
FlowTour: An Automatic Guide for Exploring Internal Flow Features

Jun Ma∗ James Walker† Chaoli Wang‡ Scott A. Kuhl§ Ching-Kuang Shene¶

Michigan Technological University

ABSTRACT

We present FlowTour, a novel framework that provides an auto-
matic guide for exploring internal flow features. Our algorithm first
identifies critical regions and extracts their skeletons for feature
characterization and streamline placement. We then create can-
didate viewpoints based on the construction of a simplified mesh
enclosing each critical region and select best viewpoints based on
a viewpoint quality measure. Finally, we design a tour that tra-
verses all selected viewpoints in a smooth and efficient manner for
visual navigation and exploration of the flow field. Unlike most
existing works which only consider external viewpoints, a unique
contribution of our work is that we also incorporate internal view-
points to enable a clear observation of what lies inside of the flow
field. Our algorithm is thus particularly useful for exploring hidden
or occluded flow features in a large and complex flow field. We
demonstrate our algorithm with several flow data sets and perform
a user study to confirm the effectiveness of our approach.

1 INTRODUCTION

For large and complex 3D flow fields, carefully placed or selected
streamlines can effectively reveal characteristic flow information.
As such, streamline placement or selection has been well studied.
However, due to the projection of 3D streamlines to 2D images,
streamline occlusion and clutter cannot be eliminated, which hin-
ders the visual comprehension of essential flow features, especially
hidden or occluded ones. Algorithms have been developed for find-
ing characteristic viewpoints to help users better find underlying
flow patterns. However, most existing solutions of viewpoint se-
lection for volume and flow data are restricted to external view-
points, excluding potentially more effective observation with inter-
nal viewpoints.

In this paper, we present FlowTour, a novel framework that pro-
vides an automatic guide for exploring internal flow features. Un-
like external viewpoints which are normally selected from the vol-
ume’s bounding sphere and look at the center of the volume, in-
ternal viewpoints are more difficult to determine since they can be
placed anywhere inside the volume and look at any points of inter-
est. Our algorithm encompasses feature identification, streamline
placement, viewpoint selection and tour generation into a single,
unified framework. Since our viewpoint selection places its focus
on internal viewpoints, the final tour going through multiple criti-
cal regions is similar to a roller coaster tour in an amusement park
which flies through the scene. In this way, we give users closeup
views of the flow field for detailed observation of hidden or oc-
cluded internal flow features and patterns.

Previous work on view selection and path generation mostly fo-
cused on scalar data, leaving vector data unexplored. To the best

∗e-mail: junm@mtu.edu
†e-mail: jwwalker@mtu.edu
‡e-mail: chaoliw@mtu.edu
§e-mail: kuhl@mtu.edu
¶e-mail: shene@mtu.edu

of our knowledge, our work is the first that aims to design a tour
for examining internal flow features. The main contributions of our
work are the following: First, we present a novel method for find-
ing characteristic viewpoints for internal exploration of a flow field
based on the analysis and extraction of critical regions. Second, we
generate a tour which traverses all selected viewpoints in a smooth
and efficient way. This provides users with an immersive viewing
experience which helps them gain a more comprehensive and de-
tailed picture about the flow data. Third, we perform a user study
to show the effectiveness of our FlowTour solution and confirm the
benefits of including internal viewpoints in the design.

2 RELATED WORK

Seed placement and streamline selection are two major directions
for streamline visualization. Examples for seed placement include
image-guided placement [17], evenly-spaced seeding [6], feature-
guided seeding [19], farthest seed placement [12], image-based
placement [8], dual seeding [13], surface seeding [14] and entropy-
based seeding [21]. For streamline selection, several research ef-
forts utilized concepts from information theory to quantify the im-
portance of streamlines for selection [11, 7, 10]. All these meth-
ods [11, 7, 10] are view-dependent and the work recently pre-
sented by Tao et al. [16] utilizes a unified information channel be-
tween streamlines and viewpoints to select streamlines in a view-
independent manner.

Viewpoint selection is an important problem in scientific visual-
ization. Viewpoint entropy was introduced by Vázquez et al. [18]
for viewpoint selection for polygonal models. Similar ideas based
on information theory were later applied to viewpoint selection for
volume visualization [1, 15, 5, 20], mesh saliency [2] and flow visu-
alization [16]. After finding the best viewpoints, camera path plan-
ning was also studied to generate a good path traversing all selected
viewpoints [5, 20, 2, 16].

3 ALGORITHM OVERVIEW

Our approach includes three major stages: critical region identifi-
cation and skeleton-based seeding, viewpoint creation and quality
evaluation, and viewpoint selection and tour generation. Each stage
consists of several substeps. At the first stage, given an input 3D
flow field, we compute its entropy field [21] and identify critical
regions which correspond well to interesting flow features and pat-
terns such as the vicinities of critical points. We detect large critical
regions for the flow field and compute an isosurface and a skele-
ton for each of them. A skeleton-based seeding algorithm is carried
out to purposefully generate a set of streamlines for the subsequent
viewpoint evaluation and tour design. At the second stage, we con-
vert the isosurfaces of critical regions into triangle meshes and ini-
tialize vertices on each simplified mesh as candidate viewpoints as-
sociated with the critical region. A series of offset viewpoints with
different zooming levels is computed for each viewpoint to con-
struct a viewpoint set. We evaluate the quality of viewpoint by con-
sidering how much information of the streamlines seeded from the
corresponding critical region could be revealed. We also take into
account foreground streamline occlusion and background stream-
line noise in the evaluation. At the third stage, we select one view-
point with the highest quality as the representative for each view-
point set. We then pick several best viewpoints from all the repre-
sentative viewpoints for the corresponding critical region. The final

(a) (b) (c)

Figure 1: (a) is the entropy field of the five critical points data set. (b)
shows the critical regions identified from the entropy field. Different
colors are for different regions. (c) shows skeleton lines extracted
from critical regions.

view path is constructed by interpolating a B-spline curve travers-
ing selected viewpoints in order. For all critical regions in the field,
a global B-spline curve path traversing all these regions is gener-
ated by picking the one that has the minimal traversal cost for all
critical regions.

