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ABSTRACT

We present SSR-VFD, a novel deep learning framework that pro-
duces coherent spatial super-resolution (SSR) of three-dimensional
vector field data (VFD). SSR-VFD is the first work that advocates a
machine learning approach to generate high-resolution vector fields
from low-resolution ones. The core of SSR-VFD lies in the use
of three separate neural nets that take the three components of a
low-resolution vector field as input and jointly output a synthesized
high-resolution vector field. To capture spatial coherence, we take
into account magnitude and angle losses in network optimization.
Our method can work in the in situ scenario where VFD are down-
sampled at simulation time for storage saving and these reduced
VFD are upsampled back to their original resolution during postpro-
cessing. To demonstrate the effectiveness of SSR-VFD, we show
quantitative and qualitative results with several vector field data sets
of different characteristics and compare our method against volume
upscaling using bicubic interpolation, and two solutions based on
CNN and GAN, respectively.

Index Terms: Spatial super-resolution, vector field data, convolu-
tional neural network, deep learning.

1 INTRODUCTION

In many scientific applications, scientists run large-scale scientific
simulations and generate high-quality vector field data (VFD) for
the investigation of flow behaviors in various physical and natural
phenomena. However, they could only afford to store a fraction of
simulation output for post hoc analysis since in exascale comput-
ing, the rate of data production is much higher than available I/O
bandwidths. In this paper, we focus on generating the spatial super-
resolution (SSR) of these VFD. That means, given a low-resolution
vector, for example, of size 64× 64× 64, we aim to generate the
corresponding high-resolution vector field, for example, of size
256×256×256 or even 512×512×512.

Generating high-resolution vector fields from low-resolution ones
is meaningful for scientific applications due to the following reasons.
First, many digital imaging devices still produce low-resolution
vector data sets. These data sets can benefit from upscaling tech-
niques for more effective data exploration and better examination
of features of interest. Second, similar to the common practice of
data compression then decompression in the scientific data analysis
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pipeline, SSR also fits the pipeline well by downsampling VFD
at simulation time and upscaling them back during postprocess-
ing. SSR can outperform state-of-the-art compression algorithms by
more faithfully preserving the details under the same compression
rate. Third, scientific simulations often simulate a large number
of runs with different parameter settings but could only afford to
store a small number of runs. If we could downsample individual
vector fields in the first place assuming that effective upscaling can
be achieved, then scientists can afford to save more runs to enable
more accurate investigation of the dynamic nature of the simulation.

Upscaling a low-resolution vector field to a high-resolution one
poses three key challenges. First, unlike images where each of the
rgb channels keeps the same value range, VFD could have dramat-
ically different value ranges for each of the uvw components (e.g.,
u ∈ [−1,1], v ∈ [−0.1,0.7], and w ∈ [−10−6,10−4]). Directly con-
catenating these components and sending them into convolutional
neural networks (CNNs) or generative adversarial networks (GANs)
may literally eliminate the component with the small range as large
components dominate small ones in the convolutional operation.
Second, we need to consider both global and local information si-
multaneously during upscaling. Conventional approaches usually
employ simple trilinear interpolation or bicubic interpolation (BI)
for vector data upscaling. These interpolations are only based on lo-
cal information around the interpolated position, and therefore, may
blur features and miss details in streamline rendering. Achieving the
desired quality is challenging if we only consider local information
during upscaling. Third, VFD are sensitive in terms of both magni-
tude and angle. Only directly leveraging mean squared error (MSE)
into loss design cannot capture the dynamic angle changes. On the
other hand, just measuring angle difference could lead to unexpected
flow pattern since angle difference does not capture magnitude dif-
ference. To synthesize high-quality vectors, we must consider both
magnitude and angle differences.

To respond, we propose a deep learning solution which learns,
non-uniformly and non-locally, the relationships between low-
resolution vector fields and high-resolution ones. The low-resolution
vector fields could be obtained by downsampling the original vol-
umes using the bicubic kernel with a factor of 4 or even 8 in each
dimension. During inference, our solution can upsample the low-
resolution VFD back to the original resolution. Inspired by image
and volume super-resolution techniques, we propose SSR-VFD for
generating SSR from VFD. SSR-VFD consists of three separate
neural nets to produce spatially coherent SSR. We train SSR-VFD
by minimizing the loss function in terms of vector magnitude and
angle losses. To demonstrate the effectiveness of our approach, we
show quantitative and qualitative results with several data sets of
different characteristics. We compare SSR-VFD against the widely-
used BI, a solution based on CNN, and a solution based on GAN.
We show that SSR-VFD can achieve better quality in terms of peak
signal-to-noise ratio (PSNR) and average angle difference (AAD).

Our contributions are as follows. First, our work is the first that
applies deep learning for generating SSR of VFD. Second, for loss
function design, previous work only considers MSE loss or percep-



tual loss while our method takes into account both magnitude and
angle differences. Third, we propose a new architecture for vector
field super-resolution task, which is different from the architectures
commonly used in image and volume super-resolution tasks. Fourth,
we investigate several hyperparameter settings and analyze how they
could impact the performance of SSR-VFD.

2 RELATED WORK

Deep learning for scientific visualization. With the explosive
growth of modern deep learning techniques, researchers have re-
cently started to explore the capabilities of deep neural nets to ad-
dress various scientific visualization problems.

