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ABSTRACT

Due to its conceptual simplicity and generality, compressive neural
representation has emerged as a promising alternative to traditional
compression methods for managing massive volumetric datasets.
The current practice of neural compression utilizes a single large
multilayer perceptron (MLP) to encode the global volume, incurring
slow training and inference. This paper presents an efficient compres-
sive neural representation (ECNR) solution for time-varying data
compression, utilizing the Laplacian pyramid for adaptive signal
fitting. Following a multiscale structure, we leverage multiple small
MLPs at each scale for fitting local content or residual blocks. By
assigning similar blocks to the same MLP via size uniformization,
we enable balanced parallelization among MLPs to significantly
speed up training and inference. Working in concert with the multi-
scale structure, we tailor a deep compression strategy to compact the
resulting model. We show the effectiveness of ECNR with multiple
datasets and compare it with state-of-the-art compression methods
(mainly SZ3, TTHRESH, and neurcomp). The results position
ECNR as a promising solution for volumetric data compression.

1 INTRODUCTION

Over the past few years, deep learning techniques have surfaced
as a variable solution in solving different scientific visualization
problems, including data compression [37]. Lu et al. [24] proposed
neurcomp, a deep learning-based method for neural compression of
volumetric datasets. They applied a multilayer perceptron (MLP)
to fit a volume, where the network takes the spatial coordinates
(x,y,2) as input upon training and generates the corresponding voxel
values to reconstruct the volume. As a result, only the trained
model must be stored since the data in the entire volume can be
inferred. This provides an excellent compression opportunity as
the model size is orders of magnitude smaller than the size of the
original volumetric data. Furthermore, the network can be extended
to ingest spatiotemporal coordinates (x,y,z,f) to represent time-
varying volumetric data naturally.

Despite its great promise, neurcomp suffers several limitations.
First, as a solution based on a coordinate-based network, neurcomp is
slow in training and inference as an entire feedforward pass through
the network must be computed for every sample (for training) and
coordinate (for inference). Second, the current solution selects
random voxel samples during training, ignoring that volumetric
data often exhibit spatial features or regions of interest that demand
greater attention than less important ones. Third, the temporal aspect
is treated as an additional input coordinate to the network without
a careful design that leverages their spatiotemporal similarities to
speed up the training.

In this paper, we propose ECNR, an efficient compressive neural
representation for time-varying volumetric datasets. Unlike neur-
comp, which employs a single large MLP to fit the entire volume,
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ECNR advocates MINER, a multiscale approach [31] proposed
for implicit neural representation (INR) of image and point cloud
data. Similar to MINER, ECNR adaptively decomposes the spa-
tiotemporal volume into blocks via the Laplacian pyramid, starting
from the coarsest scale. As such, a block is only partitioned further
if its residual remains significant, demanding the capture of finer
space-time details for accurate signal reconstruction. To fit the lo-
cal spatiotemporal blocks at each scale, we utilize multiple small
MLPs, permitting fast encoding and decoding, reduced memory
consumption, and enhanced reconstruction quality.

Different from MINER, ECNR handles 4D (3D+time) volumetric
datasets, while MINER only processes 2D static images or 3D mesh.
We treat spatial and temporal dimensions equally and produce the
same number of scales during data partitioning. At each scale,
we group similar blocks into clusters, and each cluster consists of
nearly the same number of blocks. We then assign each cluster
to an MLP and effectively train them in parallel. Furthermore,
we leverage a deep compression strategy (including block-guided
pruning, global quantization, and entropy encoding) to compact
the resulting model with a high compression rate (CR). Finally,
we propose a lightweight convolutional neural network (CNN) to
mitigate the possible boundary artifacts in the MLP-decoded results
during inference.

We demonstrate the effectiveness and efficiency of ECNR by com-
paring it with three state-of-the-art solutions: deep learning-based
neurcomp and conventional compression methods SZ3 [22] and
TTHRESH [1]. Compared with conventional compression methods
(SZ3 and TTHRESH), ECNR achieves better quality (on average,
+5.87 dB and +7.18 dB in PSNR) under high CRs. ECNR can handle
time-varying volumetric datasets with a large spatial extent and/or
long temporal sequence. Compared with neurcomp, it speeds up
the encoding (up to 3.18x) and decoding (up to 29.57 x) process,
making it a more practical choice.

Table 1: Comparison of different methods over encoding time (ET),
decoding time (DT), compression rate (CR), and data quality (DQ).

method | ET DT CR DQ
SZ3 very fast ~ very fast high medium
TTHRESH fast fast high medium

neurcomp very slow slow very high high

ECNR slow fast very high high

Table 1 summarizes the comparison among these four methods.
As deep learning-based solutions that depend on GPUs, ECNR’s
efficiency advantage over neurcomp lies in its encoding and decoding
speed improvement. Nevertheless, it is still slow compared with
SZ3 and TTHRESH, which are CPU-based solutions. This renders
ECNR unsuitable for time-critical scenarios like co-processing and
in situ processing unless massive GPU parallelism (i.e., a large-
scale GPU cluster) becomes commonplace. Our value proposition
is that ECNR can be an ideal choice if one needs to archive a large
time-varying dataset during post-processing when the speed is not
the primary concern, aiming for highly compressive results while
preserving the high fidelity of decompressed data.

The contributions of this work can be summarized as follows.



First, we present ECNR, a new INR-based compression method that
uses a unified space-time partitioning strategy to adaptively com-
presses the time-varying volumetric dataset using multiple small
MLPs for fitting local blocks (Section 3.1). Second, we propose a
novel block assignment scheme that leads to balanced parallelization
among MLPs, significantly speeding up training and inference (Sec-
tion 3.3). Third, our deep MLP compression strategy features block-
guided pruning that adjusts the sparsity of each MLP based on the
average block loss and global quantization that supports fine-tuning
shared parameters of all MLPs within the same scale (Section 3.5).
Fourth, we incorporate a lightweight CNN to mitigate block bound-
ary artifacts in the MLP-decoded results (Section 3.6). All these
additions (unified 4D partition, block assignment, deep compression,
boundary artifact mitigation) are not presented in MINER. They con-
tribute to performance and quality gains, highlighting the differences
and novelty of ECNR.

2 RELATED WORK

Volume data compression. Given the prevalent need for data reduc-
tion in scientific computing, much research has been done to com-
press large-scale scientific simulation data. The earlier works lever-
aged wavelet transform [28] or discrete cosine transform (DCT) [48].
Later, researchers developed TAMRESH [34] and TTHRESH [1]
that utilize data decomposition for tensor compression of multidi-
mensional data over regular grids. Another compression technique
is data fitting using pre-conditioners or predictors [18,21]. Other
models seek to save different data features, such as graph-based mod-
els [17], topological features [33], and dictionaries [5]. Researchers
also explored various statistical approaches, such as frequency statis-
tics and Gaussian mixture-based techniques and sampling, for solv-
ing similar problems [4,6,29,38,39]. In a bigger scope, Li et al. [20]
surveyed data reduction techniques for simulation, visualization,
and data analysis. Lu et al. [24] presented neurcomp to achieve
volume data fitting via MLPs. Our work addresses its limitations by
encoding time-varying data using multiple small MLPs that fit local
spatiotemporal blocks, inspired by MINER [31] and KiloNeRF [30].

Neural field representation. In computer vision, neural field rep-
resentation has become a popular topic due to its versatility in fitting
various signals or tasks [46]. Martel et al. [25] presented ACORN, an
INR that optimizes the multiscale block hierarchy to represent large-
scale or complex scenes. Miiller et al. [27] introduced Instant-NGP,
which leverages multiresolution hash tables (MHTs) to dramatically
downsize the number of network parameters. Signals across various
scales often exhibit inherent similarities. This property has been
leveraged in 3D volume representation using octrees [19, 25, 35].
Saragadam et al. [31] proposed MINER, a multiscale INR based on
a Laplacian pyramid for more efficient presenting multiscale signals.
Instant-NGP requires larger space than regular implicit networks to
store explicit 4D MHTs for time-varying data, rendering it unsuit-
able for our data compression goal. Unlike ACORN [25], our ECNR
follows MINER and employs the Laplacian pyramid to decompose
signals into low-resolution content at the coarsest scale and residuals
at subsequent finer scales (refer to Figure 1 for an example). ECNR
eliminates the need for time-consuming on-the-fly maintenance and
tree structure updating. At the beginning of processing each scale, a
one-time computation of block partitioning suffices.

