX hierarchy.

Bit Promotion and Reduction. Let us assume all the symbols s
in a SAX word range from 0 to α −1 where α is the value dimen-
sion and |α | = ⌈logα⌉ is the bit cardinality. We write a SAX word
with its symbol value and the corresponding bit cardinality in a par-
ticular form. For example, 02.22.63.32 is a SAX word consisting of
four symbols, 0, 2, 6 and 3, and the bit cardinalities are 2, 2, 3 and
2, respectively. We can also write the symbol values in bits, i.e., 00,
10, 110 and 11 for 02, 22, 63 and 32, respectively.

When comparing two SAX words, we actually compare their
corresponding symbols in order. If the bit cardinalities of the two
symbols are different, we can promote the bits with the smaller car-
dinality to the same as the larger one. Given two symbols s and t
and the bit cardinality of s is less than that of t, we treat s as s∗.
There are three cases to consider. First, if s is the prefix of t, ∗ are
the same as the corresponding bits in t for all unknown bits. Sec-
ond, if s is lexicographically smaller than the corresponding bits in
t, ∗ are all 1s for the rest unknown bits. Third, if s is lexicographi-
cally larger than the corresponding bits in t, ∗ are all 0s for the rest
unknown bits. The guiding principle for these cases is to promote
the bits in s so that s and t are closest in the SAX space. After bit
promotion, we apply Equation 4 to compute the distance between
these two SAX words.

Besides bit promotion, we can also reduce the bits of the sym-
bol with the larger cardinality to the same as the smaller one. If
the reduced SAX word is the same as the SAX word of the lower
one, we consider these two SAX words as a match. In practice, bit
promotion is used for SAX word comparison in search, while bit
reduction is used for building the iSAX hierarchy.

iSAX Construction. To construct the iSAX hierarchy, iSAX
2.0 [1] uses the raw TACs as input and loads the TACs into main
memory till almost full. In main memory it converts each TAC into

root

{0*,0*,1*} [0*,1*,1*] [0*,1*,0*]

{00,1*,1*} [01,1*,1*]

[01,10,1*] {01,11,1*}

{01,10,10} {01,10,11}

...

Figure 3: An illustration of an iSAX index. Internal nodes and terminal
nodes are denoted with [] and { }, respectively.

a SAX word, then places the SAX words into terminal nodes. At
last it flushes them into disk and clears main memory. After each
iteration, it continues to load the rest of TACs. Thus the benefits of
iSAX 2.0 are that it reduces disk access, eliminates a second loading
for each TAC, and provides the ability of handling large data sets.
In our algorithm, we partition this process into two parts. First, we
convert all the TACs to SAX words, then insert all SAX words one
by one into the hierarchy. Our method not only offers the benefits of
iSAX 2.0, but also increases the performance with GPU calculation
and prevents system crashes by storing intermediate data into files.

As sketched in Figure 3, starting from the root whose children
have the same property that the cardinality of each symbol is 1, we
compare the input SAX word with these children. If the input SAX
word matches one child c that is an internal node, we continue to
check c’s children in the next level of the hierarchy. Otherwise,
we place the SAX word as a member of c. When the member of
SAX words placed in a node c is larger than δn, we split c into
two child nodes. In practice, we choose the symbol that covers the
largest value range. For example, given a SAX word 22.32.32.12,
let us assume 22 covers a range of 0.5 while both 32 and 12 cover
a range of 0.1. We split the SAX word into two: 43.32.32.12 and
53.32.32.12. Let us further assume 43 covers a range of 0.3 and 53

covers a range of 0.2. If we need to further split 43.32.32.22, the
two new SAX words will be 84.32.32.22 and 94.32.32.22. Finally,
for each terminal node, we store all its corresponding voxel IDs
into a file, using the SAX word itself as the file name to facilitate
the subsequent search.