For volume visualization, Zhou et al. [25] presented a CNN-based
approach for volume upscaling that can preserve more structural
details than bicubic upscaling. Han and Wang [7] presented TSR-
TVD, a recurrent generative network for interpolating immediate
volume sequence given a pair of volumes from a time-varying data
set. Weiss et al. [21] presented an image-space solution that learns
to upsample a sampled representation of geometric properties of
an isosurface at low resolution to a higher resolution. Other deep
learning works have also been done to depict and explore complex
volumetric structures [2], to design a generative model for volume
rendering [1], to synthesize high-resolution and perceptually au-
thentic images [11], and to estimate viewpoint quality [18]. He et
al. [10] designed InSituNet that collects training data from ensemble
simulations in situ, performs offline training, and enables interactive
post hoc exploration and analysis.

For flow visualization, Hong et al. [12] used long short-term
memory (LSTM) to predict data access patterns in particle tracing
in order to hide the I/O latency in distributed and parallel flow visu-
alization. Xie et al. [23] proposed tempoGAN to synthesize spatial
super-resolution volume sequences where temporal coherence is
guaranteed through wrapping velocity and/or vorticity fields into the
synthesized volumes. Han et al. [5] designed an autoencoder to learn
the latent features of flow lines or surfaces and utilized dimensional-
ity reduction for interactive clustering and representative selection.
Wiewel et al. [22] took a LSTM-based approach to predict dense
3D+time functions of physics system using an autoencoder. Kim
and Günther [13] combined filter and feature extraction using CNN
for robust reference frame extraction from unsteady 2D vector fields.
Han et al. [6] proposed a two-stage machine learning method for
vector field reconstruction that takes the streamlines traced from the
original vector fields as input and outputs reconstructed high-quality
vector fields.

Although generating a spatial high-resolution volumetric scalar
field from a low-resolution one has been studied [23, 25], to our
best knowledge, in the venue of scientific visualization, no work has
been done that generates a spatial high-resolution vector field from
a low-resolution one, which is the focus of this work.

Image super-resolution. Deep learning has achieved impressive
results in image super-resolution tasks. Dong et al. [4] used bicubic
interpolations to upsample a low-resolution image and trained a
network with three convolutional layers to generate high-resolution
and high-quality images. Ledig et al. [15] proposed a GAN opti-
mized by adversarial and perceptual losses to infer photorealistic
natural images for a scaling factor of 4 along each dimension. Li
et al. [16] leveraged a feedback forward network that builds the
feedback connections between low-level and high-level information
to generate high-resolution images. Zhang et al. [24] designed an
end-to-end deep model which enriches high-resolution details by
adaptively transferring the texture from reference images. Soh et
al. [19] presented a CNN to reconstructing realistic super-resolved
images while maintaining the naturalness of the results.

Our work differs from the above works. First, we take into
account the different value ranges in the three vector components.
Second, unlike image super-resolution tasks where content loss and

perceptual loss are considered, we design magnitude loss and angle
loss to encourage the generation of high-quality vectors.

3 SSR-VFD
Let us denote FL = {FL

1 , · · · ,FL
n} as a set of low-resolution vec-

tor fields where FL
i is the ith low-resolution vector field, and

FH = {FH
1 , · · · ,FH

n } as a set of high-resolution vector fields where

FH
i is the high-resolution counterpart of FL

i . Each FL(H)
i can be de-

composed into three velocity components, FL(H)
u,i , FL(H)

v,i , and FL(H)
w,i .

Assume L, H, and W are the dimensions of high-resolution vector
fields FH, respectively, given a scaling factor f , L/ f , H/ f , and
W/ f are the dimensions of low-resolution vector fields FL, respec-
tively. θU ,θV , and θW are the learnable parameters of three separate
networks (i.e., u-Net, v-Net, and w-Net), respectively.

We aim to estimate a mapping function S from low-resolution
vector fields FL to high-resolution vector fields FH. Namely, FH =
S (FL). As shown in Figure 1, SSR-VFD accepts FL as input and
decomposes FL into three components: FL

u , FL
v , and FL

w. These three
components are processed by three independent neural nets: u-Net,
v-Net, and w-Net, and F̂H

u , F̂H
v , and F̂H

w are synthesized by the three
neural nets, respectively. Finally, SSR-VFD concatenates F̂H

u , F̂H
v ,

and F̂H
w into F̂H. To minimize the difference between F̂H and FH, we

consider both magnitude and angle losses. The computed difference
will be propagated to u-Net, v-Net, and w-Net for searching the
globally optimized solutions of θU , θV , and θW . In this section, we
first describe the details of SSR-VFD, including the definition of the
loss function and the architecture of SSR-VFD. Then, we provide
optimization details for training SSR-VFD.
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Figure 1: Overview of SSR-VFD. During training, a low-resolution
vector field FL is decomposed into three components. Each com-
ponent is separately processed by one neural net. Finally, the syn-
thesized high-resolution components are concatenated to generate
the high-resolution vector field F̂H. Magnitude and angle losses are
computed for optimizing SSR-VFD.

3.1 Loss Function
Intuitively, we can compute the mean squared error (MSE) between
the generated high-resolution vector field and the ground truth to
optimize the network parameters by backpropagation. However, in
VFD, measuring vector quality should consider two equally impor-
tant attributes: speed and direction. Specifically, both attributes have
great influence in streamline tracing and errors could accumulate,
leading to inaccurate streamline tracing and rendering results. Thus,
we propose magnitude loss and angle loss to govern the training of
SSR-VFD.