In volume visualization, neural representation methods have
been utilized for generative rendering model [3], visualization syn-
thesis [10, 15, 42], and image compression [7]. They have also
been leveraged in interactive neural rendering via scene representa-
tion network (SRN), such as fV-SRN [40], APMGSRN [45], and
MHT-based INR [43]. Other works include super-resolution genera-
tion [8-10, 12,36,42]. Wurster et al. [44] presented a hierarchical
super-resolution solution that upscales volumetric data to a high
resolution with minimal seam artifacts along boundaries of different
resolutions. However, this hierarchical structure trains several large
networks for upscaling, which can be expensive to store. In contrast,

ENCR utilizes straightforward downsampling and upsampling with
small MLPs to represent the volumetric data cost-effectively.

Model compression. The common practice for compressing deep
network models is a three-step process: network pruning, weight
quantization, and entropy encoding [13]. Wen et al. [41] proposed a
structured sparsity learning (SSL) method to regularize the network
structures (i.e., filters, channels, filter shapes, and layer depth). Ye
et al. [47] utilized the alternating direction method of multipliers
(ADMM) to perform weight pruning and clustering/quantization in a
unified way. Additional techniques, including iterative weight quan-
tization and retraining, joint weight clustering training and centroid
updating, and weight clustering retraining, were also employed for
further performance improvement. Molchanov et al. [26] estimated
the contribution of a neuron (filter) to the final loss and iteratively
removed those with smaller scores. Lin et al. [23] obtained a per-
formant sparse model in one single training pass by dynamically
allocating the sparsity pattern and incorporating feedback signal to
reactivate prematurely pruned weights. Our deep compression of
MLPs follows that of the common three-step [13], but we reconsider
several design choices given the multiple-MLP architecture. Specifi-
cally, we propose the block-guided pruning and global quantization
strategy for small MLPs within our model to further improve the
performance.

3 ECNR

Given a time-varying volume dataset, INR encodes the data by lever-
aging MLP, which inputs the coordinates to fit the volume. When
employing a single large global MLP for the encoding task, a single
forward pass through such an MLP may require millions of opera-
tions for one voxel. Thus, the cost of computing a complete volume
with merely 1003 voxels already inflates to trillions of operations.
ECNR employs multiple small local MLPs to encode the volume
data to circumvent this issue. Since each MLP is small in parame-
ter size and represents all voxels belonging to a disjoint cluster of
local blocks, the computation time for a single MLP can be signif-
icantly reduced. Furthermore, parallel processing of MLPs boosts
the efficiency of encoding the entire volume. Besides using multiple
MLPs, ECNR integrates three main steps to improve the overall
performance: a spatiotemporal multiscale method that decomposes
the spatiotemporal volume into blocks hierarchically (Section 3.2)
and achieves fast convergence using a balanced block assignment
scheme (Section 3.3), a multiple-MLP deep compression strategy
that works in concert with the multiscale structure to compact the
resulting model (Section 3.5), and a lightweight CNN module to
mitigate the possible block boundary artifacts in the MLP-decoded
results (Section 3.6).

Our ECNR is an adaptive solution that utilizes MLPs with sinu-
soidal activation functions but focuses on time-varying volumetric
data compression. Compared with the existing practice, ECNR of-
fers several advantages. First, instead of relying on a predetermined
network capacity (i.e., a fixed number of parameters) for encoding,
ECNR exhibits superior robustness by adaptively adjusting network
capacity to encode large-scale time-varying volumetric data, ensur-
ing stable compression of data with various spatiotemporal char-
acteristics. Second, ECNR employs a distinct group of MLPs at
each scale for compressive neural representation, resulting in fast en-
coding and decoding, reduced memory consumption, and enhanced
reconstruction quality. Third, ECNR leverages block-guided prun-
ing that adjusts the sparsity of each MLP differently according to
their nonuniform blocks fitting error, global quantization that allows
representing MLP parameter with the shared parameters of all MLPs
within the same scale, and entropy encoding to achieve a higher CR
without quality loss.

3.1 Unified Space-Time Approach

We advocate a unified approach that treats spatial and temporal
domains equally and applies ECNR to the 4D space-time data. Both
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Figure 1: Employing the Laplacian pyramid, ECNR decomposes a volume into blocks in terms of their low-resolution content (coarsest scale)
and residuals (finer scales). A three-scale (s = 3) example with the simplified 3D version (i.e., the temporal dimension is omitted) is sketched.

A group of MLPs encodes all blocks at the same scale.

(a) scale 3 partition (b) scale 1 partition

Figure 2: At each scale, the encoding target is split into equal-sized
blocks, and only effective blocks with large residual values (shown
in red bounding boxes) are processed.

domains produce the same number of scales as we partition the data.
Each partition divides each of the (x,y,z,¢) dimensions in half. At
each scale, we split these 4D space-time blocks into individual 3D
spatial blocks for efficient MLP fitting, which also enables us to
handle datasets with long temporal sequences. These spatial blocks
have the same dimension regardless of which scale they reside in.
Assuming the volume dimension, block dimension, and number of
scales are (x,y,z,1), (Xp,¥p,25), and s, respectively, then the number
of spatial blocks at scale i (where i = s is the coarsest scale) will
be x/ (2 xp) x y/ (2 Vyp) x 2/(27 1 z5) x /271, As i decreases,
we have increasingly more blocks to discard at a fine scale if their
residuals are small, leading to a dramatically reduced number of
effective blocks that need to be fitted. Since we process scale by
scale, only the effective blocks at the current scale need to be loaded
into memory simultaneously. With this spatiotemporal treatment,
ECNR can handle volumetric datasets with a large spatial extent
and/or long temporal sequence, as long as the memory can hold the
effective blocks at the finest scale.

3.2 Multiscale Block Partitioning

Like MINER, ECNR represents the large-scale volume dataset as
the sum of blocks from different scales. As sketched in Figure 1,
the volume is encoded/decoded sequentially scale by scale, starting
from the coarsest scale. A distinct group of MLPs handles each scale
to achieve fast convergence. Take the coarsest scale s, for example,

let V be the volume, {’S be the ECNR-decoded (i.e., reconstructed)
volume, and M be the corresponding MLPs, we have M (V) —

Vs, indicating that V; is encoded by M, during training and then

decoded to V; during inference. The downsampling operator D(-),
denoted as © in Figure 1, subsamples the original data V once
along each spatiotemporal dimension, and V is the application of
D(-) to V for (s — 1) times. The upsampling operator U (), denoted
as (D in Figure 1, upsamples the reconstructed volume V; once
along each spatiotemporal dimension by first conducting trilinear
interpolation in the spatial domain and then linear interpolation in
the temporal domain. The entire encoding and decoding process can
be represented as

@ M,(Vy) =V,
@V, 10UV,) = Re_i, @M, (Ri_t) = R, @UV,)BR_ -V, g

®Vi8U(V2) » Ry, ® M(R)) =R, QUV2) &R — Vy;

where V,_; © U(VS) — R,_ indicates that residual R,;_; is the

difference between V,_ and the upscaled version of V. Given each
scale’s encoding target, we split these space-time target signals into
individual 3D spatial blocks (refer to Figure 2 for example). Each
block is then assigned to a local MLP for encoding. Even though
the fitting target covers different resolutions across scales, the block
dimensions are identical. Therefore, a coarse scale will contain
fewer blocks for fast encoding, while a fine scale will contain more
blocks to handle the content-rich parts not preserved in the coarse
scale. Still, a finer scale may also have content-poor blocks as the
encoded residuals could be sparse. We discard these blocks (i.e.,
representing them as empty blocks) without MLP encoding if the
Ly norm of their residual is below a threshold. To increase the CR
of ECNR, we initialize and assign each effective block a learnable
latent code. We then concatenate the block’s latent code with spatial
coordinates as the input to each MLP, enabling it to identify and
reconstruct multiple blocks based on different input latent codes.

