Peeling the Flow: A Sketch-Based Interface to Generate Stream Surfaces

Jun Tao*

Chaoli Wang?

University of Notre Dame

(@ [Zeesrd

s 0

7] Smulated Anneaiing

Eraser
s 0

Hardness E)

0

Brush
© Surface based Colorng
©) Attrbute-based Coloring

e cor [
Stac oty o8
Svesnio cor [ -
Sl oty o

St ©

(b) \

(©) \ (d)

Figure 1: (a) to (d) show the panel of tools, the panel of tool parameters, the streamline widget, and the stream surface widget, respectively.
In (a), the five tool icons displayed from left to right are pencil, eraser, undo, brush and save, respectively. Users sketch to generate a new
stream surface in (c). Once confirmed, the newly generated surface will be moved to (d) for visualization.

Abstract

We present a user-centric approach for stream surface generation.
Given a set of densely traced streamlines over the flow field, we
design a sketch-based interface that allows users to draw simple
strokes directly on top of the streamline visualization result. Based
on the 2D stroke, we identify a 3D seeding curve and generate a
stream surface that captures the flow pattern of streamlines at the
outermost layer. Then, we remove the streamlines whose patterns
are covered by the stream surface. Repeating this process, users can
peel the flow by replacing the streamlines with customized surfaces
layer by layer. Our sketch-based interface leverages an intuitive
painting metaphor which most users are familiar with. We present
results using multiple data sets to show the effectiveness of our ap-
proach, and discuss the limitations and future directions.

Keywords: Flow visualization, sketch-based interface, seeding
curves, stream surfaces.

Concepts: eHuman-centered computing — Scientific visualiza-
tion;

*e-mail: jtaol @nd.edu

fe-mail: chaoli.wang@nd.edu
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. (©) 2016 ACM.
SA ’16 Symposium on Visualization, December 05-08, 2016, Macao
ISBN: 978-1-4503-4547-7/16/12
DOI: http://dx.doi.org/10.1145/3002151.3002158

1 Introduction

In flow visualization, a stream surface is the integration of a 1D
seeding rake or curve through a 3D steady flow field. The resulting
surface is everywhere tangent to the local flow. As a natural gener-
alization of streamlines, stream surfaces represent a continuum of
streamlines. Besides indicating flow directions, stream surfaces can
depict folding, shearing and twisting behaviors, enhance the visual
perception of complex flow structures, and facilitate an intuitive un-
derstanding of flow geometry [Dallmann 1983; Garth et al. 2004].

Compared to streamline visualization, effective stream surface vi-
sualization is much more difficult to achieve. Unlike streamlines
which can be uniquely determined by seeding locations, the seed-
ing curves of stream surfaces have a much greater degree of free-
dom to vary. The differences in length, location and shape of seed-
ing curves lead to different stream surfaces. In addition, the qual-
ity of stream surfaces is often difficult to predict, which requires
more post analysis after the surface is generated. Existing works
on surface seeding often allow users to specify two endpoints for
generating the seeding rake. Seeds are placed on the resulting line
segment for surface tracing. While straightforward, this approach
limits the search space to the surfaces with at least one straight time-
line (i.e., the seeding rake), which may not be ideal for capturing
flow patterns. Moreover, it is difficult for users to adjust the end-
points to improve the quality of the generated stream surface, since
the adjustment result is hardly foreseeable. Therefore, fine tuning
the seeding rake normally entails painstaking trial-and-error efforts.

Inspired by the concept of “structure from motion”, which recon-
structs 3D structures from a set of 2D images [Lowe 2004], we
conjecture that good seeding curves can be inferred from a set of
streamlines. We can randomly place seeds to produce a set of
streamlines that densely cover the entire domain. Unlike discrete
vectors at isolated voxel locations, integral streamlines give con-


http://dx.doi.org/10.1145/3002151.3002158

tinuous impression of the underlying flow over the domain and thus
provide more immediate hints to search for good seeding curves. As
a matter of fact, human perception can naturally pick up appropriate
surfaces from a given set of streamlines. Our goal is try to mimic
this process. In this regard, our work is in line with other semi-
automatic techniques that leverage human knowledge for machine-
challenging tasks. For example, users may draw strokes on an im-
age to indicate the foreground and background for segmentation
[Boykov and Jolly 2001].

