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Abstract

We present VCNet, a new deep learning approach for volume completion by synthesizing missing subvolumes. Our solution
leverages a generative adversarial network (GAN) that learns to complete volumes using the adversarial and volumetric losses. The
core design of VCNet features dilated residual block and long-term connection. During training, VCNet first randomly masks basic
subvolumes (e.g., cuboids, slices) from complete volumes and learns to recover them. Moreover, we design a two-stage algorithm
for stabilizing and accelerating network optimization. Once trained, VCNet takes an incomplete volume as input and automatically
identifies and fills in the missing subvolumes with high quality. We quantitatively and qualitatively test VCNet with volumetric data
sets of various characteristics to demonstrate its effectiveness. We also compare VCNet against a diffusion-based solution and two
GAN-based solutions.
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1. Introduction1

With the astounding advance of machine learning techniques,2

visualization researchers have proposed various deep learning-3

based data generation solutions for scientific visualization, such4

as super-resolution creation (in the spatial and temporal do-5

mains), ensemble generation, and variable translation. How-6

ever, the task of volume completion is still unexplored. Vol-7

ume completion aims to recover the damaged, deteriorating, or8

missing parts of a volume so that the complete volume can be9

presented. An example is shown in Figure 1. The potential ap-10

plications of volume completion include recovering data when11

they are partially damaged and reducing data through only stor-12

ing a part of voxels. For example, scientific simulations need to13

save data to disk for post-processing. However, such data may14

not be completely saved to local storage during transmission15

due to I/O suspension or network outage. Our approach can re-16

cover the incomplete data without rerunning the simulations if17

this scenario happens.18

(a) input (b) VCNet

Figure 1: (a) shows the incomplete volume of the argon bubble data set where
the cuboid missing subvolume is displayed on the side (same for other figures
in the paper). (b) shows our VCNet completion results.

Recovering missing subvolumes poses four key challenges.19

First, unlike super-resolution and ensemble generation, where20

full information of volumes is provided (even at a low resolu-21

tion), incomplete volumes only offer partial information. Us-22

ing traditional convolutions (Convs) with a small receptive field23

will not complete the missing subvolumes, while a large re-24

ceptive field will lead to high computational cost and memory25

demand. Second, only applying a series of Convs may not26

handle complex data sets whose distributions are composited27

(e.g., Gaussian+long-tail). This is because using only one gra-28

dient path will prevent the network from converging. Third,29

the coherence between the completed subvolume and its sur-30

roundings needs to be considered. Only discerning the com-31

pleted subvolume can result in low visual quality, leading to32

pronounced boundary artifacts. Fourth, in image completion,33

the mask can be easily detected through visualization. How-34

ever, in volume completion, due to the transfer function and35

viewpoint involved, it is difficult to generate such a mask via36

rendering. However, having such a mask is necessary for vol-37

ume completion since it offers prior knowledge about which38

voxels are missing, making the completion task accurate.39

To respond, we propose a novel deep learning solution, vol-40

ume completion network (VCNet), to fill in missing subvolumes41

for volumetric data analysis and visualization. We leverage a42

generative adversarial network (GAN) consisting of a gener-43

ator and a discriminator. The generator learns how to synthe-44

size the missing subvolume via “seeing” the content from the45

ground-truth subvolume, and the discriminator scores the real-46

ness of the completed subvolume. The core of the generator lies47

in dilated Conv [1] (which provides a large receptive field with-48

out requiring additional computational cost) and long-term con-49

nection [2, 3] (which promotes loss into minimum and prevents50

the generator from falling into unexpected behaviors). The dis-51

criminator also judges the coherence between the completed52

subvolume and its surroundings, and the realness between the53

completed and ground-truth subvolumes. The training data are54

from volumes without missing voxels. During inference, given55
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an incomplete volume as input, VCNet first generates a mask56