3.3 Block Assignment

MINER assigns each block to a different MLP for encoding. Unlike
MINER, which only handles a single image, we tackle a sequence of
volumes, demanding an MLP to encode multiple blocks to achieve
good compression performance. This poses the issue of block assign-
ment. After splitting the encoding target into n; 3D spatial blocks at
scale i, we assume that ECNR leverages m; MLPs to encode these
blocks (n; > m;). We are interested in investigating whether an effec-
tive assignment scheme exists to arrange n; blocks to m; MLPs. In
our scenario, an MLP at a scale will be optimized based on blocks
at the same scale across various spatiotemporal locations. While



these blocks utilize distinct latent codes for encoding, the expressive
capacity of these latent codes is considerably limited compared to
MLPs. Consequently, it is necessary for the blocks assigned to a
particular MLP to exhibit intrinsic similarities to achieve effective
optimization.

This paper addresses block assignment via block clustering using
the k-means clustering method. Note that standard k-means clus-
tering can lead to imbalanced block assignment among MLPs. In
extreme cases, this could result in one MLP only getting a single
block assigned and another MLP getting thousands of blocks. Such
an assignment is not ideal due to the following reasons. First, MLPs
getting a few blocks achieve a low CR, even with aggressive prun-
ing in the subsequent deep compression. Second, MLPs getting
excessive blocks could not ensure high-quality reconstruction due to
their limited network capacity. Third, imbalanced block assignment
leads to an imbalanced workload that could severely impact parallel
efficiency during encoding and decoding.

Algorithm 1: K-means cluster size uniformization

Input: number of clusters , set of n points
D= {dl 7d27 s 7dn}
Output: cluster set S = {S,S>,...,S;} with nearly uniform
cluster size and corresponding centroids
C= {C17C27" '7Ck}
Initialize S and C using a standard k-means:
(S,C) + Kmeans(D,k);
Create distance matrix Z[1,...,n][1,... k;
Create maximum gain array 9[1,...,n];
foreach (d;,C;) in 2 do
| 211 = lldi = Cjl%;
end
/% calculate the assignment priority */
foreach d; in D do
| 6[i] = max(2[i]) — min(2[i]);
9 end
10 Sort points in D by & in descending order;
/* reassign points to achieve nearly uniform

N B W N b

w 3

cluster size */
11 foreach d; in sorted D do
12 select S from S with cluster size less than Lz)s
13 if $ # & then assign d; to the nearest cluster in S;
14 else assign d; to the nearest cluster in S with cluster size
less than [7];
15 end

16 return (S,C)

The ideal block assignment strategy should ensure each MLP
processes a similar number of blocks. In other words, each cluster’s
size should be roughly the same. Given the target number of blocks
b; that each MLP should fit at scale i, we set m; to [%ﬂ To this end,
we propose a k-means cluster size uniformization algorithm (refer to
Algorithm 1). The algorithm is initialized with a non-uniform clus-
tering result from a standard k-means, where the distance between
two points (in our case, blocks) is defined as the Euclidean distance
between their corresponding voxel values (following the rationale
that similar blocks should go to the same MLP). Then, for each point,
we reassign it to its nearest unfull cluster in S, which has not reached
the desired uniform size (i.e., b;). Note that the assignment order
influences the result. In particular, the data point having the longest
distance between its nearest (min(Z/[i])) and farthest (max(2]i]))
clusters should be reassigned first, as reallocating this point correctly
can maximize the gain (i.e., minimizing the inner-cluster distance
and maximizing the inter-cluster distance). Our solution is easy to
implement and runs efficiently to address the imbalance workload

among MLPs. We provide further implementation details in the
appendix.

3.4 Loss Function

To optimize each MLP fy, we compute for each block fy fits, the
mean squared error (MSE) between its decoded version v; and GT
version v; as the loss function, which is defined as

1~
L = 7 Y Vi —vill2, (1)
i=1

where j is the number of blocks for fy to fit, and v; = fg(x;; ¢;)
with local coordinates x; and corresponding latent code ¢; as input
(refer to the bottom-left corner of Figure 1). MLPs are optimized
sequentially from the coarsest to finest scales, while MLPs at the
same scale are trained in parallel.

3.5 Deep Compression of MLPs

We arrange similar blocks to the same MLP, and each MLP gets a
similar number of blocks. This promotes a balanced workload as we
input all voxels (content or residuals) in the blocks in batches for
training (content-rich blocks do not take more time than content-poor
ones). Furthermore, such an assignment allows us to prune each
MLP with varying intensities during training, based on the fitting
error of their respective blocks. As a result, one MLP handling
content-poor blocks can prune more aggressively and consistently
with high CR without quality downgrade, and another MLP tackling
content-rich ones can prune more conservatively. After network
training, global quantization and entropy encoding follow to increase
CR further.

Block-guided pruning. For MLPs at a scale of the multiscale
representation’s encoding phase, we prune unimportant neurons
globally across all MLPs at the scale by permanently setting their
parameters to zero. After pruning, the network may perform worse
due to the reduction of parameter numbers. We fine-tune the pruned
network with extra epochs to lessen the performance drop using
a reduced learning rate. Specifically, we conduct iterative prun-
ing [14,23,47]: instead of one-shot pruning, we prune and fine-tune
MLPs multiple times to achieve a higher CR without significant
performance degradation. For MLPs used in our work, we observe
the following. First, the number of parameters in the last layer for
each MLP is much fewer than in other layers, so pruning parame-
ters in the last layer cannot obtain significant model size reduction.
Second, MLPs that optimize simple blocks tend to have a sparser
structure than those handling complex blocks. Third, the bias in the
first layer of each MLP is non-sparse and crucial for achieving good
performance.

Based on these insights, we prune all network parameters, exclud-
ing the weights in the last layer and biases in the first and last layers.
For each pruning round, we rank each parameter by its importance.
With a target sparsity, we start pruning from the least important
parameters and iteratively prune the parameters until the target spar-
sity is met. The importance .# of each candidate parameter p is
represented by

S (p) = A (Ip]) + AN (Z(P)), )

where |p| is absolute value of p, .%,(p) is the average block loss
(we simply use MSE) for the MLP that contains p, A, is a weight
parameter, and ./#(-) denotes min-max normalization. The two
terms emphasize parameters that need pruning with high priority:
A (|p|) indicates that parameters with small magnitude should be
pruned first; A4 (.%,(p)) suggests that parameters in an MLP that
achieve low average block loss should be pruned more aggressively.
As such, even though the difficulty of fitting the target blocks varies
for each MLP, pruning can adaptively compact the MLPs.

Global quantization. After block-guided pruning, we apply
global quantization to compress network parameters further. Net-
work quantization has shown its effectiveness in neurcomp [24], and



we follow a similar strategy. For example, given weight quantization
precision B bits, we employ standard k-means to group one layer of
unpruned weights in an MLP to 2B clusters. MLP weights in this
quantized layer can then be represented as 3-bit indices that map to
28 floating-point shared parameters. These parameters are shared
among unpruned weights in the layer.