4 CRITICAL REGION IDENTIFICATION AND SKELETON-
BASED SEEDING

4.1 Entropy Field Computation

Given an input 3D flow field, we first compute its corresponding
scalar entropy field. We employ a 9× 9× 9 cube centered at each
voxel and compute its entropy for this local region by evaluating
the variation of both direction and magnitude of vectors for all vox-
els within. By applying this process to each voxel in the flow field,
we generate an entropy field as shown in Figure 1 (a). We imple-
ment entropy computation in the GPU using CUDA. For a data set
which cannot be loaded into graphics memory once, we divide it
into blocks and compute the entropy field in an out-of-core manner.

4.2 Critical Region Detection

With the entropy field derived, we define critical regions in the vol-
ume as local neighborhoods in which all the voxels’ entropy values
are greater than a given threshold. Intuitively, a critical region is a
subvolume in the flow field which contains rich information com-
pared with the remaining non-critical ones.

Region size computation Since the shape of a critical region
may not be regular, its size also varies dramatically. In our algo-
rithm, we do not consider the regions with fairly small volume size
and they are filtered out from the critical region set R. To compute
the size of a critical region, we apply a region growing algorithm
which approximates the region’s volume at the voxel level. As we
extract connected voxels with their entropy values greater than the
given threshold δe, the size of the critical region is defined as the
number of marked voxels. We apply the same process to each con-
nected region until we compute the sizes for all critical regions. An
example is shown in Figure 1 (b).

Region skeleton extraction In order to identify the shape pat-
tern for each region r in R, we extract its skeleton by adopting a vol-
ume thinning algorithm developed by Gagvani and Silver [3]. The
algorithm computes the distance transform which is the distance
from the internal voxel of the region to the boundary voxel. Skele-
ton points are those whose distance transform values are larger than
a given thinness parameter δt . By controlling the value of δt , the
algorithm determines the density of the final skeleton points. Fur-
thermore, by applying a minimum spanning tree (MST) algorithm
to the skeleton points, we can eventually connect all skeleton points
to form a tree-structured skeleton line, as shown in Figure 1 (c). We
identify two endpoints on the skeleton which have the longest Eu-
clidean distance and define the major direction of the skeleton as a
vector starting from one endpoint of the skeleton with lower y value
to the other one. Skeleton extraction plays an important role in our

(a) (b) (c)

Figure 2: (a) shows the isosurfaces constructed for the five critical
points data set. Each closed surface indicates one critical region in
the flow field. (b) shows the simplified triangle meshes constructed
from the isosurfaces in (a) where a region with small volume size
(smaller than 1/1000 of the total flow field volume) is filtered out in ad-
vance. (c) indicates all viewpoints generated on the simplified mesh
surface. Spheres indicate viewpoint positions while red and blue ar-
rows indicate look-at and up directions, respectively.

algorithm since it not only indicates the shape pattern but also pro-
vides a central curve to focus on for all viewpoints associated with
the critical region. In fact, the viewing centers of viewpoints for a
critical region will always be positioned on its skeleton.

4.3 Skeleton-based Seeding

Seed placement is a central issue in streamline visualization. In
order to well cover all critical regions, we adopt a skeleton-based
seeding strategy by always dropping seeds along the skeleton of
each critical region. This strategy also helps reduce redundant
streamlines in uninteresting regions. Since all seeds are aligned
along the skeleton with an equal separating distance, we can easily
control the density of streamlines by adjusting the distance between
two adjacent seeds. Figure 5 (a) shows one example of the stream-
lines generated using skeleton-based seeding.

5 VIEWPOINT CREATION AND QUALITY EVALUATION

5.1 Isosurface Construction

We leverage the isosurface to indicate the shape and location of
each critical region and define the isovalue as the given entropy
threshold δe (Section 4.2). To obtain the isosurface, we use the clas-
sical marching cube algorithm [9]. Figure 2 (a) shows an example
of the constructed isosurfaces. Similar to entropy computation, for
a large input data set, we leverage CUDA to extract the isosurfaces
block by block in the GPU. We also utilize a k-d tree data struc-
ture to store all the resulting triangles for fast access. The marching
cube algorithm only produces isolated triangles and no geometric
connectivity information is readily available for use. Therefore, we
convert the isosurfaces into triangle meshes.

During viewpoint creation, we leverage the vertices on each tri-
angle mesh to obtain the viewpoints for each critical region. How-
ever, since the isosurface construction is processed in the voxel
level, there may be more than thousands of vertices in each mesh.
To reduce the number of vertices to a manageable level, we apply
a mesh decimation algorithm based on edge collapse introduced by
Hoppe [4]. A decimation factor δs is provided to users for control-
ling the simplification level of the final mesh. For our application,
it is desirable to keep the final number of vertices on the simplified
mesh surface to a few hundred. Figure 2 (b) shows an example of
the simplified meshes.