Magnitude loss. We define the magnitude loss as

LM =
1

3× k×L×H×W

k

∑
j=1

∑
i∈{u,v,w}

||Fi, j− F̂i, j||2, (1)

where k is the number of training samples, || · || is L2 norm, and
Fi, j and F̂i, j are the ground truth vector component value and the
synthesized vector component value at the jth training sample and
the ith vector component, respectively.

Angle loss. We define the angle loss as

LA =
1

k×L×H×W

k

∑
j=1

arccos(F j, F̂ j), (2)



where k is the number of training samples, arccos(·) is the inverse
cosine function, and F j and F̂ j are the ground truth vector and the
synthesized vector at the jth training sample, respectively.

Taking both losses into consideration, the final loss function is
defined as

L = λLA +(1−λ )LM , (3)

where λ ∈ [0,1] controls the relative importance of angle loss.
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Figure 2: Network architecture of SSR-VFD. Each neural net con-
sists of two Conv layers, K RBs, and M VS layers.

3.2 Architecture
As shown in Figure 1, SSR-VFD takes a low-resolution vector field
FL as input, utilizes three separate neural nets to process the three
vector components individually, and jointly outputs a synthesized
high-resolution vector field F̂H. To enhance the performance, we
leverage three techniques in SSR-VFD: (1) adding residual blocks
(RBs) [9] to prevent the gradient vanishing problem, (2) applying
the parametric rectified linear unit (PReLU) [8] as an activation
function, and (3) leveraging voxel shuffle (VS) layers [7] for upscal-
ing. The RBs bridge the feature maps from earlier layers to later
layers so that the gradient can be computed through multiple paths,
which alleviates the gradient vanishing problem during training. In
an RB, the input is convoluted with one convolutional (Conv) layer
without changing the spatial size, and the other Conv layer is applied
to the input. These two outputs are connected by skip connection.
Unlike ReLU, where there is no learnable parameter, PReLU allows
SSR-VFD to adaptively filter the feature maps in different Conv lay-
ers. Instead of utilizing deconvolutional layers for upscaling where
checkerboard artifacts will be introduced, we apply VS layers, which
can speed up the training while reducing artifacts. Adding these
three techniques effectively alleviates gradient vanishing, allows us
to establish deep networks, and accelerates the training.

A RB accepts a feature map as input, operates a series of Convs to
refine the feature map, and outputs a new feature map which is added
to the input feature map. Such an example is highlighted with the red
dashed box in Figure 2. For voxel shuffle, we are given a feature map
with size [C,L,H,W ], where C is the number of channels, L,H,W
are the dimensions of the feature map, and an upsampling factor u. It
applies one Conv to generate a feature map with [u3C,L,H,W ], then
permutes the feature map into a feature map with [C,uL,uH,uW ].
Such an example is highlighted in the blue dashed box in Figure 2.

In general, there are two common architectures for super-
resolution tasks: post-upsampling and pre-upsampling [20]. The
difference between these two architectures lies in where Conv layers
are applied. In post-upsampling, Conv is applied before upscaling
the inputs while in pre-upsampling, Conv is utilized after upscaling
the inputs. In this paper, we choose the post-upsampling architecture
due to the following reasons. First, pre-sampling requires higher
computational cost (in terms of both space and time) since all Conv
operations are performed in a high-dimensional space. However,
in post-sampling, the feature extraction process through the most
costly nonlinear Conv layers only occurs in a low-dimensional space
and the resolution increases only at the very end of the network.
As a result, the computational cost is significantly reduced, and it
also leads to considerably faster training and inference. Second, in
pre-sampling, BI is leveraged for upscaling low-resolution inputs
to high-resolution ones, which could introduce some side effects

(e.g., noise amplification and blurring), which cannot be completely
cleaned via Conv layers (as the role of Conv layers is for refining
BI results). In post-sampling, the upscaling process is completed
through Conv layers which can reduce these side effects.

The core of SSR-VFD lies in three separate neural nets. As shown
in Figure 2, each net contains two Conv layers, K RBs, and M VS
layers. Each RB has two submodules: one consists of one Conv
layer followed by PReLU, and the other one contains one Conv layer.
These two submodules are bridged by skip connection. We set the
kernel size to 3×3×3, padding with 1 in all Conv layers in all RBs.
Specifically, we leverage one Conv layer to extract the feature maps
from the low-resolution vector field, then use K RBs for refining the
features, followed by M VS layers for upscaling the features learned
at low resolution to high-resolution. Finally, another Conv layer
is applied. Note that M is determined by the scaling factor f (i.e.,
M = blog2 f c). No activation function is applied at the final Conv
layer. The parameter details are listed in Table 1.

Table 1: SSR-VFD architecture parameter details for one neural net.
type kernel size output channels output size
input N/A 1 L/ f ×H/ f ×W/ f
Conv+PReLU 9 32 L/ f ×H/ f ×W/ f
K×RB 3 32 L/ f ×H/ f ×W/ f
M×VS 3 32 L×H×W
Conv 5 1 L×H×W

3.3 Optimization
The process of training SSR-VFD is as follows. Given the training
data, namely, k pairs of vector fields (FL,FH) and initialized network
parameters θU , θV , and θW , we update SSR-VFD iteratively using
stochastic gradient descent (SGD) until the required number of
epochs is reached. At each epoch, SSR-VFD goes through all the
training sample pairs. For each pair, given a low-resolution vector
field FL

i , SSR-VFD outputs a synthesized high-resolution one F̂H
i .