based on the Wasserstein distance between complete and in-57

complete subvolumes and then recovers the input.58

We quantitatively and qualitatively test VCNet on several59

data sets with various characteristics to demonstrate its effec-60

tiveness. Furthermore, we compare VCNet against three base-61

lines: gradient vector flow [4], context encoder [5], and global62

and local completion [6]. Our results show that VCNet achieves63

the best quality using the data-level metric peak signal-to-noise64

ratio (PSNR), image-level metric mean opinion score (MOS),65

and feature-level metric isosurface similarity (IS) [7]. Our con-66

tribution is three-fold. First, we propose VCNet, a new gener-67

ative model that can synthesize missing subvolumes for volu-68

metric data. Second, we design a mask detection algorithm to69

identify the missing voxels automatically. Third, we perform70

a comprehensive study to demonstrate the effectiveness of VC-71

Net and investigate its impacting factors.72

2. Related work73

2.1. Deep Learning for Volume Visualization74

Researchers have investigated deep learning techniques for75

solving volume visualization problems. Such examples include76

complex structure depiction [8], rendering pipeline replacement [9,77

10], ambient occlusion [11], representative time step selection [12],78

and similarity prediction [13, 14]. Other researchers developed79

deep learning solutions for creating volumetric scalar and vec-80

tor data or rendering images in the spatial [15, 16, 17, 18], tem-81

poral [19, 20, 21], spatiotemporal [22, 23], image [24, 25, 26],82

and variable [27, 28] domains. Our work differs from the above83

works. Instead of focusing on data generation [17, 19, 22, 27],84

we leverage deep learning solutions to solve the volume com-85

pletion problem.86

2.2. Data Completion87

The data completion problem has been studied for more88

than two decades, which includes two directions: traditional89

and learning-based solutions. Traditional solutions can be sep-90

arated into diffusion-based and patch-based approaches. For91

diffusion-based approaches, Xu and Prince [4] introduced gra-92

dient vector flow that estimates the missing voxels by minimiz-93

ing the Laplacian over the whole data. Ballester et al. [29] pro-94

posed a data completion algorithm that jointly interpolates the95

image’s gray levels and gradient directions, then smoothly ex-96

tends the isophotelines to fill in missing data. Levin et al. [30]97

built an exponential family distribution over training images to98

complete image holes. For patch-based approaches, Drori et al.99

[31] iteratively approximated the unknown regions and com-100

posited adaptive image fragments into the image. Barnes et101

al. [32] proposed PathMatch, a randomized corresponding al-102

gorithm that randomly samples some good patch matches and103

propagates these matches to surrounding areas to keep natu-104

ral coherence. Huang et al. [33] applied planar structure guid-105

ance to estimate planar projection parameters, softly segment106

the known region into planes, and discover translational regu-107

larity within these planes for image completion.108

For learning-based solutions, Pathak et al. [5] proposed a109

context encoder for completing images only for the central re-110

gions. Iizuka et al. [6] built a globally and locally consistent111

image completion framework for arbitrary region completion,112

where two discriminators were used to guarantee local and global113

consistency. Liu et al. [34] established partial convolution (PConv)114

that incorporates a visibility mask into convolutional operation115

for irregular hole completion. Wang et al. [35] conducted a gen-116

erative multi-column CNN (GMCNN), which simultaneously117

processes an incomplete image through three CNNs with dif-118

ferent kernel sizes. Yu et al. [36] designed gated convolution119

(GConv), giving a learnable dynamic feature selection solution120

for free-form completion.121

Our work belongs to the learning-based solution. Unlike the122

above works, which focus on image completion, we propose123

a generative model for volume completion and design a mask124

detection algorithm to discover the missing voxels for accurate125

inference.126

3. VCNet127

3.1. Notation128

Let us denote VC = {VC
1 , · · · ,V

C
n } and VI = {VI

1, · · · ,V
I
m} as129

the complete and incomplete volumetric data sets, respectively,130

where n and m are the respective numbers of data samples. For131

VCNet, VC is the training set and VI is the inference set. VC
M =132

{VC
M,1, · · · ,V

C
M,n} is an incomplete volumetric data set generated133

by VC through random masking. MC = {MC
1 , · · · ,M

C
n } is a bi-134

nary volumetric mask set of VC
M , where MC

j [v] = 1 if VC
M, j[v] is135

missing at voxel v; otherwise, MC
j [v] = 0. MI = {MI

1, · · · ,M
I
m}136

is a binary volumetric mask set of VI .137
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Figure 2: VCNet includes a generator G and a discriminator D. G takes incom-
plete volumes and synthesizes the missing subvolumes. D accepts the com-
pleted volumes as input and determines their realness. Note that D is used
during training only.

3.2. Overview138

Our VCNet design is adapted from 3D U-Net [37], a popu-139

lar neural network for image generation and segmentation tasks.140

Given a volume sample VC
i ∈ VC , VCNet first randomly masks141

a subvolume to obtain an incomplete volume VC
M,i. Then taking142
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VC
M,i as input, VCNet learns to synthesize the missing subvol-143

ume and calculates the error between the synthesized one and144

GT. To capture the coherence between the synthesized subvol-145

ume and its surroundings, we leverage a discriminator to score146

the volume’s realness. During inference, VCNet accepts VI as147

input, estimates the missing voxels, and fills them with high148

quality. In the following, we introduce the architecture of VC-149

Net, including the generator, discriminator, and design criteria.150

Then, we provide optimization and inference details for VCNet.151

Table 1: Network architecture parameter details for G and D. “ker”, “dil”,
“str”, and “out chs” stand for the kernel, dilation, stride, and output channels,
respectively.