5.2 Viewpoint Creation

Given the critical region set R obtained in the first stage, our algo-
rithm creates a list of viewpoints. First, by locating the viewpoints
at the vertices on the simplified mesh surface, we obtain a set of
viewpoints S. For each viewpoint in S, we compute its look-at

(a) (b) (c)

Figure 3: (a) shows an offset surface of one critical region of the
five critical points data set where color mapping indicates viewpoint
quality. Each black point indicates one best viewpoint. (b) shows
the B-spline curve path that connects selected viewpoints in (a). The
red, green and blue arrows indicate the look-at, up and binormal
directions of each viewpoint, respectively. (c) shows the final global
B-spline curve path traversing all critical regions.

(i.e., viewing) center and up direction. For the look-at center,
we compute the distance between the viewpoint location and the
corresponding skeleton line. The point on the skeleton line clos-
est to the viewpoint location is the look-at center for this view-
point. This treatment guarantees that our viewpoint always focuses
on the portion of critical region closest to it. The look-at direc-
tion l is determined as the vector from the viewpoint location to the
look-at center. One simple way to compute the up direction is to
fix it to a predefined direction such as the positive y direction of the
volume. However, it does not consider the major direction of the
underlying flow patterns and could cause the user to lose the focus
and context, especially when the flow direction changes frequently.
Therefore, we utilize the skeleton’s major direction as a guide to
compute the up direction. Specifically, we define the local skeleton
direction d at the look-at center as the vector along the skeleton
which starts from the look-at center and points toward the skele-
ton’s major direction. We then project d onto a plane perpendicular
to l. The final up direction is the projected vector on the plane. In
Figure 2 (c), we show all the viewpoints generated at the vertices
on different surfaces. The corresponding look-at directions and
up directions are also displayed.

Once we finish computing each viewpoint v in S, we also gener-
ate several offset viewpoints associated with v by offsetting v along
the opposite direction of its look-at direction l for some levels.
Offset viewpoints share the same look-at center and up direc-
tion with v and their locations are simply pushed away from v. In-
tuitively, each offset viewpoint of v is a zoom-out view. We define
the offset viewpoints along with v as a viewpoint set V . For each
viewpoint in V , we evaluate its quality and then select one view-
point with the highest quality as the representative of V . This pro-
cedure is applied to all viewpoint sets on the mesh surface. We then
connect the representatives by following the original mesh connec-
tivity information to form a new offset surface. Figure 3 (a) shows
such an offset surface.

5.3 Quality Evaluation

For each critical region r, we evaluate the quality of viewpoints as-
sociated with it based on the amount of information revealed from
streamlines seeded from its skeleton. We also consider foreground
streamline occlusion and background streamline noise as penalties
to avoid visual clutter and distraction. Specifically, we utilize the
mutual information (MI) between 3D streamline and its 2D projec-
tion as the measure of information revealed [16]. We compute the
final viewpoint quality for a viewpoint v as follows

Q(v) = Sfocus − (Pfore +Pback), (1)

where Sfocus, Pfore, Pback are focus region score, foreground occlu-
sion penalty and background noise penalty, respectively.

(a) (b) (c) (d) (e) (f)

Figure 4: Parameter influence. (a) and (b) show critical regions de-
tected for the ABC flow data set with two different δe values. (c) and
(d) depict the skeleton of a critical region for the tornado data set with
two different δt values. (e) and (f) show the simplified meshes for the
electron data set with two different δs values.

Focus region score Sfocus indicates how much information
revealed by the streamlines seeded from the corresponding critical
region is preserved under v. To obtain this value, we first check if
a streamline s is seeded from the corresponding critical region r. If
it is true, we then perform a viewing frustum culling operation to s
in order to determine which segments of s are inside of the viewing
frustum. For those segments inside, we accumulate the MI of each
point along the segments and define the final aggregated MI values
as Sfocus.

Foreground occlusion/background noise penalty Since our
viewpoints are mostly located inside of the flow field, it is inevitable
that some streamlines seeded from other critical regions will block
our view when we look at the critical region r in focus from a given
viewpoint v. Additionally, for streamlines behind r, they would po-
tentially distract our attention by adding some “noise” in the final
image. We quantize these two effects by defining Pfore and Pback

and select viewpoints with low values from these two terms. We
compute these two terms in a single phase. First, we transform the
standard OpenGL view projection plane with dimension of 2×2 to
a predefined n×n projection plane P. We then record the minimum
Z value for each pixel in P covered by streamline segments com-
puted in Sfocus. For pixels not covered, we set an infinitesimal value
for them. Next, for each streamline s seeded out of r, we check
the Z value for every point along s inside of the viewing frustum
and compare it with the Z value of the corresponding pixel in P.
If the new value is larger than the one in P, we set that value to P

and mark the point as an occlusion or noise point. If the point is
between the viewpoint v and our critical region r in focus, it is an
occlusion point. If it is at the back of r, it is a noise point. Pfore and
Pback are obtained as the summation of the MI values of these two
kinds of points, respectively.