Acceleration Strategy. The above iSAX hierarchy construction
algorithm has two limitations. First, each SAX word is inserted into
the hierarchy in a sequential order, making it not amenable for par-
allel processing. Second, the entire iSAX hierarchy along with all
voxel IDs needs to be stored in memory, making it not well scalable
for handling large-scale data sets. We therefore propose an out-of-
core algorithm for iSAX hierarchy construction to address these
limitations. Our main idea is to first partition all voxels or groups
into at most 2w buckets, where w is the word length of their SAX
words. We save each non-empty bucket into a file, corresponding
to all the non-empty nodes in the first level from the root of the hi-
erarchy. After that, we choose the file with the largest voxel/group
count. If the voxel/group count is larger than δn, then we split it
into two files following our symbol splitting scheme. We continue
this process until there is no file which has its voxel/group count
larger than δn. This algorithm performs file splitting in an out-of-
core fashion, thus is more memory efficient. In practice, for each
SAX word, we only need to load one symbol involved for splitting.
In addition, this improved solution is flexible with the change of
δn as only the splitting step need to be recomputed, which is not
available with the previous solution.

3.3 Approximate Search and Exact Search

With the iSAX hierarchy built, we are able to perform approximate
search and exact search. Both searches take the PAA representation
of a voxel or voxel group and a threshold δ as the input. We find
similar voxels or voxel groups with their distance to the input within
δ . The approximate search converts the input PAA to a SAX word
and compares each of the file names corresponding to the terminal

(1)

(3)

(2)

(1)

(2)

(3)

(1)

(3)

(2)

(1)

(2)

(3)

(a) (b)

Figure 4: (a) and (b) show the comparison of iTrees of the argon bubble data set generated using the original algorithm [12, 18] and our algorithm
with new schemes for breakpoint identification and symbol splitting. Three main clusters are highlighted in the volume at time step 160.

nodes in the hierarchy with this SAX word. If the distance between
the file name and the SAX word is larger than δ , we discard that file
because the distance between two SAX words is the lower bound
of their PAA’s Euclidean distance. That is, if the SAX distance is
larger than δ , then the Euclidean PAA distance must be larger than
δ . Otherwise, we open the corresponding file and return all voxels
or voxel groups in the file. The search result is the union of all
voxels for all the files opened. The exact search needs an additional
step. Instead of simply returning all voxels in the file which has
a SAX distance within δ , we actually compute their PAA-based
distances to the input PAA and only return those voxels that have a
smaller distance less than or equal to δ .

4 ITREE

The iSAX hierarchy is an internal representation of the time-
varying data. We construct its corresponding external version of
iTree for visual presentation and navigation. Unlike the VizTree
[13] which draws the hierarchy as a regular tree, we utilize a hyper-
bolic graph drawing algorithm to draw the iTree and support inter-
active F+C visualization. Such a solution nicely organizes a large
number of nodes in the iTree within a limited display area and al-
lows the users to query the data in an adaptive manner. In conjunc-
tion with the intuitive SAX view, we enable coordinated multiple
views to facilitate versatile exploration of time-varying data.

4.1 From iSAX Hierarchy to iTree

The original iSAX hierarchy we create is not readily suitable for
visualization due to the following reasons. First, the number of
non-empty children of the root is fairly large which easily leads
to occlusion and clutter when drawing the hierarchy. Second, ex-
cept for the first level from the root which has a very large fanout,
all the internal nodes have exactly two children, which is a fairly
small fanout. As a result, the iSAX hierarchy may have a very large
number of levels which also makes the drawing of the hierarchy
less effective for viewing and exploring. Third, sibling nodes are
not arranged in the iSAX hierarchy according to their similarity.
Therefore, we propose the following steps: level promoting, sibling
grouping and sibling reordering to transform the iSAX hierarchy to
the iTree suitable for drawing, navigation and query.

Level Promoting. We first promote each node in the iSAX hi-
erarchy such that its new level in the hierarchy equals the max-
imal bit cardinality used for any symbol of its SAX word. For
example, in Figure 3, nodes at the first level under the root re-
mains the same. For the second level, we promote terminal nodes
{01,10,10}, {01,10,11} and {01,11,1∗} to become the immediate
children of node [0∗,1∗,1∗]. Accordingly, internal nodes [01,1∗,1∗]
and [01,10,1∗] are removed. For this example, since the maximal
bit cardinality used for any symbol in a SAX word is two, the height
of the iSAX hierarchy after level promoting is three (i.e., three lev-
els corresponding to 0 bit, 1 bit and 2 bits, respectively).