Following the above notion, we present a sketch-based interface
that allows users to generate desired stream surfaces on top of a set
of densely traced streamlines. Users can simply draw a 2D stroke
directly on the streamline visualization result to indicate the favored
seeding curve. We derive a binormal field from the flow field and
identity a 3D seeding curve following the binormal direction. The
2D projection of this seeding curve is similar to the user-drawn
stroke and it leads to a surface that captures the flow pattern of
the outermost layer of streamlines (i.e., the ones that are closest to
users along the viewing direction). Once the stream surface is gen-
erated, the streamlines whose distances to the surface are smaller
than a user-defined threshold will be removed. Repeating this pro-
cess, users can “peel” the streamlines layer by layer, and each layer
becomes one stream surface. During this process, users can simply
remove the less interesting streamlines as well. They can further
edit a surface by dragging the endpoints of the seeding curve to
extend the surface for a more complete coverage, or to shrink the
surface for a more concise representation. They can also adjust the
rendering effect to achieve desirable surface visualization results.
All these functions are provided by an intuitive painting interface
where users draw seeding curves using the pencil tool, drag a seed-
ing curve using the hand tool, remove streamlines using the eraser
tool, and adjust surface rendering using the brush tool.

2 Related Work

Surface-Based Flow Visualization. Existing stream surface gen-
eration techniques include extracting stream surfaces as isosurfaces
in specifically designed scalar fields [van Wijk 1993; Cai and Heng
1997], generating seeding curves as isolines of scalar fields on do-
main boundaries [Edmunds et al. 2012b], generating seeding curves
based on streamline clusters [Edmunds et al. 2012a], and generating
seeding curves based on a seeding structure (e.g., a seeding plane)
[Sadlo et al. 2004; Brambilla and Hauser 2015].

Hultquist [Hultquist 1992] presented the first work for surface con-
struction that advances a seeding front to generate stream surfaces.
Several works further refine the seeding fronts during advance-
ment, such as arc-length-based [Garth et al. 2004], quad-based
[McLoughlin et al. 2009], and point-based [Schafhitzel et al. 2007]
algorithms. Other works improve the interpolation using tetrahedral
grids [Scheuermann et al. 2001] or Hermite interpolation [Schnei-
der et al. 2009]. Garth et al. [Garth et al. 2008] advocated a two-step
surface generation. It first generates a skeleton of the integral sur-
face, followed by a well-conditioned triangulation.

Surface rendering aims at reducing visual occlusion and clutter, and
enhancing depth and spatial perception of flow features and struc-
tures. Existing techniques leverage contour lines and half-toning
[Born et al. 2010], transparency and texturing [Hummel et al. 2010],
and illustration buffer [Carnecky et al. 2013] to improve and en-
hance the perception of surfaces.

Closely related to our work are the works of global selection of
single and multiple stream surfaces [Martinez Esturo et al. 2013;
Schulze et al. 2014]. Martinez Esturo et al. [Martinez Esturo et al.
2013] proposed to favor surfaces where the flow is aligned with
principal curvature directions. They leveraged simulated annealing

to select a globally optimal stream surface based on a set of stream
surface quality measures. Schulze et al. [Schulze et al. 2014] ex-
tended the work to select a set of globally optimal stream surfaces
in an iterative manner. All selected surfaces are mutually distant
and optimize global stream surface quality measures.