Based on Equation 3, the gradients 5θU L , 5θV L , and 5θW L
are computed, respectively. The parameters θU , θV , and θW can be
updated through the computed gradients and the optimizer using
the predefined learning rate. During inference, we run SSR-VFD in
the same manner as training with the exception that gradient is not
computed.

Table 2: The dimensions and training epochs of each data set.
data set high-res dimension (x× y× z×n) epochs
hurricane 500×500×100×48 1,250
solar plume 252×252×1024×28 2,000
square cylinder 192×64×48×100 500
supernova 256×256×256×120 1,500
tornado 128×128×128×50 500
vessel 280×260×180×600 500

4 RESULTS AND DISCUSSION

4.1 Data Sets and Network Training
Table 2 shows the simulation data sets we experimented with. In
all except one case, the number of samples (n) are different time
steps of the same data set. The exception is for the vessel data set,
where different samples come from different model runs of steady
hemodynamic simulations with varying model parameter settings.
A single NVIDIA TESLA P100 GPU was used for training. We
obtained the low-resolution vector fields by downsampling the high-
resolution ones using the bicubic kernel. Note that we can apply
SSR-VFD to vector fields of arbitrary size as it is fully convolutional.
For optimization, we initialized parameters in SSR-VFD using those
suggested by He et al. [8] and applied the Adam optimizer [14] to
update the parameters (β1 = 0.9, β2 = 0.999). We set one training



(a) hurricane (b) solar plume (c) square cylinder (d) tornado

Figure 3: Comparison of PSNR (top row) and AAD (bottom row) of synthesized vector fields using BI, CNN, SRGAN, and SSR-VFD.

sample per mini-batch and the learning rate to 10−4. All these hy-
perparameters are determined based on experiments. We randomly
sampled 50% data for training and the rest is used for inference.

4.2 Results
Baselines. We use three baselines for comparison with SSR-VFD:

• BI: Bicubic interpolation (BI) is a common method for upscal-
ing volumetric data [23, 25].

• CNN [4]: CNN contains two BI layers for upscaling and three
Conv layers for refining. We also utilize magnitude and angle
losses to train this model.

• SRGAN [15]: We transform SRGAN originally designed for
2D image super-resolution for 3D vector field super-resolution.
In the original implementation, the generator has 16 RBs and
perceptual loss is applied (which is computed based on the
VGG19 ImageNet classifier). However, in 3D vector fields,
more GPU memory is required and no such a classifier is
offered. Therefore, we use 5 RBs and replace use perceptual
loss with magnitude and angle losses.

Note that we cannot fine-tune CNN and SRGAN based on pre-
trained image super-resolution models. Image super-resolution so-
lutions are based on 2D convolution, which is difficult to fine-tune
and directly apply to 3D volumetric data (i.e., processing 3D data
requires 3D convolution). Therefore, we train CNN and SRGAN
from scratch.

We point out that all streamline visualization results presented
in the paper are synthesized by SSR-VFD are the inferred results
(i.e., the network does not see these vector fields during training).
All streamline rendering results for the same data set use the same
setting (i.e., the same set of randomly placed seeds and the same
viewing parameters). We trace 200 streamlines for the solar plume
data set and 500 streamlines for all other data sets. In reference to
the ground truth (GT), we compare SSR-VFD results against those
generated by BI, CNN, and SRGAN.

Evaluation metrics. We utilize PSNR to evaluate the quality of
synthesized vector fields. PSNR is defined as

PSNR(F, F̂) = 20log10 I(F)−10log10 MSE(F, F̂), (4)

where F and F̂ are, respectively, the original and synthesized vector
fields, I(F) is the difference between the maximum and minimum
values of F and MSE(F, F̂) is the MSE between F and F̂.

We also apply AAD to evaluate the quality of synthesized vector
fields [5]. AAD is defined as

AAD(F, F̂) =
1

L×H×W
arccos(F, F̂)/π. (5)

For visualizing the error between the synthesized and GT vector
fields, we define the error e j at the jth voxel as

e j(F, F̂) =
√

∑
i∈u,v,w

||Fi, j− F̂i, j||2. (6)

Table 3: Average PSNR and AAD values with a scaling factor of 4.
The best ones are highlighted in bold.

data set method PSNR (dB) AAD

hurricane

BI 49.45 0.013
CNN 49.91 0.016
SRGAN 53.65 0.0112
SSR-VFD 54.49 0.010

solar plume

BI 44.25 0.0134
CNN 46.24 0.00197
SRGAN 48.89 0.0099
SSR-VFD 48.93 0.0093

square cylinder

BI 30.27 0.0324
CNN 49.68 0.0236
SRGAN 53.25 0.0187
SSR-VFD 54.19 0.0186

tornado

BI 38.30 0.087
CNN 50.32 0.0028
SRGAN 51.15 0.0021
SSR-VFD 51.11 0.0020

Table 4: Comparison of average training time per epoch (in second)
and average inference time (in second) using different methods.