Sibling Grouping. After level promoting, for each non-leaf
node, we use a hybrid k-means clustering algorithm [8] to group its
children if the number of children n is larger than a certain thresh-
old δn. The number of clusters is chosen as ⌊√n⌋. We calculate the
representative value for each SAX symbol with cardinality |α | as

vi =







(vmin +βi)/2, if |i| = 0
(vmax +βi−1)/2, if |i| = α
(βi +βi−1)/2, otherwise

(5)

where vmin and vmax are the minimum and maximum values of the
data set. βi is the ith breakpoint. For a SAX symbol Ci.a with value
i and cardinality a where a < |α |, we calculate its representative
value v(Ci.a) as follows

v(Ci.a) = (vi≪(|α|−a) + v(i+1)≪(|α|−a)−1)/2, (6)

where ≪ is the left shift operation, |α | − a is the difference be-
tween the maximum bit cardinality |α | and the current cardinality
a. i ≪ (|α | − a) and (i + 1) ≪ (|α | − a)− 1 indicate the small-
est and largest value ranges that Ci.a covers. For example, value 0
with cardinality 1 actually covers 0 (000) to 3 (011) with cardinal-
ity 3. Replace i as 0, |α | as 3, a as 1, we get 0 ≪ (3− 1) = 0 and
(0 + 1) ≪ (3−1)−1 = 3 which are the smallest and largest value
ranges that C0.1 covers.

We define the distance between two SAX symbols as the distance
between their representative values, and the distance between two
SAX words as the average distance of their corresponding SAX
symbols. For each cluster created, we identify a node that is closest
to the centroid of the cluster as its representative. This process is
performed in a top-down manner and we replace nodes in each non-
root level with their representatives in the actual iTree drawing.

After level promoting and sibling grouping, the resulting iTree
has the following two nice properties for drawing and querying.
First, the height of the iTree is determined by the maximal bit car-
dinality for representing any symbol in the SAX words. Second,
the iTree is balanced in the sense that any node does not have a
large fanout. By transforming the iSAX hierarchy to the iTree, we
maintain the connection between the internal and external represen-
tations (such as node correspondence) so that any further query of
the iTree will still follow the underlying iSAX hierarchy correctly.

Sibling Reordering. Finally, we reorder sibling nodes under
the same parent in the iTree based on the similarity of their SAX
words. When neighboring sibling nodes are selected together, they
will form a meaningful group because their corresponding voxels
in the volume have a high degree of similarity in terms of spatial
closeness and temporal trend. To get the optimal reordering, we
need to compute the sum of distances for neighboring sibling nodes
and identify the permutation with the smallest sum for every possi-
ble permutation of sibling nodes.

time word quant. I/O PAA BP SAX

data set volume dimension group size interval length level time GPU time CPU time GPU time

argon bubble 640×256×256×165 2×2×2 33 10 16 28.27 0.10 9.82 2.09

combustion 800×686×215×53 2×2×5 18 12 16 23.11 0.35 7.98 1.73

earthquake 256×256×96×599 4×4×3 50 12 16 8.85 7.25 0.01 0.14

2×2×2 60 10 16 11.00 7.05 8.07 0.67

1×1×1 25 8 16 15.29 7.04 4.05 1.54

hurricane 500×500×100×48 2×2×2 12 8 16 4.1 2.52 1.99 0.48

supernova (entropy) 432×432×432×60 2×2×2 12 10 16 25.98 9.50 6.84 1.50

supernova (vel. mag.) 864×864×864×105 2×2×2 7 10 32 1038.03 407.83 17.78 7.16

I/O bucketing file splitting # nodes # nodes promoting grouping

data set δn time GPU time GPU time for iSAX for iTree CPU time CPU time

argon bubble 7500 242.55 1.19 0.20 1499 101 0.09 0.07

combustion 50000 596.66 0.98 6.05 4869 357 0.33 0.34

earthquake 5000 1.17 0.14 1.89 441 38 0.03 0.04

1000 15.49 0.26 0.86 513 46 0.01 0.03

50000 58.90 1.00 52.23 465 36 0.03 0.04

hurricane 100000 9.42 0.37 0.33 416 76 0.01 0.03

supernova (entropy) 50000 327.54 1.00 4.26 2048 387 0.11 0.08

supernova (vel. mag.) 500000 1381.17 3.92 21.54 1927 600 0.14 0.39

Table 1: Parameter values and timing results for generating SAX words, constructing iSAX hierarchy and iTree. All timing results reported are in
seconds. The time for SAX word creation includes data I/O, PAA conversion, breakpoint (BP) identification and SAX word generation. The time
for iSAX hierarchy construction includes data I/O, bucketing and file splitting. The time for iTree construction includes data I/O (negligible), level
promoting, sibling grouping and sibling reordering (negligible).