The two solutions above are fully automatic. Therefore, they could
not be customized according to user intentions or needs. Due to
the highly flexible nature of seeding curves and the huge candidate
pool of stream surfaces, seeking a unique, optimal set of surfaces
demands the generation of an excessive number of stream surfaces
for goodness test. Instead, we advocate a user-centric approach and
allow users to sketch 2D strokes directly on top of the streamline
visualization result to specify surfaces of interest. Our reasoning
is that users can play an instrumental role in this challenging task
by conveying their intuition (i.e., where to place the surfaces) and
priority (i.e., the order of surfaces created) to quickly narrow down
the search space. In this way, we are able to produce comparable
stream surface results cost-effectively, even though we do not claim
that the surfaces are optimal.

Sketch-Based Interface for Scientific Visualization. Sketch- and
touch-based interface and interaction have been introduced to as-
sist volume visualization, including transfer function design [Tzeng
et al. 2003], WYSIWYG volume visualization [Guo et al. 2011],
and Visualization-by-Sketching for time-varying multivariate data
visualization [Schroeder and Keefe 2016]. For flow visualization,
sketch-based interfaces have been applied to 2D illustrative visual-
ization [Schroeder et al. 2010], 3D flow field classification [Wei
et al. 2010], and exploration of scientific data sets [Klein et al.
2012]. Unlike the sketch-based interfaces presented in [Schroeder
et al. 2010; Wei et al. 2010] for streamline visualization, we target
the more challenging problem of stream surface generation. For
convenience, we allow users to directly draw 2D stokes on top of
the streamline visualization result to specify seeding curves, rather
than painting on 2D slices of the volume in a separate view [Tzeng
et al. 2003]. Compared to the seeding rake generation [Klein et al.
2012], we do not require a cutting plane for user sketching. Instead
of directly using the user’s input as the seeding curve, we identify
a seeding curve that leads to an improved surface with good quality
while matching the user’s intention.

3 Stream Surface Generation

Our approach identifies a seeding curve based on a user-drawn
stroke, so that the stream surface generated from the seeding curve
covers the outermost layer of streamlines intersecting with the
stroke. To capture the flow pattern, the stream surface should align
with the flow. That is, a local patch of the surface lies in the same
plane defined by the tangent and binormal vectors at a point on
the streamline. The relationship among the tangent t, normal n,
and binormal b vectors is shown in Figure 2 (a). For a point p on
the streamline, t and n lie on the plane of P, which contains the
streamline segment centered at p, while b is perpendicular to F.
Since streamlines on a stream surface follow the flow direction, the
timelines are preferred to follow the binormal direction. We ap-
proximate a user-drawn stroke with a seeding curve following the
binormal direction and trace the surface using the quad-based ap-
proach [McLoughlin et al. 2009].

3.1 Aligning Seeding Curve along Binormal Direction

The reason for us to use the binormal direction to align a seeding
curve is based on the following observation. It is ideal to gener-
ate seeding curves that are as perpendicular to the flow as possi-
ble, since this kind of seeding curve would maximize the effective
length to generate stream surfaces. In Figure 2 (a), the plane P, is



(a) (b) (©

0.03
0.01 \/
——Binormal ——Normal -—Seeding rakes

(d) (e)

Figure 2: (a) the tangent t, normal n, and binormal b vectors at a point p on a streamline. (b) to (d) show stream surfaces seeded along
the binormal direction, the normal direction, and the best straight seeding rake, respectively. (e) quality measure using the average squared

normal curvature.

Figure 3: Seeding curve approximation based on a user-drawn
stroke. (a) shows the stroke under the original viewpoint. (b) shows
the stroke under another viewpoint, so that its 3D shape can be per-
ceived. (c) shows the stroke in blue, the candidate seeding curves
in gray, and the actual seeding curve in red.

defined by the normal n and binormal b vectors. P, is perpendicular
to the flow direction (i.e., the tangent vector t). Obviously, there are
still an infinite number of directions to take for the seeding curve on
P,. But we only consider the normal and binormal directions of the
streamline, since they form an orthogonal basis of P,. The normal
direction n lies in the same plane of P; as the streamline segment.
Therefore, seeding along n is likely to create a planar surface. On
the contrary, seeding along the binormal direction b is more desir-
able, since it leads to a surface with a more interesting 3D shape.