Besides the above quantization, we also make three improve-
ments based on the structure of ECNR. First, each scale consists
of multiple MLPs. While each MLP encodes distinct blocks, these
blocks often contain similar content that the same parameters can
represent. Therefore, we apply global quantization across all MLPs
per scale rather than quantizing each MLP individually. Second,
after quantization, we fix the parameter indices and fine-tune the cor-
responding shared parameters through backpropagation to achieve
minimal performance degradation at the same precision. Third, in-
stead of only quantizing the MLP’s weights, we quantize MLPs’
biases and weights, respectively, to boost CR under similar recon-
struction accuracy.

Entropy encoding. In the last step, we leverage entropy en-
coding to compress the resulting model file further using Huffman
coding [16], a lossless encoding scheme. Empirically, entropy en-
coding brings an additional 10% model size reduction.

3.6 Boundary Artifact Mitigation

ECNR decomposes volumetric data into disjoint blocks for encod-
ing, which are then composed to form the complete volume. While
this ensures high reconstruction accuracy at the data level, it does
not guarantee high rendering fidelity at the image level, especially
for data with intricate structures. The inconsistent outputs between
adjacent blocks along their boundary could lead to artifacts in render-
ing. To mitigate this problem, we apply a lightweight CNN module
to the output of the finest scale MLPs. The CNN’s parameter size
should be small for efficient compression: we use five convolution
layers, each with 32 channels. Since the CNN is shallow, there is
no need to add skip connections between layers. The loss function
uses the MSE between the MLP-decoded results and ground-truth
(GT) volume. Considering the trade-off between efficiency and CR,
we only apply quantization with 9 bits at the end of CNN training
without fine-tuning. This treatment reduces boundary artifacts with
slightly increased encoding time and decreased CR.

Table 2: The dimensions of experimented datasets.

volume dimension data block dimension
dataset (xXyxzXxt) size (Xp X ¥p X 2p) scale
combustion 480 x 720 x 120 x 70 10.81 GB 40x45x 15 3
half-cylinder 640 x 240 x 80 x 100 4.57 GB 40 %30 x 20 3
solar plume 256 x 256 x 1024 x 28 7GB 32x32x32 3
Targaroa 300 x 180 x 120 x 150 3.62 GB 25x 15 % 10 3
asteroids 500 x 500 x 500 x 1 476.83 MB 25x25x%25 3
supernova-1 432 x432x432 %1 307.54 MB 18 x 18 x 18 3
supernova-2 | 1200 x 1200 x 1200 x 1 6.43 GB 50 x50 x 50 4
supernova-3 | 1728 x 1728 x 1728 x 1 19.22 GB T2x 7272 3

4 RESULTS AND DISCUSSION
4.1 Datasets and Network Training

Table 2 displays the datasets we experimented with. We primarily
used four time-varying datasets for comparison with baseline meth-
ods. Four static datasets were used in additional comparisons. We
only used the first 70 of 100 timesteps for the combustion dataset
because neurcomp could not handle more than 70 timesteps. A
single NVIDIA A40 GPU, Intel Xeon CPU with 3.5 GHz, and 256
GB RAM was used for network training and inference. We set the
block dimensions based on the volume dimensions. We set s = 3 for
most datasets to effectively filter out non-effective blocks. For large
spatial datasets, we set s = 4 for supernova-2 due to its spatial ex-
tent and s = 3 for supernova-3 to conduct a comparative study with
supernova-1. We removed a block at a finer scale if its residual’s L,

norm is below 10™4. From the coarsest to finest scales, we set the
number of target blocks per MLP to 8, 16, and 32, respectively. All
MLPs at each scale comprise three layers with sinusoidal activation
functions followed by one linear layer for output. The sinusoidal
activation factor @y is set to 30. Each MLP contains 24 neurons in
hidden layers. We initialized all layers in MLPs following Sitzmann
et al. [32] and utilized Adam optimizer with f; = 0.9, B, = 0.999,
and a weight decay of 2 x 10~ to optimize the network parameters.

Table 3: Average PSNR (dB), LPIPS, and CD values across all
timesteps, as well as encoding time (ET), decoding time (DT), and
compression rate (CR). The isovalue v reported is for CD calcula-
tion. s, m, and h represent seconds, minutes, and hours. The best
performance is highlighted in bold.

dataset method PSNRT LPIPS| CDJ | ETJ DTJ CR?
SZ3 34.79 0.142 1.67 70s 89s 2,453
combustion | TTHRESH | 30.89 0.051 1.75 324m  69m 2,129
(v=-0.7) neurcomp | 33.15 0.155 2.54 23.9h 2.8h 2,521
ECNR 37.37 0.114 1.58 11.4h  7.8m 2,662
SZ3 40.23 0.063 2.28 19.2s 10.3s | 2,553
half-cylinder | TTHRESH | 32.87 0.131 12.82 | 118.3s 50.4s | 2,022

(v=0.1) neurcomp | 44.32 0.031 0.96 15.3h  38.6m | 2,633
ECNR 45.12 0.026 0.87 4.8h 1.3m 2,736
SZ3 27.98 0.343 3.63 44.2s I.1m | 4483

solar plume TTHRESH | 41.25 0.067 1.05 233m 4.lm 5,119

v=-0.5) neurcomp | 41.98 0.051 2.15 10.8h 1.5h 5,778
ECNR 42.05 0.039 1.98 4.6h 5.1m 6,262
SZ3 39.53 0.085 1.66 253s 328s | 779
Tangaroa TTHRESH | 32.25 0.240 1.83 6.2m 2.3m 540
(v=-0.85) neurcomp | 36.58 0.097 3.06 3.6h 28.8m | 772

ECNR 41.47 0.046 1.50 98.5m  2.2m 838

For time-varying datasets, we trained the MLPs and latent codes
at each scale for 500 epochs. We started with a learning rate of 0.001
and decayed it exponentially with a factor of 0.75 after each round of
pruning. Block-guided pruning occurs four rounds during training,
first at 150 epochs, then at every 75 subsequent epochs until 375
epochs. 4, is set to 0.1 to compute .# in Equation 2 for pruning.
Because the network contains more potentially sparse structures at
the beginning of training, we pruned candidate network parameters
to meet a target sparsity of 30% at the first round of pruning and
then 40%, 45%, and 50%. Once trained, we quantized the MLPs
with 8 = 8 bits and then fine-tuned 75 epochs with a learning rate of
1073, Subsequently, we trained a lightweight CNN using a learning
rate of 107> for 100 epochs to mitigate boundary artifacts in the
MLP-decoded results. For static datasets, we train the number of
target blocks per MLP from the coarsest to finest scales was adjusted
to 1, 2, and 4 because the dataset is static. We trained the MLPs and
latent codes from the coarsest to finest scales for 200, 150, and 125
epochs. Block-guided pruning happened at 75 and 115 epochs with
a target sparsity of 20% and 30%.

Note that ECNR involves extra space for storing the metadata,
including data structure for block assignments and network configu-
rations, which is encapsulated in the header of our output file and
factors in the CR computation. Refer to the appendix for a detailed
investigation.

4.2 Results

‘We present the primary quantitative and qualitative comparison re-
sults of ECNR and three baseline methods (SZ3, TTHRESH, and
neurcomp). Additional comparison with traditional and grid-based
(MHT, fV-SRN, and APMGSRN) methods and further discussion of
ECNR'’s streaming reconstruction capability and neurcomp’s unsta-
ble optimization are presented in the appendix.

Baselines. We compared our ECNR with three baseline solutions:

e SZ3 [22]: an error-bounded lossy compression method identi-
fies sparse representations within the domain of locally span-
ning splines.

e TTHRESH [1]: a lossy compressor using the Tucker decompo-
sition, a higher-order singular value decomposition.
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Figure 3: Average PSNR (dB) values across all timesteps under different CRs.
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* neurcomp [24]: an implicit neural network that utilizes MLPs
for volumetric data representation, achieving a desirable CR
by limiting the number of network parameters.

Both SZ3 and TTHRESH support data compression at higher di-
mensions. For neurcomp, we modified the original code by adding a
time dimension to the network input. Hence, all methods compress
a time-varying volumetric dataset as a space-time 4D volume.