query location BF exact approx. BF exact approx.

data set (x,y,z, t) δ time time time time time time

current interval all time steps

argon bubble (99, 59, 59, 138) 0.103 0.44 0.23 0.14 12.10 6.81 0.13

combustion (286, 152, 37, 10) 0.000002 1.14 0.34 0.18 45.77 8.22 0.18

earthquake, 4×4×3 group size (26, 52, 29, 66) 0.103 0.13 0.01 0.00 8.40 0.30 0.00

earthquake, 2×2×2 group size (51, 104, 45, 70) 0.094 1.92 0.04 0.01 76.54 6.20 0.50

earthquake, 1×1×1 group size (113, 204, 86, 68) 0.018 0.27 0.14 0.13 8.06 1.46 0.14

hurricane (91, 31, 20, 48) 0.00071 0.41 0.29 0.07 13.53 11.01 0.06

supernova (entropy) (108, 120, 97, 1312) 0.001 1.42 0.41 0.25 44.96 6.68 0.25

supernova (vel. mag.) (191, 282, 153, 22) 0.015 3.20 2.42 2.08 49.27 22.83 2.23

Table 2: Timing performance comparison (in seconds) among brute-force (BF) search, exact search and approximate search running on a
desktop PC. The timing reported included I/O time for reading PAA representation and voxel/group index files.

Since the complexity of optimal reordering follows a factorial
growth, we opt for an approximate random swap solution for effi-
cient handling a large number of sibling nodes. Random swap starts
with an initial sibling ordering and randomly chooses two nodes to
swap their positions. If the new ordering has a smaller sum of dis-
tances, then we replace this ordering with the new one; otherwise
we keep the old ordering. Then, we randomly select another pair of
nodes to swap. We continue this process for at most 2m2 iterations
or until we have m consecutive random swaps without decreasing
the sum of distances, where m is the number of sibling nodes.

4.2 iTree Drawing and Focus+Context Visualization

We leverage the hyperbolic layout algorithm introduced by Lamp-
ing and Rao [9] to visualize the iTree. The hyperbolic layout or-
ganizes a given tree hierarchy within a 2D circle. Since a tree hi-
erarchy tends to expand exponentially with depth, using a circular
display provides exponentially more space along its radius to nicely
accommodate the increasing number of nodes in successive levels
of the hierarchy. To achieve this, the algorithm lays out the tree on
the hyperbolic plane and then maps the structure to the Euclidean
plane during the display. Compared to the conventional tree layout,
the hyperbolic layout can display up to ten times more nodes within
the same display region while providing more effective navigation,
such as F+C visualization, around the hierarchy. Change of focus is
achieved by changing the mapping from the hyperbolic plane to the
Euclidean plane, which can be efficiently performed as node posi-
tions in the hyperbolic plane remain unchanged. It also allows for

smooth blending of focus and context and continuous reposition-
ing of the focus. There are two best known models to map the tree
laid out on the hyperbolic plane to the Euclidean plane: the Klein
model and the Poincaré model. The former preserves straightness
of lines while the later preserves angles but maps lines in the hy-
perbolic space into arcs in the Euclidean space. We choose to draw
arcs for a more pleasing visualization. Details about implementing
the hyperbolic layout and F+C visualization can be found in [9].