G D
ker out ker out

type size dil str chs type size dil str chs
input N/A N/A N/A 1 input N/A N/A N/A 1
Conv+ReLU 4 1 2 32 Conv+ReLU 4 1 2 32
Conv+ReLU 3 1 1 32 Conv+ReLU 4 1 2 64
Conv+ReLU 4 1 2 64 Conv+ReLU 4 1 2 128
Conv+ReLU 3 1 1 64 Conv+ReLU 4 1 2 1
Conv+ReLU 4 1 2 128 GAP N/A N/A N/A 1
Conv+ReLU 3 1 1 128
Conv+ReLU 4 1 2 256
Conv+ReLU 3 1 1 256
dilated RB 3 2 1 256
dilated RB 3 4 1 256
dilated RB 3 8 1 256
VS+Conv+ReLU 3 1 1 128
VS+Conv+ReLU 3 1 1 64
VS+Conv+ReLU 3 1 1 32
VS+Conv+Tanh 3 1 1 1

3.3. Network Architecture152

Generator. The architecture of the generator (G) is sketched153

in Figure 2. The input to G is an incomplete volume, and the154

output is a complete one. The core of VCNet lies in applying155

dilated Conv [1] and long-term connection (LTC) [2, 3]. The156

design of G follows an encoder-decoder structure. The encoder157

decreases the input resolution several times to reduce memory158

storage and computational cost. The decoder restores the deep159

features to the original resolution of the input using voxel shuf-160

fle (VS) [19]. Followed by Iizuka et al. [6], Conv with a stride161

of two is applied to decrease the resolution in the encoder. We162

do not use max-pooling since it could lead to blurred texture in163

the missing subvolumes. We reduce the resolution four times164

in the encoder. After four rounds of downsizing, three residual165

blocks (RB) [38] with dilated Conv are applied to provide large166

receptive fields. Different dilations are utilized in these RBs.167

In the decoder, we apply four VS layers to upscale the features168

back to the original resolution. LTC is utilized to bridge the169

features from the encoder and the decoder. ReLU [39] is ap-170

plied after each Conv in both the encoder and the decoder. The171

parameter setting of G is listed in Table 1.172

Why dilated Conv? Dilated Conv is a variant of Conv op-173

erations, which has been used in image segmentation [1]. As174

shown in Figure 3, unlike traditional Conv, dilated Conv cap-175

tures a larger receptive field by applying spread-out kernels with176

the same number of parameters. Providing a large receptive177

field is vital for our volume completion task because it allows178

the network to see a larger subvolume rather than only focus-179

ing on the missing subvolume’s neighborhoods. Note that de-180

formable Conv [40] can also support a large receptive field, but181

kernel

missing 

subvolume

(a) traditional Conv (b) dilated Conv (c) LTC

Figure 3: (a) and (b) 2D illustrations of the receptive fields of different Conv
operations. (c) adding three LTCs (i.e., the red, blue, and orange lines) increases
the number of gradient paths to four. The dashed line means the corresponding
Conv is not involved in backpropagation.

it requires additional parameters to determine the correspond-182

ing voxels involved in the Conv computation. We also use de-183

formable Conv to replace dilated Conv, but no significant im-184

provement is observed. Therefore, we decide to use dilated185

Conv for designing VCNet.186

Why LTC? LTC is a popular technique used in image clas-187

sification [3] and segmentation [2]. It bridges feature maps be-188

tween two Conv layers to alleviate the gradient vanishing prob-189

lem. Adding one LTC, we can rely on two independent paths for190

gradient computation: one with LTC and another without LTC.191

If the gradient on one path is zero during backpropagation, the192

network can still update its trainable parameters by propagating193

gradient on another path from the later to previous layers. An194

example is shown in Figure 3 (c). By adding three LTCs in a195

network with five Conv layers, we increase the gradient paths196

to four. Without LTC, there is only one computation path (i.e.,197

the black one). Leveraging LTC in the volume completion task198

is essential since it can promote minimal loss and prevent the199

network from falling into unexpected behaviors [41].200

Discriminator. The discriminator (D) is designed for dis-201

cerning whether a volume has been completed. The network202

is based on a fully convolutional network that compresses the203

volume into a feature vector and predicts a value in [0, 1] to204

indicate the input’s realness. An overview of the network is205

shown in Figure 2. Specifically, D takes the completed volume206

as input and utilizes four Conv layers and one global average207

pooling (GAP) [42] layer to output a single 1D vector. All208

Conv layers employ a kernel size of four and a stride of two209

to downsize the volume resolution while increasing the number210

of feature maps. After four Conv operations, GAP transforms211

the input into a value, representing the realness probability of212

the input. The parameter setting of D is listed in Table 1.213

Loss function. To guarantee the completed subvolume is214

realistic and coherent with its surroundings, we consider two215

loss functions: a weighted mean squared error (WMSE) loss216

for closeness to ground truth and an adversarial loss [43] for217

closeness to realism. These two loss functions have been used218

in image completion [6, 5], which can stabilize the training pro-219

cess and improve network performance.220

The WMSE loss only takes into account the completed sub-
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volume for loss computation. It is defined as

LG
rec =

1
n

n∑
j=1

||MC
j � (G(VC

M, j) − VC
j )||2, (1)

where � is the voxel-wise multiplication, || · ||2 is L2 norm, and221

n is the number of training samples.222

The adversarial losses of G and D are defined as

LG
adv =

1
n

n∑
j=1

[log D(MC
j �G(VC

M, j) + (1 −MC
j ) � VC

j )], (2)

LD
adv =

1
n

n∑
j=1

[log D(VC
j )]

+
1
n

n∑
j=1

[log(1 − D(MC
j �G(VC

M, j) + (1 −MC
j ) � VC

j ))].