SZ3 and TTHRESH accept an error tolerance as the input pa-
rameter. To achieve a fair comparison, after we obtained the CR
of ECNR, we adjusted the input tolerance of these two methods
to match the CR of ECNR roughly. For neurcomp, we adapted
the number of neurons in each hidden layer to reach a certain CR.
We performed inference multiple rounds during training, each after
a certain number of training iterations. We stopped the training
when neurcomp reached a PSNR similar to ECNR or the network
converged. The reported encoding time refers to the training time,
excluding the time spent on multiple rounds of inference.

Evaluation metrics. Three metrics were considered in our evalu-
ation. We used peak signal-to-noise ratio (PSNR) at the data level.
The calculation is based on the original data and the compressed
and decompressed version of data generated from one of the meth-
ods. At the image level, we utilized learned perceptual image patch
similarity (LPIPS) [49]. The calculation is based on the volume
rendering images produced from the corresponding versions of data.
At the feature level, chamfer distance (CD) [2] is measured on the
isosurfaces extracted from the corresponding versions of data.

Table 4: Model size (MS, in MB) and GPU and CPU memory (GB)
consumption for compressing the combustion dataset.

method MS| GPU-mem| CPU-mem]
SZ3 4.6 — 120.7
TTHRESH 53 — 115.3
neurcomp 4.5 15.97 202.1
ECNR scale 3 | 0.068 2.35 5.6
ECNR scale2 | 0.434 2.38 8.4
ECNR scale 1 | 4.2 8.14 343

Quantitative results. In Table 3, we report quantitative results
of applying the four methods to compress the time-varying datasets.
Regarding the three quality metrics, ECNR achieves the best for all
datasets, only losing to TTHRESH on the LPIPS of the combus-
tion dataset and CD of the solar plume dataset. The CR of ECNR
ranges from 838 to 6,262, depending on the underlying data com-
plexity. The CRs of the other three methods reference those of
ECNR. Regarding encoding and decoding time, SZ3 is the clear
winner, followed by TTHRESH. The training speedup of ECNR
over neurcomp is 2.09x to 3.18 %, and the inference speedup is
12.97x to 29.57 x. This shows the advantage of ENCR as an effi-
cient INR-based solution compared with neurcomp. Note that the
training speedup is lowest for the combustion dataset because if
we train neurcomp further, the PSNR unexpectedly drops below 21
dB, which is undesirable. Even though ECNR’s encoding time falls
behind SZ3 and TTHRESH by a large margin, its decoding time
is comparable to that of TTHRESH. Furthermore, ECNR achieves

better quality; for example, the average gain of PSNR is 5.87 dB
over SZ3 and 7.18 dB over TTHRESH.

Table 4 shows these four methods’ model size and GPU memory
and CPU memory (i.e., RAM) consumption for compressing the
combustion dataset. The model size for SZ3 or TTHRESH simply
refers to the compressed data size. SZ3 and TTHRESH do not utilize
GPU, and thus we only report their CPU memory consumption.
ECNR processes these scales sequentially, and we list them scale
by scale. The memory consumption is capped at the finest scale
(scale 1). Compared with neurcomp, the efficiency gain of ECNR is
about 2x on GPU memory usage and 5.8 x on CPU memory usage.
ECNR takes less GPU memory due to its smaller parameter size
and less CPU memory because its multiscale representation skips
processing blocks with low residuals at a finer scale. The smaller
memory footprint allows ECNR to process volume datasets with a
large spatial extent and/or long temporal sequence.

Furthermore, we report the performance of ECNR under different
CRs for the time-varying datasets experimented. We controlled the
CR of ECNR by adjusting its block dimension. Note that we only
compared ECNR with SZ3 and TTHRESH in this experiment. Since
neurcomp is far from convergence when controlling its training time
to align with that of ECNR for a fair comparison. Figure 3 shows
the performance curves. The results indicate that ECNR achieves
better accuracy than SZ3 and TTHRESH under high CRs. SZ3 is
superior to TTHRESH except for the solar plume dataset. In the
extreme case of the solar plume dataset, ECNR could still maintain
a PSNR value above 35 dB under a CR higher than 17,500, while
SZ3 already suffers large distortion when CR reaches 7,500.

Qualitative results. In Figures 4 and 5, we show volume ren-
dering and isosurface rendering images at a selected timestep for
different methods. We compute the pixel-wise difference images
(i.e., the Euclidean distance in the CIELUYV color space) to better
perceive the differences between each method and GT. These differ-
ent images are shown on the bottom-left side. On the bottom-right
side, we show a zoomed-in view for close-up comparison. Overall,
ECNR achieves the best visual quality in both volume rendering
and isosurface rendering images. SZ3 and TTHRESH are undesir-
able, yielding severe block- and strip-like artifacts. Nevertheless,
TTHRESH has the best quality for the combustion dataset as the
specified transfer function or chosen isovalue does not reveal the
lower value range where it suffers the most quality loss. neurcomp
produces similar results as ECNR but still falls behind upon close
examination.

Large spatial extent. In addition to the above results for time-
varying data compression, we experimented with one large spatial
static volume, supernova-2, with the dimension of 1200 x 1200 x
1200, to evaluate the performance differences between ECNR and
neurcomp. For ECNR, we set s = 4 due to its large spatial extent.
From the coarsest to finest scales, the numbers of target blocks per
MLP were adjusted to 1, 2, 4, and 8 because the dataset is static.
We optimized the model 225, 175, 150, and 125 epochs for each
scale. Block-guided pruning happened at 75 and 115 epochs with
a target sparsity of 20% and 30%. After training, we quantized the
MLP parameters with 8 = 9 bits and fine-tuned 20 epochs. For neur-
comp, we trained the model long enough until it converged. ECNR
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Figure 4: Volume rendering results of SZ3, TTHRESH, neurcomp, ECNR, and GT. From top to bottom: combustion, half-cylinder, solar
plume, and Tangaroa.

achieves better reconstruction accuracy based on the quantitative
results reported in Table 5. The isosurface rendering results shown
in Figure 6 indicate that ECNR outperforms neurcomp in terms of
visual quality.

Table 5: PSNR (dB), LPIPS, and CD (v = 0.45) values, as well as
model size (MS, in MB) of the supernova-2 dataset.
method | PSNRT LPIPS| CDJ | MS|
neurcomp | 43.98 0.025 424 | 1.1
ECNR 47.65 0.028 294 | 099

Evaluation of different spatial resolutions. To analyze the per-
formance of ECNR on datasets with different spatial resolutions, we
compressed supernova-1 and supernova-3 (64 x that of supernova-1).
We set the block dimension of supernova-3 4 that of supernova-
1 and kept other hyperparameters identical. Table 6 shows that
supernova-3 needs a significantly longer time than supernova-1 for
both encoding and decoding, while the model size of supernova-
3 is even less than supernova-1. The corresponding CRs are 205
and 13,122 for supernova-1 and supernova-3, respectively. This
is because supernova-3 employs proportionally larger blocks than
supernova-1, making each MLP iterate more coordinates in recon-
struction and less sensitive to small fitting errors when obtaining
effective blocks. As for visual quality, we show zoomed-in volume
rendering in Figure 7. For larger datasets and block dimensions,

(c) neurcomp

(e) GT

(d) ECNR

the reconstruction results tend to be smoother with more obvious
boundary artifacts due to the limited capacity of local MLPs.