Using the tornado data set, we shown in Figure 2 (b) and (c) two
stream surfaces traced from two seeding curves following binormal
and normal directions, respectively. We can see that the surface
seeded along the binormal direction better captures the 3D shape
of the vortex core. In contrast, the surface seeded along the normal
direction contains a large planar portion around the tail of the spiral.
Even for the spiral, this surface is mostly perpendicular to the vortex
core and it fails to convey the impression of a layer of the flow.

For a quantitative study, we leverage the normal curvature measure
proposed by Martinez Esturo et al. [Martinez Esturo et al. 2013] to
evaluate the quality of a surface. They measured the normal curva-
ture of the surface at a point p, using the normal curvature

nSTJV
|v|

; (€]

where ng is the surface normal at p, and J and v are the Jacobian ma-
trix and flow velocity at p, respectively. Note that v is in the same
direction as t with additional magnitude information. For fair com-
parison, we compute the average squared normal curvature of each
surface by averaging the squared normal curvature over the entire
surface. The stream surfaces that minimize this term are usually flat
ones with vanishing normal curvature and produce less interesting
results, and the surfaces that maximize this term often demonstrate
a better quality. In addition to the two seeding curves along the
binormal and normal directions, we evenly sample 30 straight lines
pointing in different directions as seeding rakes for comparison. All

these seeding rakes are centered at the midpoint p. of the seeding
curve following the binormal direction and reside in the plane P, de-
termined by the binormal and normal vectors at p.. We make their
lengths equal to the maximum distance between any two seeds on
the binormal seeding curve, so that they cover a similar range as the
seeding curve following the binormal direction does.

We plot the average squared normal curvature measured on the sam-
pled seeding rakes as a gray curve in Figure 2 (e), starting from the
rake following the binormal direction. The average squared nor-
mal curvature of surface generated from seeding along the binor-
mal/normal direction is plotted as the blue/orange line. We can see
that seeding along the binormal direction, the generated surface has
close to best quality compared to the sampled seeding rakes. This
is confirmed by comparing Figure 2 (b) and (d), as the two surfaces
only differ by a small degree at the tails.

In practice, instead of computing the binormal directions from
streamlines, we precompute a binormal vector field from the given
vector field, so that the binormal direction at any point in the do-
main can be retrieved directly from the binormal vector field. The
binormal direction b at a point p is given by

b=nxt=Jtxt, 2)

where t, n and J are the tangent direction, normal direction, and
Jacobian matrix at p. The seeding curve is integrated in the binor-
mal vector field using the fourth-order Runge-Kutta method. This
is similar to tracing streamlines in the original vector field.

3.2 Seeding Curve Approximation

The seeding curve approximation is performed as follows. First,
we map the points on the 2D user-drawn stroke back to the 3D
space. For each point p, we identify the streamline that is first hit
at p, and use the hit point as the mapped 3D point. Figure 3 (a)
shows a user-drawn stroke in the original viewpoint, under which
the stroke is sketched. Each point on this stroke is mapped to a
point on a streamline that is closest to the screen under the original
viewpoint. Observing from another viewing direction as shown in
Figure 3 (b), we can see that although the original stroke seems
relatively smooth, the 3D stroke after mapping is actually zig-zag
due to the depth discontinuity among the streamlines.

Second, instead of smoothing this 3D stroke, we search for a curve
which follows the binormal direction and is closest to the 3D stroke.
For each point p on the 3D stroke, we generate kK + 1 seeds. Among
these k + 1 seeds, one seed is p itself, and the other k seeds are
evenly spaced on a small sphere centered at p. Then, we trace
k—+ 1 curves from those seeds in the binormal vector field, and com-
pute the mean of closest point distances from the 3D stroke to each
curve. The closest curve is defined as the one with the smallest dis-
tance among all the generated curves. The mean of closest point