(3)

Intuitively, D can only discern the completed subvolume; how-223

ever, this ignores incoherence between the completed subvol-224

ume and its surrounding subvolumes. Therefore, in our design,225

D considers the coherence between the completed subvolume226

and its surroundings.227

Overall, the total loss of G is defined by

L = λrecL
G
rec + λadvL

G
adv, (4)

where λrec and λadv control the importance of LG
rec and LG

adv.228

3.4. Optimization229

Missing subvolumes. We consider four basic missing sub-230

volumes as either an internal cuboid or a whole x-, y-, or z-stack231

of slices. VCNet learns to synthesize these missing subvolumes232

during training. In particular, at each training iteration, VCNet233

randomly chooses one missing subvolume type from the above234

four groups, then randomly masks the data as input. During in-235

ference, it can complete missing subvolumes with various sizes236

and shapes (e.g., cuboid, cylinder, hyperboloid, sphere, tetra-237

hedron, and ring). Note that if we only consider an internal238

cuboid as a missing subvolume during training, VCNet will not239

complete missing subvolumes with different forms, e.g., a sub-240

volume with a whole x-, y-, or z-stack of slices.241

Training procedure. As reported in Iizuka et al. [6] and242

Han et al. [27], training a GAN model is expensive since the243

training process needs to go through two networks (G and D)244

and update gradients of G and D, respectively. Therefore, fol-245

lowed Wang et al. [44], we leverage a two-stage training al-246

gorithm (pre-train+fine-tune) to significantly reduce the train-247

ing cost without sacrificing the performance. The algorithm is248

shown in Algorithm 1. At the first stage, we treat VCNet as249

an auto-encoder and only utilize LG
rec to optimize VCNet for250

TP epochs. At this pre-train stage, VCNet can learn to fill in the251

missing subvolume, which is close to ground truth but may lack252

realism. Then, at the second stage, D is added into the train-253

ing process, and G and D are jointly optimized for TF epochs.254

Algorithm 1 VCNet training algorithm
Require: Initial parameters θG and θD; numbers of training epochs TP and TF

for pre-train and fine-tune, respectively; and learning rates αG and αD for G
and D, respectively.
for j = 1 · · · TP do

Sample a set of volumes VC from training pool
Randomly generate masks MC and incomplete volumes VC

M
Update θG using MC and VC (Equation 1)

end for
for j = 1 · · · TF do

Sample a set of volumes VC from training pool
Randomly generate masks MC and incomplete volumes VC

M
Freeze θG
Update θD using MC , VC

M , and VC (Equation 3)
Freeze θD and activate θG
Update θG using MC and VC (Equation 4)
Activate θD

end for

At this fine-tune stage, with the judgment of D, G can refine255

the results produced from the pre-train stage toward realism.256

With the original GAN training algorithm [43], gradients of D257

can quickly explode because G cannot follow the evolution of258

D due to random initialization of G and D. This initialization259

could let G give up generating meaningful results if D evolves260

much faster than G after several training epochs. Such an im-261

balanced evolution is due to the disparity between the tasks of262

G and D (i.e., D is a classification task while G is a genera-263

tion task). However, with this two-stage training algorithm, G264

already has a good initialization that can generate meaningful265

results through the first stage training. It can refine the results266

with the feedback from D rather than random initialization from267

scratch. Moreover, it reduces the training cost since the number268

of optimization of D is decreased.269

Algorithm 2 Mask detection algorithm

Require: An incomplete volume VI
j; a complete volume VC

j ; and a threshold
ε.
Initialize an empty mask M j
for each voxel v in VI

j do
Sample two K × K × K subvolumes VI

j,v and VC
j,v where the centers are

located at voxel v in VI
j and VC

j , respectively
Compute the Wasserstein distance d between VI

j,v and VC
j,v

if d > ε then
M j[v]← 1

end if
end for
return M j

3.5. Inference270

Once the training of VCNet converges, we can directly feed
VI to VCNet to synthesize the missing subvolumes following
the equation

MI �G(VI) + (1 −MI) � VI . (5)

Note that only VI is given, and MI is unknown. Therefore,271

we propose a mask detection algorithm to identify the missing272
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voxels and produce the corresponding masks MI . The algo-273