6 VIEWPOINT SELECTION AND TOUR GENERATION

6.1 Best Viewpoints Selection

At the end of viewpoint creation step, we construct a new offset
surface by connecting all representative viewpoints from each view-
point set V . Next, we sort all these representatives by their quality
and pick the final best viewpoints with the highest values. How-
ever, if we take the quality value as the only criterion for best view-
points selection, neighboring viewpoints with similar high values
will be selected together. To avoid this, we define the distance be-
tween two viewpoints as a vector with two components: the angle
between their look-at directions and the distance between their
look-at centers. Given two distance vectors d1 and d2, we then
define d1 > d2 when either one of the two components in d1 is
greater than the corresponding one in d2. Leveraging this mea-
sure, we require that the distance between any two best viewpoints
selected should be greater than a given distance threshold δd . In
Figure 3 (a), we depict how the best viewpoints are arranged on an
offset surface.

entropy field critical region initial isosurface mesh viewpoint #best viewpoints/ viewpoint tour path

data set dimension computation detection #lines construction conversion creation #total viewpoints evaluation generation

five critical pts 51×51×51 0.473s 0.119s 800 0.085s 0.139s 0.015s 27/175 106.073s 0.084s

two swirls 64×64×64 0.507s 0.158s 500 0.161s 0.399s 0.027s 25/239 218.293s 0.074s

tornado 64×64×64 0.543s 0.223s 400 0.165s 0.179s 0.031s 12/244 98.948s 0.019s

supernova 200×200×200 7.891s∗ 570.826s 400 3.953s∗ 4.334s 0.135s 10/766 266.470s 0.013s

solar plume 126×126×512 8.255s∗ 494.908s 400 4.073s∗ 7.748s 0.129s 15/751 381.420s 0.021s

ABC flow 64×64×64 0.610s 0.125s 1000 0.173s 0.152s 0.014s 12/157 65.092s 0.091s

electron 64×64×64 0.560s 0.062s 450 0.159s 0.055s 0.008s 7/68 10.753s 0.011s

Table 1: The timing results for seven flow data sets. A ∗ denotes out-of-core processing in the GPU using CUDA.

entropy thickness decimation distance angle

data set δe δt δs δd δα

five critical pts 2.845 0.7 0.320 10.0 π/4

two swirls 2.930 0.7 0.328 10.0 π/4

tornado 2.098 0.7 0.328 10.0 π/6

supernova 2.459 0.9 0.335 15.0 π/3

solar plume 2.939 0.9 0.335 12.0 π/3

ABC flow 2.306 0.7 0.320 10.0 π/4

electron 2.092 0.7 0.320 10.0 π/4

Table 2: The parameter settings for seven flow data sets.

6.2 Tour Path Generation

Straight path generation From a set of best viewpoints se-
lected, we need to form a path traversing all of them. In order to
guarantee that the path follows the skeleton’s shape pattern, we uti-
lize the skeleton’s major direction as a guide for path generation.
Specifically, we pick the viewpoint whose center is closest to one
end of the skeleton’s major direction as the starting point of the
view path and set it as a pivot viewpoint vp. We then connect the
viewpoint v whose look-at center is closest to the current vp’s
look-at center (i.e., dc(vp,v) is the smallest) and set it as the new
vp. To avoid the zig-zag path shape, we force the angle formed by
every three consecutive viewpoints along the path to be larger than
a given threshold δα . After we identify the first two viewpoints v1

and v2 along the path, we identify the newly selected viewpoint v3

so that 6 v1v2v3 is larger than δα and at the same time, dc(vp,v3)
is small enough. To achieve this, we first sort the remaining view-
points based on their look-at center distances to vp, then check
the angle formed by v1, v2, and each of the remaining viewpoints.
The first viewpoint whose angle is larger than δα is selected and set
to be the new vp. We repeat this process until the whole path has
been generated. Finally, we create a straight view path by connect-
ing all viewpoints using line segments. One drawback of using the
straight-line as the view path is that in some cases, line segments
may intersect with the skeleton (i.e., the view path will get fairly
close to the flow feature). To avoid this, we replace the straight-line
with a B-spline curve to “bend” the path away from the skeleton
when they are too close to each other.

B-spline curve path generation In order to keep the view
path away from the corresponding critical regions skeleton for some
distance, we add one intermediate viewpoint between each pair of
adjacent viewpoints along the straight path. Essentially, for each
line segment along the straight path, we first compute the shortest
distance dl,s between the segment and the skeleton. Assuming pl

and ps are two points on the line segment and the skeleton respec-
tively and their distance is dl,s, we push pl away from the skeleton

along the direction of vector −−→ps pl for some distance ∆d , where ∆d

is inversely proportional to dl,s. Intuitively, pl will be pushed far
away from the skeleton (i.e., larger ∆d) if its corresponding line
segment is close to the skeleton (i.e., small dl,s). After creating all
intermediate viewpoints, a B-spline curve path which traverses all
viewpoints including intermediate ones is interpolated. By setting
all viewpoints as data points b on the curve, we can compute the B-

(a) (b)

Figure 5: Comparing (a) skeleton-based seeding and (b) random
seeding for the five critical points data set. Both place 320 stream-
lines. Velocity magnitude is mapped to streamline color.

spline basic functions for each data point and then define a matrix N

by setting all the functions of each data point as a single row. Given
N and b, we interpolate the B-spline curve by solving the following
linear system

Nx = b, (2)

where x represents the control points of the B-spline. To avoid get-
ting a singular linear system, we generate knots by averaging the
parameters. We then generate the viewpoints on the curve by utiliz-
ing x and their corresponding basic function values. We always use
a B-spline of degree three as our final path representation. Figure 3
(b) shows an example of the final curve path. In order to maintain a
smooth animation when moving viewpoints along the path, we also
reparameterize the path and interpolate several viewpoints between
every two adjacent best viewpoints with equal arc length.