Table 6: PSNR (dB) and LPIPS values, as well as model size (MS,
in MB), encoding time (ET), and decoding time (DT).
dataset | PSNRT LPIPS| MS| | ET, DT|

supernova-1 | 48.55 0.029 1.5 22m  2.2s
supernova-3 | 49.94 0.052 1.3 3.1h  83m

Table 7: PSNR (dB), LPIPS, and CD values, as well as model size
(MS, in MB).

dataset method PSNRT LPIPS| CDJ] | MS|

asteroids MINER 37.56 0.256 7.56 | 053

v=0.0) MINER+ | 39.92 0.118 2.80 | 0.50

ECNR 40.59 0.107 2.18 | 0.49

supernova- 1 MINER | 50.47 0.026 075 | 142
v=0.0) MINER+ | 49.03 0.035 0.67 | 3.7
ECNR 48.55 0.029 074 | 1.5

4.3 Network Analysis

For network analysis of ECNR, we investigate block assignment
and lightweight CNN. Additional network analysis in six aspects,
including sparse vs. dense model, deep compression ablation study,
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Figure 5: Isosurface rendering results of SZ3, TTHRESH, neurcomp, ECNR, and GT. From top to bottom: combustion, half-cylinder, solar

plume, and Tangaroa. The chosen isovalues are reported in Table 3.
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Figure 6: Isosurface rendering (v = 0.45) results of neurcomp and
ECNR using the supernova-2 dataset.

Table 8: Average PSNR (dB) and LPIPS values across all timesteps,
as well as encoding time (ET), decoding time (DT), and model size
(MS, in MB) of the half-cylinder dataset.

scheme | PSNRt LPIPS| | ET| DT| | MS|
wio CNN | 44.61 0.036 47h 253s | 1.65
w/CNN | 45.12 0.028 48h 786s | 1.75

comparison with standard pruning and local quantization, block
dimension, choice of s, and A;, in block-guided pruning, is presented
in the appendix.

Block assignment. To investigate the impact of block assign-
ment, we compared ECNR with and without block assignment on
compressing the asteroids and supernova-1 datasets. Without block

(c) ECNR ' (d) GT

(a) ECNR (b) GT
Figure 7: Zoomed-in volume rendering results of ECNR with
datasets of different spatial resolutions. (a) and (b): supernova-1. (c)
and (d): supernova-3.

assignment, the network processes the data like MINER, where
each MLP is assigned to encode a single block. MINER does not
optimize or store latent codes since no multiple blocks are assigned
to an MLP. So, besides this basic version, we employed the same
deep compression strategy (Section 3.5) for MINER to make the
comparison fair and name it MINER+. For the asteroids dataset,
we keep the model sizes of MINER and MINER+ similar to that
of ECNR, and therefore, all three methods will have similar CRs.
For the supernova-1 dataset, we keep the same model parameters
(i.e., block dimension, neuron number) for all three methods. The
resulting model size of MINER is 3.84x that of MINER+, and
9.47 x that of ECNR. We report quantitative results in Table 7 and
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Figure 8: Rendering results of MINER, MINER+, and ECNR. Top:
volume rendering using the asteroids dataset. Bottom: isosurface
rendering (v = 0.0) using the supernova-1 dataset.
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Figure 9: Isosurface rendering (v = 0.1) results of ECNR using the
half-cylinder dataset with or without CNN post-processing.

corresponding rendering results in Figure 8. The results show that
with the same model size, ECNR yields the best result and MINER+
outperforms MINER. With the same model parameters, all three
achieve similar results while ECNR gains the highest CR.

Lightweight CNN. We conducted an ablation study on the half-
cylinder dataset to investigate the cost and effectiveness of the
lightweight CNN for reducing boundary artifacts. The CNN only
adds about five minutes to the training time and 100 KB to the model
size (refer to Table 8). Even though decoding takes an additional
50 seconds due to the sequential inference of CNN, it is still sig-
nificantly faster than neurcomp, and the inference result (refer to
Figure 9) shows less pronounced boundary artifacts.

4.4 Discussion and Limitations

As a neural representation solution based on GPUs, the training and
inference performance of ECNR, while outperforming neurcomp,
still lags significantly behind SZ3 and TTHRESH (refer to Table 3).
Thanks to the unified 4D space-time partitioning strategy, ECNR
can handle large time-varying datasets as long as the memory can
hold the effective blocks at the finest scale.

One caveat is that due to the multiscale spatiotemporal represen-
tation, ECNR does not process each timestep independently, which
may limit its use. A concurrent work of KD-INR [11] uses a flat
block partition to lift this constraint. Second, our current ECNR
implementation enforces the same number of scales for both spatial
and temporal domains in the multiscale block partitioning. This
may not work ideally for volumetric datasets with a small spatial
dimension and a large temporal dimension. An easy solution may be
to manually separate the dataset into several temporal intervals and
compress them individually. However, such a scenario may hinder
the model from fully utilizing temporal coherence or redundancy.
A strategy that handles these domains separately can address this
issue. Third, the effectiveness of ECNR, like any other compression
method, would drop when the time-varying dataset exhibits consis-

tently super-rich spatiotemporal content and/or variations. In such
a scenario, the percentage of effective blocks remains high at fine
scales, limiting the compression efficacy.

Additionally, we use the Euclidean distance to measure the sim-
ilarity between blocks in the block assignment. Even though the
Euclidean distance can be computed cost-effectively, it does not
capture the distribution similarity between blocks. Using the Jensen-
Shannon divergence or a more advanced statistical measure may
offer a more appropriate solution. Finally, the limited capacity of
the lightweight CNN does not guarantee the removal of boundary
artifacts that exist in the MLP-decoded results when the distortion is
significant. The remaining artifacts in the decompressed data may
still negatively impact the visual quality of the rendering results.

5 CONCLUSIONS AND FUTURE WORK

We have presented ECNR, an efficient compressive neural represen-
tation solution for compressing time-varying volumetric datasets.
As an INR-based method, ECNR abandons the “one-size-fits-all” no-
tion of nercomp and advocates using multiple small MLPs to encode
local blocks in a multiscale fashion. This enables us to consume
only about half of the GPU memory and less than 20% of the CPU
memory as required by neurcomp, allowing successful processing of
time-varying datasets with a large spatial extent and/or long temporal
sequence. The multiscale strategy taken by ECNR leads to signif-
icant encoding and decoding speedups compared with neurcomp,
positioning it as a practical solution for deployment. Experimental
results show that under a similar CR, ECNR achieves better quality
(PSNR at the data level, LPIPS at the image level, and CD at the
feature level) than neurcomp and conventional compression methods
(S8Z3 and TTHRESH).

Our future work includes the following. First, the current imple-
mentation is built with PyTorch only, without utilizing advanced
CUDA techniques to accelerate MLP computations. We plan to inte-
grate tiny-cuda-nn to improve the encoding and decoding efficiency.
Second, multiscale block partitioning produces a series of hierar-
chical bounding boxes, potentially serving as stratified sampling
criteria in the rendering process. We will leverage this property and
evaluate the neural rendering performance of ECNR as an SRN like
fV-SRN [40]. Third, we would like to extend ECNR to handle mul-
tivariate time-varying datasets by ingesting variable-specific latent
vector information into the encoding and decoding process.
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APPENDIX
1 IMPLEMENTATION DETAILS

For easy reproducing ECNR, we list the pseudocode of one linear
layer of ECNR in Algorithm 1 and provide the details of training
MLPs in parallel. Let m denote the number of MLPs, .%;, and
Fout are the input and output feature dimensions of this linear layer.
Unlike the conventional linear layer representing its weight and bias
by two 2D matrices, the linear layer of ECNR is constructed by two
3D tensors where the extra dimension denotes which MLP to use.
In the encoding process, we train all MLPs simultaneously. Thus
MLPs_indices would be an array with values in [0, m — 1]. For
ECNR with only one layer, its input would be a tensor with shape
(m, N, %), where N is the number of voxels in one block. bmm(-)
is a PyTorch function that computes matrix-matrix product. The
linear layer can output a tensor with shape (m, N, Fou). Since
in PyTorch, all matrix multiplications in the feedforward process
can be handled in parallel, parallel training of multiple MLPs can
be accomplished without resorting to complex coding beyond the
PyTorch implementation.