4.3 Query in Multiple Coordinated Views

We dynamically link together the three views of the time-varying
data, i.e., the volume view, the iTree view and the SAX view. The
user interacts with the data in one view and the result is automati-
cally reflected in the other view. To support effective exploration of
time-varying data sets, we provide the following queries.

iTree Query. We allow the user to filter out nodes based on
their levels in the hierarchy, or the number of voxels they contain.
This helps reduce the clutter and facilitates the observation and ex-
ploration. Nodes on different levels in the iTree are distinguished
using different colors. We map the size of a node to the number of
descendants its contains, thus attracting the user’s attention to those
interesting nodes that are worth exploring. The user can select such
a node and press keyboard shortcuts to explore its siblings or ances-
tors and descendants conveniently. Multiple nodes can be selected
for a joint view. The corresponding selected voxels or data regions
are highlighted in the spatial volume view. If the TACs are built
based on time intervals instead of all time steps, animating over

(1)

(3)

(2)

(4)

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

(a) (b)

Figure 5: (a) level-of-detail exploration of the iTree of the combustion data set. We mark four nodes (1) to (4) at four different levels of detail in the
iTree. The four images to the right show the corresponding clusters highlighted in the volume at the first time step. (b) exploring the supernova
(entropy) data set using the iTree and volume views. We show the iTree with the corresponding nodes highlighted according to SAX filtering. (1)
shows the full volume rendering at time step 1295. (2) to (4) show the corresponding volumetric region and the tracking results at three selected
time steps: 1295, 1323 and 1353.

(a) overall density pattern of SAX words (b) zoom into the first time interval (c) SAX filtering result

Figure 6: Exploring the supernova (entropy) data set using the SAX view. (a) shows the overall density pattern of SAX words with a particular
SAX word highlighted. (b) shows the zoom-in into the first time interval where user selections are highlighted in green. (c) SAX filtering shows
the SAX words that are within a distance of 1.0 to the selected green regions.

time will reveal how the selected data clusters vary over space and
time. In addition, when the user select a node, we draw a time ring
to indicate the time intervals it covers.

SAX Query. Complementing the abstract iTree view, the SAX
view allows the user to operate in an intuitive manner. We enable
F+C visualization so that the user can closely exam the details in a
particular value range or time interval. To combat the dense draw-
ing of a large number of SAX curves, we draw quads with the
binning of SAX value and time interval combination to show an
overview of SAX curve distribution. The density (i.e., color satu-
ration) show the number of curves falling into a bin. The user can
brush bins to select SAX curves of interest and make connection
to the volume view and the iTree view. We also show SAX curve
clustering results so that the user can easily identify the different
temporal trends exhibited in the time-varying data.

Volume Query. We allow the user to select a voxel or a group
of voxels of interest from the volume at a certain time step (by
bounding the ranges in the x, y and z directions) and search for
similar voxels in the time-varying data. Two kinds of search using
the iSAX hierarchy are supported: approximate search and exact
search (Section 3.3). The search results can be highlighted in the
iTree and in the volume. Again, the user can animate over time to
reveal how the similar data distribute over space and time. Lever-
aging the iSAX hierarchy, indexing and searching the time-varying
data is much faster than the brute-force solution without indexing.

5 RESULTS AND DISCUSSION

Data Sets, Parameter Setting and Timing Performance. We ex-
perimented our approach with several time-varying data sets, as
listed in Table 1. These data sets range from small (1283) to large
(8643) in spatial extent and tens of time steps to hundreds of time
steps in temporal extent. For SAX word generation, we allowed
either a voxel-wise or group-wise setting. Splitting the entire time

sequence into intervals was useful, leading to time-dependent clus-
tering results. Choosing different word lengths and quantization
levels affected the speed performance. A longer word length has
a finer representation of temporal trend and a larger quantization
levels has a finer representation of value range. This leads to a bet-
ter discriminating power in the subsequent data clustering, indexing
and searching while increasing the cost to process, store and search
the reduced SAX/iSAX representations. Our experience shows that
choosing 8 to 12 for word length and 16 or 32 for quantization level
are appropriate for quality and speed tradeoff. For SAX hierar-
chy construction, the key parameter is the threshold for voxel/group
count as it determines the time cost for file splitting. Normally, we
chose tens of thousands as the threshold. A larger threshold leads
to a smaller number of nodes produced for the iSAX hierarchy. For
iTree construction, we were able to reduce the number of nodes to at
least an order of magnitude smaller for the iTree. This process not
only groups clusters together but also prepares for a more effective
drawing, viewing and interacting with the iTree.