From single region to multiple regions The preceding algo-
rithm operates on a single region. If there is more than one critical
region in the field, a global B-spline curve path traversing all these
regions is generated. To achieve this, we first compute and sort
the best viewpoints for each critical region as we describe in the
straight path generation phase. Next, we order all the regions so
that the final global path could traverse all the best viewpoints in
a smooth and efficient way. Specifically, we define the traversal
cost C(r1,r2) from region r1 to r2 by considering two factors: the
distance D(r1,r2) between the positions of the last viewpoint of r1

and the first viewpoint of r2, and the angle A(r1,r2) between the
look-at directions of these two end viewpoints. That is,

C(r1,r2) = D(r1,r2)∗A(r1,r2), (3)

where both distance and angle are normalized by their correspond-
ing maximum values. Intuitively, we connect two regions if their
end viewpoints are spatially close to each other and their angle
change is small. The cost of the global path is the summation of
the traversal cost between each pair of critical regions traversed in
order. We compute the costs for all possible region orderings, i.e.,
for each critical region, we also take into account the two different
orderings of its end viewpoints. From all these orderings, we select
the final global path as the one with the smallest cost value. For effi-
ciency, we prune those orderings if we encounter excessively large

(a)

(b) (c) (d)

(e) (f) (g)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 6: FlowTour screenshots for the solar plume data set. (b) to (g) show the respective views from six different viewpoints along the tour
path as marked in (a). Tube radius is decreased in (a) for all streamlines so that the view path can be perceived.

(a) (b) (c) (d) (e) (f)

Figure 7: FlowTour screenshots for the five critical points data set. The five critical points are two spirals (a) and (b), two saddles (c) and (d), and
a source (e). (f) shows the connection between a spiral and the source.

D(r1,r2) or A(r1,r2) values along the traversal. Finally, a global
B-spline curve is interpolated by considering all the viewpoints on
the global path as data points. Figure 3 (c) shows an example of the
global path.

6.3 Viewpoint Traversal and Path Animation

Given the final global B-spline tour path, we traverse all viewpoints
for each critical region in order by moving the camera along the
path. Whenever there is an abrupt change of viewing angles be-
tween two adjacent viewpoints, we interpolate intermediate view-
points for a smooth transition. We render streamlines as tubes. To
help users focus on the currently traversed region, we render the
streamlines seeded from the current focus region with a large tube
radius and all other streamlines with a small tube radius. When the
camera focus changes from one critical region to another, an ani-
mated transition indicating the changes of streamline thickness is
shown. In the user study, we also provide users with the freedom to
change the animation speed, pause the animation, or play the ani-
mation in reverse order so that they can observe critical regions in
a more flexible manner.

7 RESULTS AND DISCUSSION

In this section, we report the performance, parameter, and image
results gathered from several flow data sets. To best evaluate our
approach, please refer to the accompanying video which shows the
animation of FlowTour.

7.1 Configurations and Timing

We implemented FlowTour on a CPU-GPU hybrid platform with
the following hardware configuration: Intel Core i7 quad-core CPU
running at 3.20GHz, 24GB main memory, and an nVidia GeForce
GTX 580 graphics card. Entropy field computation, isosurface ex-
traction, and viewpoint quality evaluation were implemented in the
GPU using CUDA and all other computations were implemented

(a)

(b) (c)

(d) (e)

(b)

(c)

(d)

(e)

Figure 8: FlowTour screenshots for the tornado data set. (b) to (e)
show the respective views from four different viewpoints along the
tour path as marked in (a).

in the CPU. Since we changed streamline thickness frequently, we
utilized the vertex buffer object (VBO) to render streamlines and
used the GPU to process their geometry changes in order to pro-
vide smooth streamline update. The timing results and parameter
settings for the seven data sets we used are reported in Tables 1 and
2. All stages of processing can be finished within 15 minutes for
each data set.

7.2 Parameter Influence

Parameters play an important role in our algorithm as users can
change their values to adjust the results. Here we discuss how three
parameters could affect the results for several data sets.

Entropy threshold δe Figure 4 (a) and (b) show the results of
critical regions detected with different entropy threshold δe values

(a) (b) (c) (d) (e)

Figure 9: FlowTour vs. external tour for the supernova data set. (a) shows the bounding sphere and the selected best viewpoints for external
tour. (b) and (c) are screenshots corresponding to two different viewpoints for external tour. (d) and (e) are screenshots from FlowTour.

(b) (c)

(f)

(e)

(a) (b) (c) (d) (e) (f)

Figure 10: FlowTour vs. random tour for the two swirls data set. (a) and (d) show the tour paths for FlowTour and random tour, respectively.
(b) and (c) are screenshots from FlowTour, while (e) and (f) are screenshots from random tour. The corresponding two viewpoints for the two
methods are marked in (a) and (d), respectively. Tube radius is decreased in (a) and (d) for all streamlines so that the view path can be perceived.

used for the ABC flow data set. As we can see, this parameter
provides users with the freedom to select the final critical regions
at a different size level. Furthermore, since δe is the isovalue for
determining the isosurface in the flow field, changing δe helps users
locate the critical regions at different scales.