data set method training inference

hurricane
CNN 20.89 6.85
SRGAN 120.09 7.62
SSR-VFD 49.67 7.62

square cylinder
CNN 15.78 0.18
SRGAN 84.84 0.22
SSR-VFD 34.73 0.22

tornado
CNN 21.14 0.58
SRGAN 113.52 0.66
SSR-VFD 46.85 0.66

vessel
CNN 16.15 5.47
SRGAN 90.97 6.24
SSR-VFD 38.28 6.24

Quantitative and qualitative analysis. In Figure 3, we quanti-
tatively compare SSR-VFD results against those generated by BI,
CNN, and SRGAN using PSNR (higher is better) and AAD (lower
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Figure 4: Comparison of streamline rendering results. Results given by CNN, SRGAN, and SSR-VFD are the inferred results (i.e., the networks
do not see these vector fields during training). Top to bottom: hurricane, solar plume, square cylinder, and tornado. We highlight differences
with respect to the ground truth in yellow ellipses.

is better). We can see that in general, SSR-VFD achieves better
performance compared with BI, CNN, and SRGAN. In terms of
PSNR, SSR-VFD produces the highest PSNR values for the hur-
ricane, solar plume, and square cylinder data sets while SRGAN
achieves the highest PSNR values for the tornado data sets. For the
tornado data set, all methods show a flat pattern since the changes
among different vector fields are small. For the hurricane data set,
SSR-VFD achieves the best PSNR among all methods. There is
a drop in the PSNR curves at the 10th vector field since the flow
pattern changes near the hurricane’s eye. For the square cylinder
data set, it is obvious that SSR-VFD produces the highest PSNR
values compared with BI, CNN, and SRGAN.

In terms of AAD, SSR-VFD can still generate lower AAD com-
pared with BI, CNN, and SRGAN. For the tornado data set, SRGAN
and SSR-VFD yield very close AAD curves, and both are better
than BI and CNN. For the hurricane data set, SSR-VFD outperforms
BI, CNN, and SRGAN. It is a clear winner for the solar plume and
square cylinder data sets: SSR-VFD produces an average AAD of
0.0093 and 0.0186, but BI only produces an average AAD of 0.0134
and 0.0324, respectively. However, for the square cylinder data set,

the AAD curves exhibit a sudden decrease at the 15th vector fields
for CNN, SRGAN, and SSR-VFD. This is because the flow pattern
changes from two swirls to one swirl. In Table 3, we report the
average PSNR and AAD values over the entire vector field for BI,
CNN, SRGAN, and SSR-VFD. Again, SSR-VFD performs the best
in terms of PSNR and AAD in all except one case (where SRGAN
performs the best in terms of PSNR for the tornado data set).

In addition, we report the average training time per epoch and
average inference time using different data sets, as shown in Table 4.
In terms of training time, we can observe that CNN takes the shortest
time compared with SRGAN and SSR-VFD since CNN is a shallow
network with three Conv layers while SRGAN requires the longest
time since SRGAN consists of two networks. The entire training
times for the hurricane, square cylinder, tornado, and vessel data sets
are 17, 4.8, 6.5, and 5.3 hours, respectively. The model size of SSR-
VFD is 9.7 MB. In terms of inference time, all three methods do
not exhibit a significant difference. Therefore, SSR-VFD achieves a
good trade-off between speed and performance.

In Figure 4, we compare streamline rendering results of the syn-
thesized vector fields generated by BI, CNN, SRGAN, and SSR-



VFD. For the hurricane data set, SSR-VFD can preserve the flow
patterns better near the hurricane’s eye and at the bottom-left region
compared with BI, CNN, and SRGAN. For the solar plume data set,
BI, CNN, and SRGAN fail to trace the streamlines at the central
and top-left regions, However, SSR-VFD can generate these details
better. For the square cylinder data set, it is clear that SSR-VFD
generates a better visual result. SSR-VFD can produce more details
at the central region (i.e., the two swirls), while BI and CNN fail to
recover the two swirls, and SRGAN can recover the bottom swirl
well but it still fails to recover the top swirl. For the tornado data set,
SSR-VFD and SRGAN can capture more details compared with BI
and CNN. For example, BI and CNN fail to produce the flow details
at the bottom region, while SSR-VFD can trace these streamlines
well such as the streamlines at the bottom-right region.

In Figure 5, we compare volume rendering results of errors in-
troduced by the synthesized vector fields generated by BI, CNN,
SRGAN, and SSR-VFD. These volumes are computed based on
Equation 6. For the hurricane data set, it is obvious that SSR-VFD
and SRGAN introduce fewer errors around the hurricane’s eye com-
pared with BI and CNN. For the solar plume and square cylinder
data sets, both SRGAN and SSR-VFD can generate fewer errors
in the plume’s head and the central region of the square cylinder
compared with BI and CNN. For the tornado data set, SSR-VFD
clearly produces few errors at the core and boundary compared with
BI, CNN, and SRGAN.

In Figure 6, we compare the rendering results of streamlines
traced from the synthesized vector fields generated by SSR-VFD and
the vector field compressed then decompressed using a state-of-the-
art lossy compression (LC) scheme [17] (we choose this scheme as
it can effectively control data distortion while significantly reducing
data size). For a fair comparison, we keep the same compression rate
(i.e., 64) for both methods. As we can see, the streamlines generated
by LC cannot faithfully capture the flow pattern at the central region.

(a) BI (b) CNN (c) SRGAN (d) SSR-VFD

Figure 5: Comparison of volume rendering results of errors intro-
duced by the synthesized vector fields. Top to bottom: hurricane,
solar plume, square cylinder, and tornado.