Figure 4: Generating a single stream surface. (a) shows the original streamlines. (b) shows a user-drawn stroke in blue, the corresponding
seeding curve in red, and guiding streamlines in gray. (c) shows the stream surface generated from the seeding curve. (d) shows the extended
seeding curve and the corresponding guiding streamlines. (e) shows the stream surface generated from the extended seeding curve. (f) shows
the remaining streamlines after removing the outermost layer of streamlines that is captured by the newly generated stream surface.

distances from one point set P = {py,ps,...,p,} to another point
set Q=1{q1,92,--.,qm} is formulated as follows

i(P.Q) = Y pcpming cq d(Panj)’ 3

n

where d(p;,q;) is the Euclidean distance between p; and ¢;. In
Figure 3 (c), one gray curve is generated for each point on the blue
3D stroke, and the closest curve is the one highlighted in red. We
can see that the depth randomness of streamlines is canceled out and
the closest curve is approximately the centerline of the 3D stroke.

Third, since we trace the curves in the binormal vector field as long
as possible, these curves are usually longer than the stroke itself.
Therefore, we cut one segment on the curve that best fits the length
of the stroke. Specifically, starting from the point that is closest to
the 3D stroke, we scan the curve in both the forward and backward
directions to identify two points that are closest to the two endpoints
of the stroke. The segment between the two points identified is the
seeding curve. In Figure 3 (c), the red curve segment is the seeding
curve we generate for this example.

4 Interface and Interaction Design

As shown in Figure 1, our interface consists of four components:
the tool panel, parameter panel, streamline widget, and stream sur-
face widget. We provide six tools (pencil, eraser, hand, undo, brush
and save) for users to complete different tasks in the two widgets.
The streamline widget displays all streamlines and works with the
pencil, eraser, hand and undo tools. It also displays the newly gen-
erated stream surface before users confirm the surface and move it
to the stream surface widget. The stream surface widget displays
all the confirmed stream surfaces. Users can use the brush tool to
change their rendering effects. The save tool is used to output the
current screenshot as an image file. In this section, we describe the
widgets, and discuss the associated tools and interactions.

4.1 Streamline Widget

In the streamline widget, users sketch with the pencil tool to gen-
erate seeding curves and then create stream surfaces. They use the
eraser tool to remove unimportant or surrounding streamlines, so
that the stream surfaces covering the important or inner flow pat-
tern can be generated subsequently. To modify the width of the
stream surface, users can leverage the hand tool to drag the end-
points of its seeding curve along the binormal direction. We do not
present an icon for the hand tool on the interface as this tool will be
automatically enabled for fine tuning the seeding curve and surface
right after the initial surface is generated.

Typical Workflow. We demonstrate the use of the streamline wid-
get with an example shown in Figure 4. We start with a pool of

(a) (b)

Figure S: A stream surface and its corresponding streamlines, de-
termined by the mean of closest point distances. (a) and (b) show
the surface and streamlines under two different viewpoints.

streamlines densely traced over the field, as shown in (a). Users can
use the eraser tool to remove less interesting streamlines and use the
pencil tool to draw a stroke on top of the streamline visualization
result to indicate the flow pattern they want to capture. We trace a
set of guiding streamlines from evenly spaced seeds on this seeding
curve to indicate the shape of corresponding stream surface. For a
clearer observation, the streamlines close to the guiding streamlines
will be temporarily removed, as shown in (b). Users can generate a
stream surface from the seeding curve, if they feel that the guiding
streamlines represent the desired flow pattern; otherwise, they can
ignore this seeding curve by simply drawing another stroke.

After the stream surface is generated, the surface along with the two
endpoints of its seeding curve will appear in the streamline widget,
as shown in (c). Users can use the hand tool to drag the endpoints
to extend or shrink the surface. When users finish dragging the end-
points, they can regenerate the surface, as shown in (e). If users are
satisfied with the quality of the surface, they can confirm the sur-
face and add it into the final visualization result. Once the stream
surface is confirmed, it will be moved to the stream surface widget,
and the streamlines whose pattern is captured by this surface will be
removed from the streamline widget. Compared to the streamlines
before surface generation as shown in (a), we can see that the outer-
most layer of streamlines is peeled, as shown in (f). Repeating this
process, users can peel the flow field layer by layer, and generate
the desired stream surfaces for visualization.