Thickness threshold δt In Figure 4 (c) and (d), we show
the results of the detected critical regions and their corresponding
skeletons with various thickness threshold δt values used for the
tornado data set. Changing this parameter allows users to control
the density of skeleton points as well as the shape of the skeleton
curve which is a MST of skeleton points. Since both the look-at
and up directions of our best viewpoints are computed based on the
region skeleton, users can construct various tour paths by choosing
different δt values.

Decimation factor δs The decimation factor provides users
with the freedom to control the number of vertices on the simplified
mesh. Since our initial viewpoint pool is generated from these ver-
tices, changing δs allows users to build their own initial viewpoint
pool which also affects the final selected best viewpoints. Figure 4
(e) and (f) show two different simplified meshes for the same criti-
cal regions with different δs values for the electron data set.

7.3 Skeleton-based Seeding vs. Random Seeding

In Figure 5, we compare our skeleton-based streamline seeding
with random seeding. Clearly, our method can convey more infor-
mation of the original flow field than random seeding since most of
the streamlines in our method are located around the critical regions
(highlighted with circles in Figure 5 (a)) which are the most inter-
esting areas of the flow field. Furthermore, unlike random seeding
which places streamlines arbitrarily in the field, our method also
reduces streamline occlusion since we never put seeds in uninter-
esting regions. This would help users observe flow field patterns in
a less ambiguous way.

7.4 FlowTour Exploration

Figure 6 shows the final B-spline tour path and six screenshots
along the FlowTour exploration of the solar plume data set. As
we can see in (a), the curve tour provides a smooth traversing path

which effectively covers most features of the flow field. (c) depicts
the major flow pattern, i.e., the head of the solar plume, which pro-
vides users with a good overall view of the flow field. This was
made possible with our offset viewpoints which make sure that the
viewpoints are not too close to the scene. (b) shows the zoom-in
effect of the head of the solar plume. The “flower”-like pattern is
clearly depicted and the velocity variation around the core of the
head is also nicely revealed. In (d), some small spiral patterns in-
side of the head of the solar plume are shown. Since there are many
streamlines around this region, it is difficult for users to observe
such features from external views. In (e) and (f), some detailed pat-
terns such as small spirals around the straight lines in the middle
portion of the flow field are also clearly captured from two different
viewpoints. Instead of always forcing users to look at the flow field
from outside, FlowTour can also take users to the “kernel” of the
flow field and provide an expressive traversal experience which is
not available using external view alone. (g) gives such an exam-
ple. Users can now clearly observe the flow patterns of the internal
hollow shaft by “standing” right inside of it.

In Figure 7, we show the FlowTour results for the five critical
points data set. The five critical points are clearly depicted from (a)
to (e). Furthermore, our tour also captures the connection between
the source and a spiral as shown in (f). Since this connection is in
the center of the flow field and is occluded by many surrounding
streamlines, it is more difficult to detect such a connection if we
only use external views.

For the tornado data set shown in Figure 8 (b) and (d), two dis-
tinct patterns at the two ends, i.e., the “S” shape on the bottom of
tornado and the large cap on the top of tornado, are clearly depicted.
(c) and (e) show two side views. In (a), we show the tour which
smoothly traverses the two major critical patterns of the flow field.

7.5 FlowTour vs. External View Tour

We compare FlowTour with a traditional external view tour. Both
use the same set of streamlines placed using our skeleton-based
seeding. As shown in Figure 9 (a), for the external view tour, all
viewpoints are uniformly assigned on a bounding sphere which en-
closes the flow field. The look-at focus of each viewpoint is the

center of the flow field and the up direction is always along the x,
y or z axis. The viewpoint score is computed as the summation of
mutual information values for each streamline under this viewpoint.
We select the best viewpoints by following the same strategy we
use for FlowTour: sorting the viewpoints by their scores and pick-
ing best viewpoints according to their distance to the viewpoints
which have been picked already. We then interpolate the final B-
spline path going through all best viewpoints and ensure that the
path always stays outside of the flow field. Figure 9 (b) and (c)
show two different screenshots for external view tour. It is obvious
that although the external view tour could depict the overall flow
field clearly, the detailed patterns, especially around the core of the
supernova, are largely occluded by surrounding streamlines. Con-
versely, FlowTour not only captures the overall shape of the flow
field, as shown in (e), but also reveals the hidden source in the cen-
ter of the supernova, as marked in (d).

7.6 FlowTour vs. Random View Tour

We also compare FlowTour with a naı̈ve random view tour. In or-
der to avoid bias, we keep both the path length and the total angle
change the same for these two methods. For the random method,
we first generate a set of viewpoints whose positions are randomly
picked. Similar to FlowTour, we allow some viewpoints to be out-
side of the flow field boundary in order to gain a global overview
of the data set. The look-at direction and up direction of each
viewpoint are also randomly created. Next, we pick the viewpoint
with the smallest x, y and z coordinates as the starting point of the
path and connect other viewpoints by following the same strategy
used in FlowTour, which minimizes both the Euclidean distance be-
tween viewpoints and the angle change along the path. Finally, we
interpolate a new B-spline curve passing all the viewpoints to gen-
erate the path. We show a comparison between these two methods
in Figure 10. For FlowTour, we can see from (b) and (c) that the in-
ternal swirling patterns and small spiral features are clearly shown
in great detail. Specifically, (b) indicates that the radii of the major
swirls inside of the volume are not always the same. They actually
vary along the axle, which is not captured from any external view-
point. In (c), the small boundary spiral patterns are shown clearly.
For the random view tour, (e) and (f) show the same flow patterns
depicted in (b) and (c), respectively. However, since the viewpoints
are not selected intentionally for observing any flow patterns, they
cannot guarantee clear exploration of these internal features. Actu-
ally, the random view tour not only performs poorly on exploring
flow features, but also fails to provide a smooth viewpoint change
along the view path (refer to the accompanying video).