Algorithm 1: ECNR linear layer in PyTorch-like format
1 class ECNRLinearLayer():
2 def init(self, %, Fout, Mm):
/* initialize weight and bias */

3 self.weight = Parameter(m, %, Fout)
4 self.bias = Parameter(m, 1, Four)
5
6 def forward(self, input, MLPs_indices):
/* select MLPs parameters for
forwarding */
7 MLPs_weight = self.weight[MLPs_indices, - - -]
8 MLPs_bias = self.bias[MLPs_indices, - - -]
9 return bmm(input, MLPs_weight) + MLPs_bias

2 ADDITIONAL RESULTS

Quantitative performance across timesteps. In addition to the av-
erage performance results reported in Table 2 in the paper, we plot
PSNR, LPIPS, and CD curves over timesteps, as shown in Figure 1.
For the combustion dataset, the increasing LPIPS values over time
for SZ3, neurcomp, and ECNR are due to the increasingly turbulent
nature of the combustion process. As the data gets more complex,
the volume rendering results show larger differences with respect
to the GT. For the half-cylinder dataset, the low performance on
PSNR and CD of TTHRESH in the beginning 21 timesteps is due
to data sparsity.

Compression file storage. During encoding, extra space is nec-
essary to store the metadata, including the volume dimensions and
network configurations. We used an array to map the MLPs to their
assigned blocks in the multiscale block partition and assignment
step. We encapsulated this information and metadata in the header
of our output file. Besides the header, we stored the block latent
codes with floating-point precision. After applying block-guided
pruning and network quantization, we need to save three compo-
nents: a binary mask that indicates unpruned parameters, floating-
point precision shared parameters, and the parameter indices (with
precision 8 bits) that map the unpruned parameters (after block-
guided pruning) to the shared parameters (after network quantiza-
tion). Our output file contains all the necessary information for
decoding.

For each component in the output file, we show its occupied stor-
age percentage in Figure 2. For the combustion, half-cylinder, and
Tangaroa datasets, latent codes and parameter indices occupy most
storage. Rather than using 32-bit floating-point precision for all

parameters, combining a subset of floating-point precision shared
parameters with 3-bit parameter indices offers a more concise rep-
resentation. Therefore, the large storage percentage of parameter
indices suggests the effectivity of deep compression. Note that la-
tent codes in the solar plume dataset take less space than others.
This can be attributed to its relatively larger block dimension and
fewer timesteps, leading to fewer blocks for encoding.

Table 1: PSNR (dB), LPIPS, and CD values, as well as encoding
time (ET) and decoding time (DT).

dataset method PSNRT LPIPS| CDJ| | ET| DT,
SZ3 35.21 0.017 1.13 | 24s 3.7s

TTHRESH | 38.49 0.036 2.87 | 1.4m 15.7s
asteroids MHT 40.46 0.029 1.85 | 1.7m 1.1s
(v=0.0 fV-SRN 37.49 0.047 566 | 1.bm  2.1s

APMGSRN | 38.29 0.043 446 | 1.2m 1.8s
neurcomp 36.78 0.054 8.67 | 544m 23.8s
ECNR 38.85 0.037 372 | 29m 3.1s

SZ3 36.48 0.261 2.06 | 1.8s 2.3s

TTHRESH | 43.73 0.221 1.52 | 47.1s  7.5s

supernova-1 MHT 43.56 0.229 235 | 1.7m 0.6s
(v=0.0) fV-SRN 40.38 0.270 342 | 1.6m 1.2s

APMGSRN | 41.23 0.262 3.02 | 1.2m 1.1s
neurcomp | 43.23 0.227 2.17 | 33.1m  15.2s
ECNR 44.08 0.228 1.77 | 57m  2.1s

Static volume compression. To investigate the performance
of ECNR on static volume compression, we compress aster-
oids and supernova-1 datasets with traditional methods (SZ3
and TTHRESH), grid-based methods (MHT, fV-SRN, and AP-
MGSRN), neurcomp, and ECNR. The model size of all methods
was controlled to 280 KB, which is the small storage setting of AP-
MGSRN. We used the implementation in APMGSRN! for the com-
parison of fV-SRN and MHT. We stopped neurcomp training when
the network converged. For ECNR, we set the parameters (i.e.,
block dimension and neuron number, etc.) to control its model size.
We still applied three scales for both datasets. The number of target
blocks per MLP from the coarsest to finest scales was adjusted to
1, 2, and 4 because the dataset is static. We trained the MLPs and
latent codes from the coarsest to finest scales for 200, 150, and 125
epochs. Block-guided pruning happened at 75 and 115 epochs with
a target sparsity of 20% and 30%. The lightweight CNN was not
applied since we did not observe obvious boundary artifacts from
the MLP-decoded result.

In Table 1, we report the quantitative results. Compared with tra-
ditional and grid-based methods, ECNR is slower in encoding and
decoding except for the decoding of TTHRESH. However, ECNR
shows faster convergence and inference compared with neurcomp,
thanks to the multiple MLPs and multiscale representation. Since
the CR is not high and both datasets are relatively sparse, traditional
methods and MHT perform well on reconstruction quality. For
asteroids, SZ3 preserves the superior visual quality, and all deep-
learning methods demonstrate similar reconstruction accuracy as
shown in Figure 3. For less sparse supernova-1, ECNR reaches
the best or second-best reconstruction quality of PSNR, LPIPS, and
CD. The rendering results in Figure 3 also show that ECNR yields
less error compared with other deep-learning methods.

Streaming reconstruction. In ECNR, decoding the data at
a coarse scale is independent of encoding the data at a finer
scale. Considering the scenario of in-situ encoding, transmitting
the coarse-scale compression file first to preview the simulation re-
sult by end users is possible. As shown in Table 2 and Figure 4,
the coarsest scale 3 model file has only 0.3 MB while preserving
the primary structure of the supernova. Since scale 3 also takes
the least time to encode and decode, it could serve as a preview of
the compression target. The detailed structure could then be added
along with encoding the subsequent scales.

Uhttps://github.com/skywolf829/APMGSRN
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neurcomp unstable optimization. When training neurcomp on
a large-scale dataset, the network could encounter unstable opti-
mization, leading to unacceptable outcomes. This could be partly
attributed to the limited network capacity for fitting complex distri-
bution and rich content of 4D volume. Such an example with the
combustion dataset is shown in Figure 5. We can see that increasing
the training epochs of neurcomp yields undesirable results. Unlike
neurcomp, our ECNR is stable thanks to the adaptive increase of
network capacity for the complex content in the multiscale fitting
process.

3 ADDITIONAL NETWORK ANALYSIS

Besides block assignment and lightweight CNN presented in the
paper, we further study ECNR in six aspects.
Sparse vs. dense model. In ECNR, we prune unimportant net-
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Top to bottom: PSNR (dB), LPIPS, and CD values over timesteps. For CD, the chosen isovalues are reported in Table 2 in the

Table 2: Encoding model size (MS, in MB), encoding time (ET),
and decoding time (DT) for each scale of the supernova-1 dataset.

scale | MS| ET| DT|

scale3 | 0.3 12s 0.04s
scale2 | 0.6 28s 1.2s
scale 1 1.6 87s 2.7s

work parameters to reduce the model size. Block-guided pruning
reaches 30% sparsity for a large network with 24 neurons in each
layer. Initializing and training a dense, small network with fewer
neurons in each layer should result in a similar model size without
pruning. We trained two ECNR models (ECNR-dense and ECNR-
sparse) on the supernova-1 dataset to investigate which is better,
assuming both should have a similar CR for a fair comparison.
ECNR-dense denotes multiple MLPs initialized with 16 neurons
in each layer and without block-guided pruning in training. ECNR-
sparse denotes multiple MLPs initialized with 24 neurons in each
layer and with 30% of parameters pruned in the training. To make
a fair comparison and avoid the influence of other factors, we set
s = 1 without applying quantization or entropy encoding. The block
dimension was set to 54 x 54 x 54 in this experiment. In Table 3,
we report PSNR and LPIPS values. ECNR-sparse shows higher
accuracy than ECNR-dense under the same model size, indicating
that it is necessary to employ a sparse network to achieve higher
performance.