The timing was collected on a PC with an Intel Core i7-960
3.2GHz CPU, 24GB main memory, and an nVidia GeForce GTX
580 GPU with 1.5 GB graphics memory. For SAX word creation,
breakpoint identification was performed in the CPU while PAA
conversion and SAX word generation were performed in the GPU
using CUDA. For SAX hierarchy construction, both bucketing and
splitting were conducted in the GPU. Nevertheless, excluding I/O
time, SAX hierarchy construction can be completed in less than
10 minutes for all data sets. For iTree construction, all tasks were
performed in the CPU. Data I/O and sibling reordering tasks were
negligible in terms of timing. The rest of two tasks can be com-
pleted within a second. All these three stages were done during
preprocessing. At runtime, the drawing of and interaction with the
iTree and the volume are interactive.

Data Classification and Tracking. The iSAX hierarchy essen-

(a) time step 90, group selection (c) initial SAX view of the selected voxel group (e) time step 68 (g) time step 160

(b) time step 90 (d) SAX cluster selection with F+C visualization (f) time step 106 (h) time step 237

Figure 7: Querying the earthquake data set. (a) a group of blocks at time step 90 are selected by bounding two slices along each of the x, y and
z axes, respectively. (c) the initial SAX view of the group of blocks. (d) the F+C visualization with three clusters highlighted and the orange cluster
selected. (b) and (e) to (h) are the query results where the SAX words are within a distance of 4.0 to the selected cluster at every SAX symbol.

(a) time step 48, block selection (b) iTree highlighting (c) time step 48 (d) time setp 29 (e) time step 12

Figure 8: Searching the iTree of the hurricane data set. (a) a block at (x,y,z, t) = (91,31,20,48) is selected using three slices along the x, y and z

axes, respectively. (b) and (c) show the exact search results with δ = 0.000711. (d) and (e) are the results at other two selective time steps for
the exact search with the same threshold.

tially classifies a time-varying data into multiple levels of detail
based on the similarity of their trends. By exploring the iTree,
we select nodes of interest and visualize the classification results
in the volume view. Figure 4 (b) shows an example with the ar-
gon bubble data set. After exploring the child nodes of the root,
we identify three nodes that correspond to three distinct regions
in the volume. As we can see, these three regions are the outer,
middle and inner layers of the bubble, respectively. We used
one-dimensional transfer function where the scalar data value was
mapped to color. The three regions classified have overlap in their
data value ranges. Therefore, our iSAX-based classification actu-
ally goes beyond straightforward value-based segmentation. This
result shows the nice capability of iTree in terms of classifying spa-
tiotemporal data into meaningful groups for interpretation.

Figure 5 (a) shows the level-of-detail exploration of the iTree. In
the actual interaction, as we move from the root to the leaf node,
the selected node at higher levels of detail is displayed with a larger
screen space in a F+C manner. The corresponding volumetric re-
gion highlighting shows the coarse-to-fine exploration of the com-
bustion data set, starting from the main flame structure and narrow-
ing down to a feature region at the boundary.

Since our iSAX hierarchy is created from a time-varying data
organized into multiple time intervals, a node in the iTree corre-
sponds to spatiotemporal regions that exhibit similar patterns or
trends. Therefore, the iTree also enables us to track spatiotemporal
regions over time. Figure 6 shows such an example with the super-
nova data set. In the SAX view shown in (a), we can see two dark

value ranges with higher density values which indicates that these
two ranges may contain interesting large-scale features. The verti-
cal value ranges with non-zero opacity transfer function content are
highlighted in pink in the first time interval. In (b), we zoom into
the first time interval and brush some regions of interest. The corre-
sponding SAX words that have a distance within 1.0 to the selected
regions are displayed in (c). In Figure 5 (b), the corresponding iTree
nodes are highlighted with halos. The time ring is also displayed.
In the time ring, the first time step starts from the 12 o’clock di-
rection and subsequent time steps follow the clockwise direction.
Time intervals are marked in black and the current time interval is
highlighted in blue. The corresponding volumetric regions satisfy-
ing the query are shown in (2) to (4) at three selected time steps.
Compared to (1), we can see that the selected region actually cor-
responds to the main internal large-scale features of the supernova
data set. The highlight results are consistent across different time
steps to support meaningful tracking.