Tool Tuning. Several parameters can be adjusted for the pencil and
eraser tools. For the pencil tool, the only parameter is its size. Sim-
ilar to that in a painting interface which decides the thickness of
stroke, the size of the pencil in our interface determines the thick-
ness of the layer being peeled. The streamlines close to the guiding
streamlines or the stream surface are peeled based on the mean of



closest point distances. The size parameter serves as the distance
threshold to control which streamlines to remove. If the value is
small, then only the streamlines that are very close to the guiding
streamlines or the stream surface will be removed, which means
that only a thin layer will be peeled. In Figure 5, we show a stream
surface and the corresponding streamlines removed under two dif-
ferent viewpoints. We can observe that the streamlines approxi-
mately form a layer centered at the surface.

For the eraser tool, two parameters are available: size and hard-
ness. The size parameter determines the radius of a circle centered
at the mouse position on the screen. Under the current viewpoint,
we remove the front streamlines that intersect with this circle in the
screen space. The hardness parameter decides how many stream-
lines to remove at the mouse position. If the value is one, only the
frontmost streamline will be removed at each sample position. We
also provide the undo tool, so that users can click on the icon to
recover the streamlines removed by the eraser tool.

4.2 Stream Surface Widget

In the stream surface widget, we render the stream surfaces and
allow users to adjust rendering eftects with the brush tool. The ren-
dering effects include color, transparency, silhouette, and display-
ing streamlines on the surface. The silhouette visually emphasizes
the transition between front- and back-facing surface layers, and
facilitates better perception of surface shape. So it is applied to
all surfaces by default. Other rendering effects can be adjusted by
users. We provide two coloring schemes: surface-based coloring
and attribute-based coloring.

Surface-Based Coloring. The surface-based coloring scheme uses
different colors for different stream surfaces, but all points on the
same surface share the same color. Using this scheme, different
surfaces can be better distinguished. As suggested by Hummel and
Garth [Hummel et al. 2010], the transparency is designed as a func-
tion of normal variation in the image space to emphasize surface de-
tails, such as ridges and valleys. Formally, the transparency value
is given by o, = Vv1/2, where v is the normal variation and Yis a
parameter in [0, 1].

The brush tool in this coloring scheme has three parameters: color,
7, and transparency factor z. The color can be selected from a color
palette, while ¥ and 7 can be selected with sliders or input from text
boxes. We use ¢ to adjust the transparency of the entire surface to
deemphasize the less important surfaces and emphasize the more
important ones. The final transparency is defined as

(X:t((l _a\f)arnin+avamax)7 (4)

where O,y,ip, and Oimax are used to constrain the transparency within
a certain range. Using the brush tool, users can simply click on a
surface to apply the current parameter values of the brush.

Attribute-Based Coloring. The attribute-based coloring scheme
assigns the same color and transparency to surface points with the
same attribute value. The scalar attribute, such as the curvature or
torsion field derived from the flow field, is specified by users. This
coloring scheme helps to distinguish flow patterns with a certain
property as indicated by the selected attribute. Initially, the color
at each surface point is given by a color map, and following Equa-
tion (4), its transparency is given by

a= (1 - aY/z)amin + 6ly/zoﬁnaxy 5)
where a is the normalized attribute value. Under this scheme, two

parameters can be adjusted for the brush tool: color and trans-
parency. Users can use the brush tool to paint colors directly on

timing (in seconds)

avg. SR | curve surface line
data set dimension #pll fitting integral removal
electron 64 x 64 x 64 58.0 1 0.43 0.19 0.16
five CPs 51x51x51 1162 | 5 0.28 0.29 0.55
sq. cylinder 192 x 64 x 48 195.9 1 0.69 2.37 0.41
tornado 64 x 64 x 64 292.4 1 0.32 0.18 0.78
two swirls 64 x 64 x 64 918.2 10 0.48 3.10 0.69