Table 5: Comparison of RMSE of velocity, vorticity, and WSS using
the vessel data set. The better ones are highlighted in bold.

velocity vorticity WSS
BI 0.4111 0.8484 0.8616
SSR-VFD 0.0864 0.3197 0.2155

(a) LC (b) SSR-VFD (c) GT

Figure 6: Comparison of streamline rendering results with SSR-VFD
and LC using the square cylinder data set.

(a) BI (b) SSR-VFD (c) GT

Figure 7: Comparison of WSS of the vessel data set.

Table 6: Average PSNR and AAD under different λ values using
the square cylinder data set.

λ PSNR (dB) AAD
0 54.31 0.0284
10−5 54.28 0.0229
10−4 51.32 0.0207
10−3 54.19 0.0186
10−2 54.08 0.0178
10−1 48.54 0.0185
5×10−1 47.26 0.0184
1 −10.70 0.0190

Expert evaluation of the vessel data set. We invite cardiovas-
cular flow simulation scientists to evaluate the quality of the vessel
data set. They use the measure of root-mean-square error (RMSE),
which is defined as

RMSE(M,M̂) =

√√√√∑
N
i=1 ||Mi−M̂i||L2(Ω f )

∑
N
i=1 ||Mi||L2(Ω f )

, (7)

where N is the number of voxels, Ω f denotes the computational
domain, and M and M̂ are the GT and synthesized velocity, vorticity,
or wall shear stress (WSS), respectively. Vorticity and WSS are
derived based on velocity. Vorticity is defined as

ω = ∇×F, (8)

and WSS is defined as

τw =
dF
dl

∣∣∣∣
l=0

, (9)

where F is velocity and l is the distance to the wall.
In contrast to other flow cases with regular rectangular (or cuboid)

boundaries, the vessel data set represent internal flows within a
complex vessel geometry, which is more challenging. In addition
to velocity magnitude, the prediction performance on vorticity and
WSS fields is also evaluated since these two derived hemodynamic
quantities are highly related to the initialization and progression of
cardiovascular diseases. Especially, the WSS is known to be the most
critical hemodynamic factor to the growth and rupture of cerebral
aneurysms since the endothelial cells of vascular walls are capable to



Table 7: Average PSNR and AAD under different architectures. The best ones are highlighted in bold.
PSNRu (dB) PSNRv (dB) PSNRw (dB) PSNR (dB) AAD

data set SSR w/o sep SSR SSR w/o sep SSR SSR w/o sep SSR SSR w/o sep SSR SSR w/o sep SSR
square cylinder 49.88 51.87 51.25 50.27 25.52 37.54 51.93 54.19 0.02026 0.01861
tornado 49.25 49.44 49.24 49.36 54.13 58.35 50.85 51.11 0.00235 0.00203

sense WSS and lead to the growth remodeling of vessel structures [3].
Figure 7 shows the averaged WSS fields of all test cases by BI, SSR-
VFD, and GT. It is clear that SSR-VFD produces similar WSS
compared with GT. For example, at the bottom of the vessel, the
WSS magnitude of SSR-VFD is close to that of GT, while BI fails to
recover well the WSS magnitude. The unexpected WSS magnitude
could lead to failure in identifying the most vulnerable regions of
aneurysm growth and rupture. In Table 5, we compare RMSE of
velocity, vorticity, and WSS between BI and SSR-VFD. Clearly,
SSR-VFD leads to lower RMSE in terms of velocity, vorticity, and
WSS.

(a) joint training (b) separate training (c) GT

Figure 8: Different ways of training the hurricane (top row) and
tornado (bottom row) data sets.

(a) hurricane (b) tornado

Figure 9: Comparison of PSNR using joint and separate training.

Cross-dataset evaluation. To evaluate the cross-dataset general-
ization of SSR-VFD, we perform joint training using the hurricane
and tornado data sets. The number of epochs is the same as the one
used in separate training. The streamline rendering results are shown
in Figure 8. For the hurricane data set, it is clear that the streamlines
generated from joint training are worse than those generated from
separate training. For example, it fails to capture the flow pattern in
the hurricane’s eye and the top-right region. For the tornado data
set, the joint model does not recover flow behavior in some regions.
For example, there are few streamlines in the middle-left corner, and
the streamlines around the center of the tornado are slightly sparser.
We can also observe that separate training can also achieve higher
PSNR, which is shown in Figure 9.

(a) λ = 1 (b) λ = 0 (c) λ = 10−3 (d) GT

Figure 10: Comparison of streamline rendering results under differ-
ent λ values. Top: hurricane. Bottom: square cylinder.

(a) 200 (b) 400 (c) 500 (d) GT

Figure 11: Comparison of streamline rendering results under differ-
ent training epochs using the tornado data set. The best match with
GT is the result with 500 epochs.

4.3 Hyperparameter Study

To evaluate SSR-VFD, we analyze the following hyperparameter
settings: the choice of λ , the number of training epochs, the number
of RBs, the number of training samples, the crop size for large vector
fields, architecture design, and downsampling factor f . A detailed
discussion is as follows.