rithm is based on the following assumption: given an incom-274

plete volume VI
j and a complete volume VC

j , the data distribu-275

tions should exhibit a similar pattern at a voxel v’s surrounding276

subvolume if both VI
j,v and VC

j,v are complete. If VI
j,v is incom-277

plete and VC
j,v is complete, then the distributions should be dif-278

ferent. To verify this assumption, we plot density maps with279

respect to a local subvolume around a selected voxel, as shown280

in Figure 4. As we can observe, both maps show a Gaussian281

distribution for the complete voxels; the only difference is that282

the mean and variance could vary. However, for the incomplete283

voxels, the distributions differ from the complete ones. For ex-284

ample, the maps could exhibit an almost straight pattern. The285

Wasserstein distance is computed to indicate whether the voxel286

is incomplete. We summarize the mask detection algorithm in287

Algorithm 2. For each voxel v, we sample two local subvolumes288

(we set K to 5) of v from VI
j and VC

j , respectively, and compute289

the Wasserstein distance (d) between these two subvolumes to290

judge whether v is missing. Once looping through all voxels,291

the algorithm will return a binary mask M j, indicating which292

voxels need to be completed.293

(a) d = 0.078 (b) d = 0.356

(c) d = 0.073 (d) d = 0.254

Figure 4: The density maps with respect to a local subvolume around a com-
plete voxel (left) and an incomplete voxel (right) for the solar plume (top row)
and vortex (bottom row) data sets.

Table 2: The data set, variable, dimension, and training epochs.

data set variable dimension (x × y × z × n) TP TF

argon bubble intensity 320 × 128 × 128 × 100 200 50
five jets intensity 128 × 128 × 128 × 100 400 50
solar plume velocity magnitude 128 × 128 × 512 × 28 200 50
supernova entropy 128 × 128 × 128 × 60 800 100
vortex vorticity magnitude 128 × 128 × 128 × 90 400 50

4. Results and Discussion294

4.1. Data Sets and Network Training295

We tested VCNet using the time-varying data sets given in296

Table 2. The volume samples were randomly drawn from the297

sequence. We used 35% of data for training. The remaining298

65% of data are for inference. We trained and inferred VCNet299

using an NVIDIA TESLA V100 GPU with 32GB video mem-300

ory. PyTorch was used for implementation. In terms of opti-301

mization, we initialized VCNet parameters following He et al.302

[45] and leveraged the Adam optimizer [46] to update param-303

eters. We used one training sample for each mini-batch. The304

learning rates for G and D are 10−4 with β1 = 0.9, β2 = 0.999,305

λadv = 10−3, and λrec = 1. All these parameters are empirically306

decided through experiments.307

4.2. Results308

Baselines. To evaluate VCNet, we implement three base-309

line solutions for comparison:310

• Gradient vector flow (GVF) [4]: As a diffusion-based311

method, GVF completes missing subvolumes by mini-312

mizing the Laplacian over the whole data.313

• Context encoder (CE) [5]: CE is a deep learning solu-314

tion for image completion. Its architecture includes an315

encoder and a decoder. The encoder includes five Conv316

layers followed by leaky ReLU and one Conv layer to317

yield a feature representation with 4, 000 neurons. The318

decoder includes several deconvolutional (DeConv) lay-319

ers, followed by ReLU for upscaling. WMSE and adver-320

sarial losses are leveraged for optimization.321

• Global and local completion (GLC) [6]: GLC is a fully322

convolutional network that includes 11 Conv, four dilated323

Conv, and two DeConv layers. In addition, it has two324

discriminators to guarantee local and global consistency,325

respectively.326

We used the same training settings for CE, GLC, and VCNet,327

namely, the training epochs, optimizer, learning rate, and loss328

functions (i.e., WMSE and adversarial losses). The only differ-329

ence between these three deep learning solutions is architecture330

design.331

We also tried PConv [34], GConv [36], and GMCNN [35]332

as the baselines. However, these solutions are rather deep (PConv),333

multi-stage (GConv), or multi-column (GMCNN). Applying334

them to 3D volumetric data sets is difficult due to the limited335

GPU memory. We tried to reduce the depths, stages, or columns336

to adapt them into 3D data sets, but the performance was unsat-337

isfactory. Therefore, we only chose CE and GLC as our deep338

learning baselines.339

Unless otherwise mentioned, all visualization results pre-340

sented for volumes synthesized by VCNet are the inferred re-341

sults, which are not seen by the network during training. For342

the same data set, all visualizations follow the same setting for343

lighting, viewing, transfer function (for volume rendering), and344

isovalue (for isosurface rendering). In reference to the ground345

truth (GT) results, we compare our VCNet results against GVF,346

CE, and GLC. The supplementary video provides the frame-to-347

frame comparison results.348

Evaluation metrics. We compute the data-level PSNR,349

image-level MOS, and feature-level IS, between the recovered350

data and GT for quantitative evaluation. We do not use SSIM351

for image quality assessment because this metric may not dif-352

ferentiate well different methods when the missing subvolumes353
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(a) input (b) GVF (c) CE (d) GLC (e) VCNet (f) GT

Figure 5: Comparison of volume rendering results. Top to bottom: argon bubble, five jets, solar plume, and vortex.