Data Indexing and Search. We conducted our data indexing
and search by comparing brute-force search, exact search and ap-
proximate search. Brute-force search does not use any indexing
scheme but simply goes over the PAA representation of data for
identifying similar voxels or groups of voxel. We compared the
performance for searching the current time interval and searching
all time steps. The searching performance results with different
data sets are shown in Table 2. The threshold δ selected for each
data set is proportional to its value range. We can see that, in most
cases, the time for brute-force search is much larger than that of ex-

act search under the same threshold, and the time for exact search
is much larger than that of approximate search. Comparing search-
ing the current time interval with searching all time steps, we find
that usually the time cost does not increase much for approximate
search, but does increase substantially for both brute-force and ex-
act searches. This is because approximate search only involves us-
ing the names of index files for distance computation, while the
other two searches need to examine the content in these index files.

In Figure 7, we show the querying of the earthquake data set
using the SAX view. As shown in (a), a group of blocks are selected
at time step 90 and their SAX words are displayed in the SAX view
in (c). As shown in (d), using automatic F+C visualization based on
the relative importance of each time interval (along the horizontal
direction) and each value range (along the vertical direction), we
are able to see more clearly the pattern of the corresponding SAX
words. Next, we classify the SAX words using a k-mean clustering
algorithm. Three clusters are displayed while we select one cluster
of interest for further querying. The results of all SAX words that
are within a distance of 4.0 to the selected cluster at every SAX
symbol are highlighted in (b) and (e) to (h).

Figure 8 shows an example of the exact search with the hurricane
data set. A block at a certain spatial position at time step 48 is
selected in (a). We perform the exact search with the threshold
δ = 0.000711. The result captures the main hurricane structure
that is similar to the selected voxel. Our experience shows that
compared to approximate search, exact search gives a finer result
since after finding all indexed files that match the query criteria, it
also requires all voxels in the matched files to be compared with the
PAA representation of the query voxel.

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

We have presented the iTree, a data organization, visual represen-
tation and user interaction framework for time-varying volume data
analysis and visualization. Built on an indexable hierarchical struc-
ture, the iTree nicely combines data compacting, indexable data
searching and querying with visually adaptive data exploration, a
unique feature that makes our framework amenable for tackling
large-scale time-varying data sets. We demonstrate the ability of the
iTree in supporting fast data search and coarse-to-fine data classifi-
cation and tracking. Our work has the following limitations. First,
our breakpoints are identified based on the opacity transfer func-
tion. Thus when the opacity function changes, the iTree need be
reconstructed due to the changes of breakpoints. Second, since our
TACs are defined on data blocks, it is difficult to eliminate the block
discontinuity in data classification. Third, the choice of parameters
is important. For example, we have to choose a proper block size
because too large blocks lead to serious blocky artifact in volume
rendering while too small blocks lead to shorter word lengths and
the iTree with fewer nodes. Nevertheless, as the size and com-
plexity of scientific data sets continue to grow, we anticipate future
visual analytics systems for scientific data equipped with such sup-
ports comparable to the iTree.

ACKNOWLEDGEMENTS

This work was supported in part by the U.S. National Science Foun-
dation through grants IIS-1017935 and CNS-1229297. We thank
Dr. Laura E. Brown for pointing out SAX/iSAX techniques which
motivated us to conduct this research. We also thank the anony-
mous reviewers for their insightful comments.

REFERENCES

[1] A. Camerra, T. Palpanas, J. Shieh, and E. J. Keogh. iSAX 2.0: In-

dexing and mining one billion time series. In Proceedings of IEEE

International Conference on Data Mining, pages 58–67, 2010.

[2] Z. Du, Y.-J. Chiang, and H.-W. Shen. Out-of-core volume rendering

for time-varying fields using a space-partitioning time (SPT) tree. In

Proceedings of IEEE Pacific Visualization Symposium, pages 73–80,

2009.

[3] Z. Fang, T. Möller, G. Hamarneh, and A. Celler. Visualization and

exploration of time-varying medical image data sets. In Proceedings

of Graphics Interface, pages 281–288, 2007.