λ vs. PSNR and AAD. To study the effect of λ in training, we
conduct an experiment that trains SSR-VFD with different λ values.
As shown in Table 6, we can observe that in general, AAD can
benefit from large λ for the square cylinder data set, while PSNR
can achieve the highest value when λ = 0. However, when λ = 1,
we get a negative PSNR value for the square cylinder data set. This
is because only considering angle loss cannot capture the magnitude
error between the synthesized and GT vector fields. In Figure 10,
we compare streamline rendering results using different λ values for
the hurricane and tornado data sets. Both λ = 0 and λ = 10−3 can

(a) 1,000 (b) 1,500 (c) 2,000 (d) GT

Figure 12: Comparison of streamline rendering results under differ-
ent training epochs using the supernova data set. The best match
with GT is the result with 1,500 epochs.



(a) tornado (b) tornado (c) tornado (d) supernova

(e) hurricane (f) tornado (g) hurricane (h) hurricane

Figure 13: Comparison of hyperparameter settings. (a) Average PSNR and AAD under different numbers of RBs. (b) Average training time
(per epoch) under different numbers of RBs. (c) and (d) Average PSNR and AAD under different training epochs. (e) and (f) Average PSNR
and AAD under different numbers of training samples. (g) Average PSNR and AAD under different crop sizes. (h) Average training time (per
epoch) under different crop sizes.

(a) 1202×100 (b) 1602×100 (c) 2002×100 (d) GT

Figure 14: Comparison of streamline rendering results with different
crop sizes using the hurricane data set.

capture the flow pattern well. For λ = 1, the results fail to capture
the flow pattern around the hurricane’s eye for the hurricane data
set and fail to recover vector magnitude information for the square
cylinder data set. Therefore, we choose λ = 10−3 in the training to
balance visual quality and PSNR and AAD values.

Training epochs vs. visual quality, PSNR, and AAD. We inves-
tigate how the quality of the synthesized vector field using SSR-VFD
evolves with the increase of training epochs. Streamline rendering
results after different numbers of training epochs are shown in Fig-
ures 11 and 12. For objective comparison, we calculate pixel-wise
differences (the Euclidean distances) of images generated from the
synthesized and original streamlines in the CIELUV color space.
We map the noticeable pixel differences (with ∆≥ 6.0) to nonwhite
colors (clamping differences greater than 255). The difference image
is displayed at the top-left corner. For the tornado data set, during
the whole training process, the rendered streamlines are close to GT.
For example, there is little visual difference at either the center or the
bottom part of the tornado, as shown in Figure 11. We also find the
average PSNR and AAD values can be improved with more training
epochs, as shown in Figure 13 (c). Moreover, we observe that after
500 epochs, there is no significant difference among synthesized
results with further increasing the number of epochs. Therefore,
we choose 500 epochs to train the tornado data set. For the super-
nova data set, we find that within the first 1,500 epochs, SSR-VFD
can generate better visual quality with the increase of the number
of epochs. For example, visual difference gets smaller around the
center of the supernova as the training goes, as shown in Figure 12.
However, after 1,500 epochs, visual quality actually gets worse as
SSR-VFD begins to overfit. The average PSNR and AAD value
curves also reflect this overfitting issue, as shown in Figure 13 (d).
Hence, we choose 1,500 epochs to train the supernova data set.

(a) SSR w/o sep (b) SSR (c) GT

Figure 15: Comparison of streamline rendering results under differ-
ent architecture designs. Top: square cylinder. Bottom: tornado.

Residual blocks vs. PSNR and AAD. We investigate the influ-
ence of network depth in SSR-VFD, particularly the number of RBs
on PSNR and AAD values as well as training time using the tornado
data set. As shown in Figure 13 (a), for a scaling factor of 4, we
report average PSNR and AAD values. As we observe, in general,
more RBs can improve the average PSNR and AAD values. In addi-
tion, we observe substantial performance gain by adding more RBs.
PSNR improves from 48 dB (w/o RB) to 51 dB (with 5 RBs) and the
AAD decreases from 0.0026 to 0.0020. Moreover, the performance
gain slowly saturates beyond 5 RBs. As for the training time, it
depends approximately linearly on the number of RBs, as shown in
Figure 13 (b). Therefore, we suggest applying 5 RBs in SSR-VFD
as we consider this a good tradeoff between speed (including both
training time and inference time) and performance.

Training samples vs. PSNR and AAD. With a scaling factor of
4, we study the influence of the number of training samples on PSNR
and AAD. We use 30%, 50%, and 70% training samples to train
SSR-VFD using the hurricane and tornado data sets. We plot the
average PSNR and AAD curves under different numbers of training
samples, as shown in Figure 13 (e) and (f). We can see that PSNR
and AAD can be improved using more training samples. However,
this demands a longer training time. We observe that beyond 50%,
visual quality does not benefit from using more training samples. As



(a) square cylinder (b) tornado

Figure 16: Comparison of density maps of different components
using the tornado (left) and square cylinder (right) data sets. Top to
bottom: u, v, and w components.

a trade-off, we suggest using 50% samples to train SSR-VFD for all
data sets.

Crop size vs. visual quality, PSNR, and AAD. For large vector
field data sets (i.e., the hurricane and solar plume data sets), SSR-
VFD cannot afford enough memory to process the whole vector
field simultaneously. Therefore, we crop subvolumes to train SSR-
VFD for these data sets. We perform training with subvolume sizes
of 120× 120× 100, 160× 160× 100, and 200× 200× 100 using
the hurricane data set. The average PSNR and AAD curves are
shown in Figure 13 (g). We can observe that training SSR-VFD
benefits from a larger subvolume size since an enlarged receptive
field helps the network capture more semantic information. As for
visual quality, we can see more visual differences in the difference
images, as shown in Figure 14, particularly at the hurricane’s eye
and its surrounding regions. However, a larger subvolume size takes
more time to train as shown in Figure 13 (h). Hence, we suggest
that using a larger subvolume size to train SSR-VFD could achieve
better performance.