are small (in this case, all methods will achieve similarly high354

SSIM values). Note that only the missing subvolumes are in-355

volved in the PSNR and IS computation.356

Quantitative analysis. Table 3 reports the average PSNR357

values for GVF, CE, GLC, and VCNet. VCNet leads to the358

best PSNR values except for the vortex data set (where the gap359

between VCNet and CE is only 0.11). Table 3 also gives the av-360

erage training time per epoch and model size for CE, GLC, and361

VCNet. It is clear that GLC takes the longest training time since362

it includes three networks (i.e., one generator and two discrim-363

inators) and only downsamples the input twice, while there is364

no significant difference in the inference time. VCNet requires365

120MB to store the model. Although CE is a fully convolu-366

tional network, the model size depends on the data set’s reso-367

lution. It needs to compress the data into a 4, 000-dimensional368

vector and upscale to the original resolution, which requires a369

different number of DeConv layers in the decoder based on the370

input’s resolution. Table 4 reports the average IS values for371

GVF, CE, GLC, and VCNet. Again, VCNet achieves the high-372

est IS value for all data sets.373

Qualitative analysis. Figure 5 shows volume rendering374

results from the volumes completed by GVF, CE, GLC, and375

VCNet. For the argon bubble and solar plume data sets, VC-376

Net achieves the best completion quality. For example, VCNet377

completes the argon bubble and solar plume’s missing subvol-378

umes. GVF fills in nearly constant values. In contrast, both CE379

and GLC do not fill in any missing subvolumes (i.e., the vol-380

ume rendering results are identical to those of the incomplete381

input volumes). For the five jets data set, GVF cannot repair382

the missing subvolume, and CE does not synthesize the subvol-383

ume with sufficient details. Both GLC and VCNet produce sim-384

Table 3: Average PSNR (dB), training time per epoch (in seconds), and model
size (MB). The best ones are highlighted in bold (same for other tables in the
paper).

data set method PSNR train model size

argon bubble

GVF 13.88 — —
CE 23.45 211.61 1, 392.64
GLC 23.45 2, 291.34 71.9
VCNet 37.98 166.88 120

five jets

GVF 19.71 — —
CE 39.55 71.04 1, 146.88
GLC 43.77 927.68 71.9
VCNet 44.64 34.32 120

solar plume

GVF 13.96 — —
CE 20.35 215.34 2, 140.16
GLC 20.37 3, 072.68 71.9
VCNet 41.80 206.73 120

vortex

GVF 12.46 — —
CE 33.85 62.02 1, 146.88
GLC 31.98 817.58 71.9
VCNet 33.74 30.54 120

ilar results, but taking a close comparison, VCNet synthesizes385

finer details for the green part (refer to the blue arrows), com-386

pared with GT. For the vortex data set, GVF does not complete387

the missing subvolume, while CE, GLC, and VCNet recover all388

the missing voxels. However, taking a close comparison, we389

observe that the result produced by CE includes noises and ar-390

tifacts, and the result synthesized by GLC lacks coherence with391

its surrounding subvolumes (refer to the green arrows).392

Figure 6 shows isosurface rendering results from the vol-393

umes completed by GVF, CE, GLC, and VCNet. For each data394

set, we pick one data sample and one isovalue to genereate the395

isosurface. VCNet performs the best for the argon bubble and396

solar plume data sets. For the five jets data set, VCNet and GLC397
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(a) input (b) GVF (c) CE (d) GLC (e) VCNet (f) GT

Figure 6: Comparison of isosurface rendering results. Top to bottom: argon bubble, five jets, solar plume, and vortex. The chosen isovalues are −0.25, −0.1, −0.4,
and 0.1, respectively.

Table 4: Average IS values at selected isovalues.

data set (isovalue) GVF CE GLC VCNet
argon bubble (v = −0.25) 0.03 0 0 0.82
five jets (v = −0.1) 0.05 0.83 0.89 0.92
solar plume (v = −0.4) 0.02 0 0 0.88
supernova (v = 0) 0.01 0.58 0.64 0.67
vortex (v = 0.1) 0.06 0.85 0.83 0.90

produce similar results while CE completes the isosurface with398

some noises and artifacts (see the specular highlights), and GVF399

only recovers a partial subvolume. As for the vortex data set,400

VCNet generates more details and preserves better coherence401

between the incomplete subvolume and its surrounding.402

Table 5: Average MOS given by the ten participants.

volume rendering isosurface rendering
data set CE GLC VCNet CE GLC VCNet
five jets 0.50 0.71 0.76 0.66 0.73 0.76
supernova 0.63 0.69 0.80 0.44 0.53 0.56
vortex 0.54 0.60 0.71 0.56 0.74 0.79

User evaluation. To evaluate the perceptual quality of syn-403

thesized volumes, we conducted a user study with volume and404

isosurface rendering images generated by CE, GLC, and VC-405

Net, compared with GT images. For each rendering option, we406

chose three data sets for comparison. For each data set, we se-407

lected six different volume samples. In total, we collected 108408

(a) CE (b) GLC (c) VCNet (d) GT

Figure 7: Highlighted differences from the participants. Top: volume rendering
for supernova. Bottom: isosurface rendering for vortex.