Table 3: PSNR (dB) and LPIPS values, as well as model size (MS,
in MB) of the supernova-1 dataset.

model | PSNRT LPIPS| MS|
ECNR-sparse | 40.93 0.034 1.5
ECNR-dense | 39.84  0.038 15

Deep compression ablation study. To investigate the impact
of deep compression strategy on model size and reconstruction
quality, we conducted an ablation study on the two steps, i.e.,
block-guided pruning and network quantization, using the Tangaroa
dataset. We did not consider entropy encoding since it is applied di-
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Figure 3: Comparison of rendering results of different compression methods. Top and bottom: asteroids and supernova-1.
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Figure 4: Isosurface rendering (v = 0.0) results of the supernova-1
dataset with ECNR under streaming reconstruction (from scale 3 to

scale 1).

(c) scale 1

(b) 10* iterations
Figure 5: Volume rendering results of neurcomp using the combus-

tion dataset. Increasing the training iterations could lead to unstable
outcomes.

(a) 6,000 iterations

rectly to compress the model file losslessly. Table 4 reports the aver-
age PSNR and LPIPS values across all timesteps and the model size
under different schemes. The results show that different schemes
achieve a similar reconstruction accuracy. As displayed in Figure 6,
visual quality under different schemes is also close. Therefore,
pruning and quantization can reduce the model size with a small
reconstruction quality loss, and we chose the scheme with pruning
and quantization in our experiments.

Table 4: Average PSNR (dB) and LPIPS values across all timesteps,
as well as model size (MS, in MB) of the Tangaroa dataset.

scheme | PSNRT LPIPS| MS|

w/o pruning; w/o quantization | 42.33 0.044 12.9
w/ pruning; w/o quantization | 42.38 0.047 7.8
w/o pruning; w/ quantization | 41.29 0.045 5.5
w/ pruning; w/ quantization 41.47 0.039 4.7

Comparison with standard pruning and local quantization.
For block-guided pruning, we add block error information to guide
the pruning intensity of different MLPs within the same scale.
Moreover, unlike most deep compression strategies that only op-
erate on the weight of the neural networks [1, 4, 2], we prune and
quantize both the weight and bias for each small MLP. Compared
with traditional deep learning approaches, our model contains nu-
merous independent small MLPs in which the number of weights
per layer is limited, resulting in a relatively high bias proportion

Figure 6: Volume rendering results of the Tangaroa dataset under
different deep compression schemes: (a) w/o pruning and quanti-
zation, (b) w/ pruning but w/o quantization, (c) w/o pruning but w/
quantization, and (d) w/ pruning and quantization. (e) is the GT.

compared to a large MLP. For instance, given one hidden layer of
an MLP, if its weight size is 5122, its proportion of bias is approxi-
mately 0.2% for this hidden layer. However, for a small weight size
of 247, this proportion can increase to 4%. Given the existence of
thousands of such small MLPs, identifying a sparse bias structure
becomes feasible and meaningful for model compression. Further-
more, prior quantization approaches only focused on a single neu-
ral network [3]. Applying quantization to multiple networks has
not been thoroughly investigated. Considering multiple indepen-
dent small MLPs can choose the same shared parameters to repre-
sent effective blocks containing similar content. We quantize MLPs
globally instead of locally and maintain only one global shared pa-
rameter table for all MLPs in the following fine-tuning stage.

To highlight the difference between our scheme and standard
compression (denoted as ECNR*), we evaluated our block-guided
pruning and global quantization with the common practice of stan-
dard pruning and local quantization on the asteroids and supernova-
1 datasets. We chose 3 = 7 bits for local quantization due to the
small size of local MLPs. We controlled neuron numbers for two
schemes to reach a similar PSNR for asteroids and a similar model
size for supernova-1. Table 5 shows the quantitative results. With a
similar PSNR, the model size of ECNR* is 1.9x that of ECNR. As
shown in Figure 7, ECNR achieves better reconstruction accuracy
than ECNR* under the same model size.

Table 5: PSNR (dB) and LPIPS values, as well as model size (MS,
in MB). ECNR* denotes ECNR with standard pruning and local
quantization.

dataset scheme | PSNRT LPIPS| MS|
asteroids ECNR* | 40.24 0.123 0.93
ECNR | 40.59 0.107 0.49
ECNR* | 44.86 0.042 1.5
ECNR | 48.55 0.029 1.5

supernova-1
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Figure 7: Volume rendering results of ECNR* and ECNR. Top and
bottom: asteroids and supernova-1.

Block dimension. Among ECNR'’s hyperparameters, block di-
mension emerges as a salient factor to adjust the CR. We evaluated
ECNR on the Tangaroa dataset with different block dimensions to
study quality performance under various CRs. We report quanti-
tative results in Table 6 and corresponding volume rendering and
isosurface rendering results in Figure 8. As block dimension in-
creases, the CR increases, reconstruction quality decreases, and en-
coding time and decoding time increase because each MLP needs to
represent larger blocks, which hurts parallel efficiency. We chose
a block dimension of 25 x 15 x 10 for the Tangaroa dataset as a
tradeoff.

Table 6: Average PSNR (dB), LPIPS, and CD (v = —0.85) values
across all timesteps, as well as encoding time (ET), decoding time
(DT), and model size (MS, in MB) of the Tangaroa dataset.

block dimension | PSNRT  LPIPS| CDJ | ETY DT, | Ms|
25%x5%5 4384 0038  1.07 | 91.2m  13L7s | 20.1
25x15x10 | 4147  0.046 150 | 985m  1332s | 4.6
25x45x15 | 3853 0062 274 | 165.6m 140.6s | 1.5

(@) 25x5x5 (c) 25 x45x 15
Figure 8: Volume rendering and isosurface rendering (v = —0.85)
results of ECNR using the Tangaroa dataset with different block
dimensions.

(b)25x 15x 10

Choice of s. In Table 7 and Figure 9, we compare the result of
ECNR using different scales s on the half-cylinder dataset with an
identical block dimension 40 x 15 x 5. When s increases, the total
block numbers will increase, but it may also filter out more non-
effective blocks. The results show that s = 3 could reach the lowest
percentage of effective blocks and preserve good quality with the
smallest model size. Therefore, we set s = 3 for most datasets.

Ap in block-guided pruning. To choose an appropriate weight
Ap for pruning, we optimized our model on the half-cylinder dataset
with different A, values. In Table 8, we report the average PSNR,
LPIPS, and CD values using different A,. Figure 10 shows the
zoomed-in volume rendering results. A, = 0.1 achieves the over-
all best quality, and we chose this setting for all experiments.

Table 7: PSNR (dB), LPIPS, and CD (v = 0.1) values, as well as
model size (MS, in MB), effective blocks (EB), total blocks (TB),
and percentage of effective blocks (EB/TB) of the half-cylinder
dataset using different s values.

s | PSNRT LPIPS| CD, MS| | EBJ TB,  EB/TB|
46.60 0016 0.790 112 | 141,377 435200 32.49%
46.34 0.019 0.776 8.7 112,448 436,800 25.74%
45.91 0.015 0.814 9.2 118,075 436,904  27.03%
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Figure 9: Zoomed-in isosurface rendering (v = 0.1) results of the
half-cylinder dataset with ECNR under different scales.

Table 8: Average PSNR (dB), LPIPS, and CD (v = 0.1) values
across all timesteps of the half-cylinder dataset.

A, | PSNRT LPIPS| CDJ

1.0 43.41 0.031 1.04

0.0 44.69 0.027 0.86

0.1 45.12 0.026 0.87

0.01 | 44.98 0.026 0.92

adad
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Figure 10: Zoomed-in volume rendering results of the half-cylinder
dataset with ECNR under different A,,.
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