[4] Y. Gu and C. Wang. TransGraph: Hierarchical exploration of transi-

tion relationships in time-varying volumetric data. IEEE Transactions

on Visualization and Computer Graphics, 17(12):2015–2024, 2011.

[5] M. Imoto and T. Itoh. A 3D visualization technique for large scale

time-varying data. In Proceedings of International Conference on In-

formation Visualisation, pages 17–22, 2010.

[6] H. Jänicke, M. Böttinger, and G. Scheuermann. Brushing of attribute

clouds for the visualization of multivariate data. IEEE Transactions

on Visualization and Computer Graphics, 14(6):1459–1466, 2008.

[7] T. J. Jankun-Kelly and K.-L. Ma. Visualization exploration and en-

capsulation via a spreadsheet-like interface. IEEE Transactions on

Visualization and Computer Graphics, 7(3):275–287, 2001.

[8] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-

verman, and A. Y. Wu. A local search approximation algorithm for

k-means clustering. In Proceedings of ACM Symposium on Computa-

tional Geometry, pages 10–18, 2002.

[9] J. Lamping and R. Rao. The hyperbolic browser: A focus + context

technique for visualizing large hierarchies. Journal of Visual Lan-

guages and Computing, 7(1):33–55, 1996.

[10] T.-Y. Lee and H.-W. Shen. Visualization and exploration of tempo-

ral trend relationships in multivariate time-varying data. IEEE Trans-

actions on Visualization and Computer Graphics, 15(6):1359–1366,

2009.

[11] T.-Y. Lee and H.-W. Shen. Visualizing time-varying features with tac-

based distance fields. In Proceedings of IEEE Pacific Visualization

Symposium, pages 1–8, 2009.

[12] J. Lin, E. J. Keogh, S. Lonardi, and B. Chiu. A symbolic represen-

tation of time series, with implications for streaming algorithms. In

Proceedings of ACM SIGKDD Workshop on Research Issues in Data

Mining and Knowledge Discovery, pages 2–11, 2003.

[13] J. Lin, E. J. Keogh, S. Lonardi, J. P. Lankford, and D. M. Nystrom.

Viztree: A tool for visually mining and monitoring massive time series

databases. In Proceedings of International Conference on Very Large

Data Bases, pages 1269–1272, 2004.

[14] A. Lu and H.-W. Shen. Interactive storyboard for overall time-varying

data visualization. In Proceedings of IEEE Pacific Visualization Sym-

posium, pages 143–150, 2008.

[15] K.-L. Ma. Image graphs - a novel approach to visual data exploration.

In Proceedings of IEEE Visualization Conference, pages 81–88, 1999.

[16] P. O’Nell and D. Quass. Improved query performance with variant

indexes. In Proceedings of ACM SIGMOD Conference, pages 38–49,

1997.

[17] H.-W. Shen, L.-J. Chang, and K.-L. Ma. A fast volume rendering al-

gorithm for time-varying fields using a time-space partitioning (TSP)

tree. In Proceedings of IEEE Visualization Conference, pages 371–

377, 1999.

[18] J. Shieh and E. J. Keogh. iSAX: Indexing and mining terabyte sized

time series. In Proceedings of ACM SIGKDD Conference, pages 623–

631, 2008.

[19] K. Stockinger, J. Shalf, K. Wu, and E. W. Bethel. Query-driven vi-

sualization of large data sets. In Proceedings of IEEE Visualization

Conference, pages 167–174, 2005.

[20] J. Wilhelms and A. V. Gelder. Multi-dimensional trees for controlled

volume rendering and compression. In Proceedings of IEEE Sympo-

sium on Volume Visualization, pages 27–34, 1994.

[21] J. Woodring and H.-W. Shen. Multiscale time activity data exploration

via temporal clustering visualization spreadsheet. IEEE Transactions

on Visualization and Computer Graphics, 15(1):123–137, 2009.

[22] J. Woodring and H.-W. Shen. Semi-automatic time-series transfer

functions via temporal clustering and sequencing. Computer Graphics

Forum, 28(3):791–798, 2009.

[23] X. Xi, E. J. Keogh, C. R. Shelton, L. Wei, and C. A. Ratanamahatana.

Fast time series classification using numerosity reduction. In Proceed-

ings of International Conference on Machine Learning, pages 1033–

1040, 2006.