(3× 2× 3× 6) image tuples for comparison. For each tuple, we409

set the left image as rendered from incomplete data, the middle410

image as synthesized by one of the three methods (CE, GLC,411

or VCNet with the order randomly shuffled), and the right im-412

age as rendered from the GT data. Ten Ph.D. students were413

recruited to complete the study. All of them major in computer414

science and have visualization-related backgrounds. These par-415

ticipants were asked to compare the middle image’s completion416

quality with that of the right image by giving a score ranging417
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(a) input (b) VCNet (c) input (d) VCNet (c) GT

Figure 8: Volume rendering results under different missing ratios. (a) and (c) show 25% and 50% missing ratios, respectively. Top to bottom: argon bubble, five
jets, solar plume, and vortex.

Table 6: Average number of highlights given by participants.

volume rendering isosurface rendering
data set CE GLC VCNet CE GLC VCNet
five jets 2.71 1.96 1.83 2.42 2.17 2.03
supernova 2.08 1.88 1.08 2.92 2.88 2.67
vortex 3.04 2.79 2.54 2.92 2.13 1.71

from 0.0 (most dissimilar) to 1.0 (most similar). Furthermore,418

they were also asked to highlight, in the middle image, the dif-419

ferences between the middle and right images. We requested420

up to five differences for each tuple. Sample highlighting re-421

sults from the participants are shown in Figure 7. Participants422

were allowed to update the scores during the evaluation, espe-423

cially at the beginning, when the score calibration is needed.424

We reminded them that various factors, such as the overall im-425

pression, visible content shift, local color consistency, shape426

preservation, noise level, and coherence between the completed427

subvolume and its surroundings, should be considered in the428

evaluation. It took a participant around two hours to complete429

the study, and each received $20 as compensation. We report430

the average MOS in Table 5 and average number of highlights431

in Table 6. As we can see, VCNet achieves the highest MOS432

and lowest number of highlights for all these three data sets.433

Evaluation of missing ratio. To investigate the capability434

of VCNet in completing different missing ratios, we evaluate435

VCNet on four different ratios: 12.5%, 25%, 37.5%, and 50%.436

As shown in Figures 8 and 9, under the missing ratio of 25%,437

the completed subvolumes are close to the GT for each data438

set. However, under the missing ratio of 50%, we can observe439

the differences clearly. For example, the argon bubble’s head440

is inconsistent with the GT. The texture of the five jets’ cap is441

not preserved well. The tail of the solar plume contains some442

artifacts. The sizes of several red components of the vortex are443

not consistent with those of GT. Furthermore, in Figure 10, we444

compare average PSNR values under different missing ratios445

with different methods. VCNet outperforms CE and GLC for446

most cases. In addition, when the missing ratio gets larger, the447

more benefit VCNet can bring. Therefore, depending on the448

quality need, the maximum missing ratio that VCNet can han-449

dle could range from 25% to 50%.450

Baseline analysis. As shown in Figures 5 and 6, we observe451

that (1) GVF does not recover the missing subvolumes for all452

data sets; (2) the rendering results generated by CE contain no-453

ticeable noises and artifacts, while those produced by GLC and454

VCNet are not that evident; (3) CE and GLC work well for the455

vortex and five jets data sets but fail for the argon bubble and456

solar plume data sets. The explanations for these three observa-457

tions are as follows.458

GVF does not complete volumetric data sets with large in-459

complete subvolumes because it only linearly interpolates the460
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(a) input (b) VCNet (c) input (d) VCNet (c) GT

Figure 9: Isosurface rendering results under different missing ratios. (a) and (c) show 25% and 50% missing ratios, respectively. Top to bottom: argon bubble, five
jets, solar plume, and vortex. The chosen isovalues are −0.5, 0.4, −0.2, and −0.05, respectively.

CE GLC VCNet

(a) argon bubble (b) five jets

(c) solar plume (d) vortex

Figure 10: Average PSNR values under different missing ratios.

missing voxels by aggregating their neighborhoods. When the461

missing subvolume becomes large, the neighborhoods can no462

longer provide enough information for GVF to recover.463

The noises and artifacts generated by CE are due to the464

use of DeConv layers [17]. In CE, it upscales deep features465

(a) argon bubble (b) five jets

Figure 11: Density maps of different volumetric data sets.

through several DeConv layers but not subsequent Conv layers466

after each DeConv layer. Without these subsequent Conv lay-467

ers, the upscaled features are not refined and denoised since the468

DeConv operation will introduce the checkerboard-like artifact.469

As for CE and GLC’s failures on the argon bubble and solar470

plume data sets, we speculate that it is due to gradient vanish-471

ing. To verify this, we compute the average gradient values472

at different Conv layers in CE, GLC, and VCNet. The aver-473

age gradients are given in Table 7. For the argon bubble data474

set, the gradients from Conv 3 to Conv 5 are always 0 for CE475

and GLC, while VCNet still preserves a small gradient at each476

Conv layer. As for the five jets data set, all three methods have477

a non-zero gradient at each Conv layer. These gradient values478
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Table 7: Average gradient values at different Conv layers under different archi-
tectures.

gradient gradient
layer method (argon bubble) (five jets)