Architecture design vs. visual quality, PSNR, and AAD. To
investigate the effectiveness of SSR-VFD, we conduct an experiment
that trains SSR-VFD without separating the three components using
different data sets. As shown in Figure 15, we render the streamlines
from the synthesized vector fields generated by these two different
architectures. For the square cylinder data set, it is obvious that,
compared with SSR-VFD w/o sep, SSR-VFD can better capture the
features at the central region. For example, SSR-VFD w/o sep does
not accurately generate the top swirl at the central region. For the
tornado data set, it is clear that SSR-VFD produces high-quality
streamlines since SSR-VFD w/o sep fails to recover the streamlines
at the bottom-right region. In addition, in Figure 16, we plot the
density maps of u, v, and w components generated by GT, SSR-
VFD, and SSR-VFD w/o sep using the tornado and square cylinder
data sets. For the square cylinder data set, we can observe that
SSR-VFD is better than SSR-VFD w/o sep for u component while
for v component, SSR-VFD w/o sep is closer to GT. For the w
component, both methods fail to estimate the density map. However,
SSR-VFD can still approximate a peak for w while SSR-VFD w/o

(a) f = 8 (b) f = 4 (c) f = 2 (d) GT

Figure 17: Comparison of streamline rendering results under differ-
ent scaling factors. Top to bottom: square cylinder, supernova, and
tornado.

sep only generates a flat line. For the tornado data set, it is clear that
SSR-VFD can generate close density maps for v and w components.
For example, the blue curve (SSR-VFD) is closer to the red curve
(GT) compared with the green curve (SSR-VFD w/o sep) for v and
w components. For a clearer comparison, we compute PSNR and
AAD values for each component, as demonstrated in Table 7. As we
can see, separating the vector field can bring higher PSNR values of
each component for most of the data sets. In addition, the benefit
diminishes for small components. For example, for the square
cylinder data set, the PSNR value of w component increases to
37.54 dB from 25.52 dB due to the separation training mechanism.

Scaling factor vs. visual quality, PSNR, and AAD. To investi-
gate the upscaling ability of SSR-VFD, we conduct an experiment
that trains SSR-VFD with different scaling factors using different
data sets. As shown in Figure 17, we render the streamlines from
the vector fields synthesized from different scaling factors. For
the square cylinder data set, it is clear that under f = 8, the cen-
tral region cannot be recovered well, especially for the swirl at the
top-left portion of the central region. However, under f = 2 and
f = 4, this feature can still be preserved. For the supernova data set,
there is no significant difference between the results of f = 2 and
f = 4. However, for f = 8, we find that the color of streamlines at
the central region is more bluish than GT. For the tornado data set,
all results are similar to GT. But upon a close comparison, several
streamlines are missing at the bottom-right region in the result with
f = 8. Therefore, the appropriate value for f is 4 or 8 for most of
the data sets we explore. Average PSNR and AAD values under
different scaling factors are reported in Table 8. We can observe that
SSR-VFD can produce higher PSNR and AAD values for different
data sets compared to BI. In addition, the larger the scaling factor is,
the more benefit SSR-VFD can bring.

5 CONCLUSIONS AND FUTURE WORK

We have presented SSR-VFD, a new solution for generating spatial
super-resolution of VFD. We design a neural network that takes the
low-resolution vector field and its high-resolution counterpart as a
pair for training. Once trained, the network is able to generate the
spatially-resolved vector field given only a low-resolution vector
field as input. Compared with BI, CNN, and SRGAN, SSR-VFD
yields synthesized high-resolution vector fields of better visual qual-
ity, both qualitatively and quantitatively. To incorporate SSR-VFD
into the in situ scenario, during preprocessing, we will train the



Table 8: Average PSNR and AAD under different scaling factors f .
The best ones are highlighted in bold.

PSNR (dB) AAD
data set f BI SSR BI SSR

hurricane 2 55.67 57.70 0.005 0.007
4 49.45 54.49 0.013 0.010

solar plume 2 57.23 57.29 0.002 0.006
4 44.25 48.93 0.013 0.009

square cylinder
2 33.25 62.00 0.029 0.018
4 30.27 55.19 0.032 0.019
8 26.71 48.60 0.043 0.019

supernova
2 48.38 46.66 0.008 0.017
4 41.56 44.12 0.019 0.023
8 37.02 42.42 0.035 0.023

tornado
2 43.63 53.65 0.007 0.001
4 38.30 51.11 0.009 0.002
8 34.54 48.53 0.016 0.003

network with pre-run data. Then at simulation time, we will down-
sample VFD for storage saving. During postprocessing, we will
upsample these reduced VFD back to their original resolution. With
a recommended scaling factor of 4 or 8, we can downsample VFD
by 64 or 512 times at simulation time and upsample these reduced
data back to their original resolution with good quality using SSR-
VFD. In the future, we would consider adding physical loss to the
loss function design so that essential physical laws can be satisfied
using SSR-VFD. We will also explore temporal super-resolution
(TSR) for unsteady vector fields by taking temporal coherence into
account.
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