8 USER STUDY

We conducted a user study to evaluate the effectiveness of our Flow-
Tour. We used a design of 3 conditions (FlowTour path, randomly-
generated internal path, and external path) × 2 tasks (answer ques-
tions and identify critical regions). The random internal path was
constrained to be the same length with the same amount of total
rotation as the FlowTour path. The external path was calculated us-
ing a strategy similar to FlowTour, with skeleton-based seeding, but
constrained to remain outside of the data set. We recruited 10 users
for the FlowTour condition, 11 users for the random condition, and
10 users for the external condition. Participants had the option of
being paid $10 for participating in the study. All participants were
recruited from the university campus and the local community.

For each experimental session, users were shown seven flow field
data sets, one for practice and six for evaluation. After each tour, the
users were asked several multiple-choice questions about features
in the flow field, and were then asked to identify as many critical
regions as they could find within a set time limit. We hypothesized
that users would perform better on both tasks with FlowTour.

(a) (b)

Figure 11: (a) Average proportion of correct answers of multiple-
choice questions for each data set. (b) Average proportion of critical
regions identified correctly for each data set. For the supernova data
set, the score with the random and external paths is zero.

8.1 Experimental Procedure

First, users were given a briefing explaining the basic character-
istics of flow fields, critical regions they would need to recognize,
and the tasks they would be expected to perform. After the briefing,
the users were given the chance to practice their tasks on one data
set before beginning the main study. The practice session took the
users through one complete set of tasks and gave them the oppor-
tunity to become familiar with the program interface and working
with flow fields. After the users finished the practice set, the main
study commenced, consisting of six data sets. At this time, users
were only allowed to ask the researchers for clarification about the
meaning of specific questions or how to use the program.

The procedure for each data set was as follows. The user was
shown an animation of the complete path through the data set. The
speed of the animation could be adjusted if desired. After the an-
imation, the user was presented with several questions and then
asked to identify critical regions in the data set. The user had a
limited time to perform these tasks. While performing these tasks,
the user could revisit any part of the path using a slider. This func-
tionality was useful for answering questions and was required for
identifying critical regions.

Users completed all seven data sets in one sitting. They were
not allowed to take breaks or leave the workstation until the exper-
iment was completed. Users could opt to terminate the experiment
at any time, but none chose to do so. The entire experiment took
approximately 60 minutes for most users, including initial paper-
work, briefing, and post-experiment questionnaire. The question-
naire asked the users for subjective feedback and suggestions for
improvement regarding the experiment and the program’s user in-
terface.

8.2 Results and Discussion

We present the results of this study in two aspects: user accuracy
on multiple-choice questions and the proportion of critical regions
correctly identified. Because user performance varied widely by
data set, each data set was analyzed individually, comparing user
performance by path (FlowTour, random internal, and external). We
used one-way ANOVA to analyze statistical significance between
the conditions with a standard significance level α = 0.05.

Multiple-choice questions Each data set was analyzed indi-
vidually by comparing users’ average proportion of correct answers
by different paths. The results are given in Figure 11 (a). Perfor-
mance differences in this condition were not statistically significant
except for the supernova data set, p < 0.0001, wherein the random
and external paths substantially outperformed the FlowTour path.

Critical regions identification Similar to the multiple-choice
questions, each data set was analyzed individually. The analysis
was done by comparing how many critical regions the user cor-
rectly identified against the total number of critical regions in the
data set, such that a value of 1.0 indicates the user found every crit-
ical region. The results are given in Figure 11 (b). The solar plume
and tornado data sets were excluded from this analysis, the former
because it is a turbulent mass that lacks coherent critical regions,
the latter because it contains one enormous critical region that is
easily identifiable by all users in all conditions. In all cases, users
correctly identified more critical regions with the FlowTour path,
except for the two swirls data set where the external path slightly
outperformed the FlowTour path. All of these results are statisti-
cally significant (p < 0.05).

Discussion The overall result of the experiment is that, in the
multiple-choice questions condition, users performed better with
the FlowTour path and the random internal path over the external
path, albeit without statistical significance in most cases. Con-
versely, on most data sets, users performed better at identifying crit-
ical regions with the FlowTour path. One exception to this pattern
is that users answered questions about the supernova data set more
accurately with the random and external paths. This might be due
to the fact that the supernova contains only a single critical region
surrounded by chaotic turbulence, which hinders the FlowTour al-
gorithm from plotting an effective path through the data set.

The multiple-choice questions were designed to evaluate users’
overall knowledge of the general characteristics of each data set.
Lack of statistical significance hinders us from drawing definitive
conclusions, but the fact that both the FlowTour path and the ran-
dom internal path outperformed the external path in all but one case
suggests that being able to view the interior of a data set may indeed
provide users with better overall knowledge of that data set. Addi-
tionally, the relatively good performance of the random path in this
task suggests that getting a general “feel” for a data set may not re-
quire a sophisticated approach. Conversely, users performed better
at identifying critical regions with the FlowTour path. This result
is not surprising since exposing critical regions is a major objective
of the FlowTour algorithm. These results demonstrate that finding
and recognizing critical regions—and by extension, other kinds of
specific flow patterns—is enhanced by an algorithmic approach de-
signed to aid this task, and that a random approach is not adequate
to ensure optimal performance.