Conv 3
CE 0 −7.27 × 10−8

GLC 0 1.15 × 10−6

VCNet 1.24 × 10−6 −3.72 × 10−8

Conv 4
CE 0 3.72 × 10−9

GLC 0 −1.64 × 10−8

VCNet 1.31 × 10−6 −4.84 × 10−8

Conv 5
CE 0 7.25 × 10−9

GLC 0 1.15 × 10−6

VCNet 2.58 × 10−7 8.19 × 10−9

confirm our speculation since the learnable parameters in CE479

and GLC are no longer updated for the argon bubble data set,480

which leads to the failure. Still, we wonder about the differ-481

ence between these four data sets. To understand this, we plot482

their density maps, as shown in Figure 11. It is clear that both483

five jets exhibit a nearly symmetric distribution, which means484

if one subvolume is missing, the network can quickly learn to485

fill in through searching the symmetric counterpart. However,486

this is not the case for argon bubble. It shows a composed dis-487

tribution: a Gaussian distribution plus a long-tail distribution.488

That is, using a forward path in the network is not enough to489

capture such distributions. Adding multiple forward paths can490

help the network see more “globally” and merge the results to491

synthesize the missing subvolume, which is the exact role LTC492

is playing in VCNet.493

Comparison with lossy compression. One potential appli-494

cation of VCNet is volumetric data reduction. Therefore, we495

compare our solution against a lossy compression (LC) algo-496

rithm [47]. We cull away half of the original volume and utilize497

VCNet to fill the culled part. We set the same PSNR value (i.e.,498

44 dB) for both methods for comparison. As displayed in Fig-499

ure 12, both approaches can recover the overall shape of the500

supernova, while LC produces more artifacts and noises.501

(a) LC (b) VCNet (c) GT

Figure 12: Comparison of volume rendering results with VCNet and LC using
the supernova data set.

Robustness evaluation. To study VCNet’s robustness in502

completing different missing subvolumes, we test VCNet for503

various missing subvolumes (e.g., cuboid, cylinder, hyperboloid,504

sphere, tetrahedron, and ring) using different data sets. Volume505

and isosurface rendering results are shown in Figures 13 and 14.506

The results show that VCNet can handle different missing sub-507

volumes. It can also work well when the input volumes have508

multiple missing subvolumes.509

(a) input (b) VCNet (c) input (d) VCNet

Figure 13: Volume rendering results under various missing subvolumes. Top to
bottom: argon bubble, five jets, solar plume, supernova, and vortex.

(a) input (b) VCNet (c) input (d) VCNet

Figure 14: Isosurface rendering results under various missing subvolumes. Top
to bottom: argon bubble, five jets, solar plume, supernova, and vortex. The
chosen isovalues are −0.2, 0.25, −0.8, 0.0, and −0.1, respectively.
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(a) input (b) without (c) with

Figure 15: Volume rendering results with and without LTC using the solar
plume data set.

(a) input (b) without (c) with

Figure 16: Zoom-in volume rendering results with and without dilated Conv
using the vortex data set.

(a) input (b) VCNet (c) GT

Figure 17: A subpar case of VCNet with the supernova data set.

4.3. Ablation Study510

For the ablation study, we investigate the impact of long-511

term connection and dilated Conv. To investigate the impact512

of LTC in VCNet, we train VCNet with and without LTC. As513

shown in Figure 15, without LTC, VCNet cannot recover the514

missing subvolume for the solar plume data set. These results515

confirm the effectiveness of LTC in VCNet. To study the use-516

fulness of dilated Conv, we apply traditional Conv to replace517

dilated Conv in VCNet. As shown in Figure 16, with dilated518

Conv, the recovered volume of the vortex data set can preserve519

a better coherence with its surroundings (refer to the green ar-520

rows).521

4.4. Discussion522

While VCNet can complete volumes with various missing523

subvolumes, it may not satisfactorily synthesize fine details on524

some specific subvolumes. One example with the supernova525

data set is shown in Figure 17 where the missing subvolume526

corresponds to the supernova’s center. We can see that VCNet527

does not generate high-fidelity rendering results, even though528

the overall shape is well recovered. This is because the sur-529

rounding subvolumes may exhibit different structures than the530

center. Thus, leveraging the surroundings’ information does not531

help fill in the supernova’s center seamlessly.532

5. Conclusions and Future Work533

We have presented VCNet, a novel deep learning frame-534

work that synthesizes missing subvolumes for analyzing and535

visualizing 3D volumetric data sets. Leveraging GAN, VCNet536

completes different missing subvolumes with varying missing537

ratios. In terms of volume rendering and isosurface rendering,538

VCNet achieves better visual quality than GVF and two other539

solutions based on deep learning (i.e., CE and GLC). In addition540

to qualitative comparison, quantitative evaluation results using541

PSNR, MOS, and IS also confirm the effectiveness of VCNet.542

In the future, we will consider the information of neighboring543

time steps for preserving temporal coherence. We will also use544

VCNet to complete large volumetric data sets through multiple545

GPUs and model parallel.546
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