We conclude that FlowTour is not significantly more useful than
a haphazard approach when gathering general information about
flow fields, but FlowTour is effective in aiding users to identify crit-
ical regions, especially hidden or occluded flow features.

9 CONCLUDING REMARKS

We have presented FlowTour, a new solution to explore internal
flow features and patterns. Many of these internal views reveal
novel flow information which is difficult to acquire using external
views only. Our solution thus nicely complements external view ex-
ploration by providing insightful viewpoints for observing complex
flow fields with hidden or occluded features. As the size and com-
plexity of flow field data keep growing, there is an increasing need
to allow users to observe flow features and patterns from inside the
volume. Therefore, the general approach presented in this paper
would become more important in various visual analysis tasks and
we expect that future flow visualization systems will be equipped
with functions comparable to FlowTour.

ACKNOWLEDGEMENTS

This work was supported in part by the U.S. National Science Foun-
dation through grants IIS-1017935, DUE-1105047, CNS-1229297,
and IIS-1319363. We would like to thank the anonymous reviewers
for their insightful comments.

REFERENCES

[1] U. D. Bordoloi and H.-W. Shen. View selection for volume render-

ing. In Proceedings of IEEE Visualization Conference, pages 487–

494, 2005.

[2] M. Feixas, M. Sbert, and F. González. A unified information-theoretic

framework for viewpoint selection and mesh saliency. ACM Transac-

tions on Applied Perception, 6(1), 2009.

[3] N. Gagvani and D. Silver. Parameter-controlled volume thinning.

Graphical Models and Image Processing, 61(3):149–164, 1999.

[4] H. Hoppe. Progressive meshes. In Proceedings of ACM SIGGRAPH

Conference, pages 99–108, 1996.

[5] G. Ji and H.-W. Shen. Dynamic view selection for time-varying vol-

umes. IEEE Transactions on Visualization and Computer Graphics,

12(5):1109–1116, 2006.

[6] B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbi-

trary density. In Proceedings of the Eurographics Workshop on Visu-

alization in Scientific Computing, pages 43–56, 1997.

[7] T.-Y. Lee, O. Mishchenko, H.-W. Shen, and R. Crawfis. View point

evaluation and streamline filtering for flow visualization. In Proceed-

ings of IEEE Pacific Visualization Symposium, pages 83–90, 2011.

[8] L. Li and H.-W. Shen. Image-based streamline generation and ren-

dering. IEEE Transactions on Visualization and Computer Graphics,

13(3):630–640, 2007.

[9] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolu-

tion 3D surface construction algorithm. In Proceedings of ACM SIG-

GRAPH Conference, pages 163–169, 1987.

[10] J. Ma, C. Wang, and C.-K. Shene. Coherent view-dependent stream-

line selection for importance-driven flow visualization. In Proceed-

ings of IS&T/SPIE Conference on Visualization and Data Analysis,

2013.

[11] S. Marchesin, C.-K. Chen, C. Ho, and K.-L. Ma. View-dependent

streamlines for 3D vector fields. IEEE Transactions on Visualization

and Computer Graphics, 16(6):1578–1586, 2010.

[12] A. Mebarki, P. Alliez, and O. Devillers. Farthest point seeding for effi-

cient placement of streamlines. In Proceedings of IEEE Visualization

Conference, pages 479–486, 2005.

[13] O. Rosanwo, C. Petz, S. Prohaska, H.-C. Hege, and I. Hotz. Dual

streamline seeding. In Proceedings of IEEE Pacific Visualization Sym-

posium, pages 9–16, 2009.

[14] B. Spencer, R. S. Laramee, G. Chen, and E. Zhang. Evenly spaced

streamlines for surfaces. Computer Graphics Forum, 28(6):1618–

1631, 2009.

[15] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita. A feature-

driven approach to locating optimal viewpoints for volume visualiza-

tion. In Proceedings of IEEE Visualization Conference, pages 495–

502, 2005.

[16] J. Tao, J. Ma, C. Wang, and C.-K. Shene. A unified approach to

streamline selection and viewpoint selection for 3D flow visualiza-

tion. IEEE Transactions on Visualization and Computer Graphics,

19(3):393–406, 2013.

[17] G. Turk and D. Banks. Image-guided streamline placement. In Pro-

ceedings of ACM SIGGRAPH Conference, pages 453–460, 1996.

[18] P.-P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich. Viewpoint se-

lection using viewpoint entropy. In Proceedings of Vision, Modeling,

and Visualization Conference, pages 273–280, 2001.

[19] V. Verma, D. Kao, and A. Pang. A flow-guided streamline seeding

strategy. In Proceedings of IEEE Visualization Conference, pages

163–190, 2000.

[20] I. Viola, M. Feixas, M. Sbert, and M. E. Gröller. Importance-driven

focus of attention. IEEE Transactions on Visualization and Computer

Graphics, 12(5):933–940, 2006.

[21] L. Xu, T.-Y. Lee, and H.-W. Shen. An information-theoretic frame-

work for flow visualization. IEEE Transactions on Visualization and

Computer Graphics, 16(6):1216–1224, 2010.