Table 1: Timing and parameters for each data set. We use 500
streamlines for the two swirls data set and 3000 streamlines for the
other data sets. The timing reported is the average cost to gener-
ate one stream surface in the results. “avg. # p/l” is the average
number of points per streamline and “SR” is sampling rate.

top of the stream surface rendering. This will blend the brush color
with the original color. When the brush tool is used to sketch on the
surfaces, we accumulate the attribute values in the brush strokes.
We partition the attribute values into a number of discrete ranges.
Let n; be the count of the i-th attribute range that is brushed by
users. We update c(i), the color of the i-th attribute value range, to

c(i) = (1 —wi)eo (i) + wicy, ©)

where ¢, (i) is the original color of the i-th attribute value range,
¢p is the brush color, w; = min(n;/N, 1), and N is a constant. If
n; is zero, which means that the i-th attribute value range is never
brushed, that attribute value range uses its original color. If n; is
larger than N, the color of the i-th attribute value range becomes
the brush color. The transparency is updated similarly.

5 Results

5.1 Performance and Parameters

We evaluated the performance of our approach using the data sets
listed in Table 1. All results were collected on a PC with an Intel
Core i7-4790 quad-core 3.60GHz CPU, 32GB main memory, and
an nVidia Geforce 970 graphics card with 4GB graphics memory.

For most data sets, we randomly traced 3000 streamlines to fill the
entire domain. For the two swirls data set, since the streamlines
are relatively long with repeated patterns, we used less streamlines
for better speed performance. The sampling rate r indicates that a
point in every r points on a streamline is used to compute the mean
of closest point distances between that streamline and a stream sur-
face or a guiding streamline. This distance was used to determine
whether or not a streamline close to a stream surface or the guid-
ing streamlines should be removed. The streamline removal was
performed in the GPU using CUDA, and its running time mainly
depends on the numbers of points on a streamline and the stream
surface. With the continuity of streamlines, we felt that the dis-
tances computed using the sampled points still produce reasonable
results, especially for the long streamlines with repeated patterns.

For each data set, we generated as many surfaces as needed, un-
til most streamlines were removed and the flow field was mostly
captured by the surfaces. The curve fitting time includes the time
to trace lines in the binormal vector field, fit the user’s sketch to
those lines, trace the guiding streamlines, and temporarily remove
streamlines for occlusion reduction. The streamline tracing and re-
moval were performed in the GPU, and the other steps were per-
formed in the CPU. The guiding streamlines contain a much less
number of points than the final surface, especially when the flow is
complex. Therefore, removing streamlines according to the guiding
streamlines is less costly.



saddle

— Y

connection

(d

Figure 6: (a) and (b) show six stream surfaces of the five criti-
cal points data set with surface-based coloring and attribute-based
coloring, respectively. (c) shows the single blue stream surface. (d)
shows the surfaces as seen from the opposite viewpoint of (a).

5.2 Visualization Results

Five Critical Points. The six stream surfaces we generate from
the five critical points data set are shown in Figure 6. This data
set is synthesized with five randomly generated critical points: two
spirals, two saddles, and one source. The flow patterns related to
these critical points and their connections are essential for under-
standing. We start from the larger spiral pattern at the corner and
generate the blue stream surface, since it is the most obvious feature
as seen from the outermost layer of streamlines. The blue surface
covers a large portion of the field, revealing not only the flow pat-
tern of the larger spiral, but also the connection between the two
spirals, as highlighted in (c). Then, we sketch on the other spiral
to generate the orange surface, and the two saddles to generate the
green, red and brown surfaces. Finally, we generate the purple sur-
face to fill the gap between the upper spiral and the source, where
the green surface starts. The stream surfaces with surface-based
coloring are shown in (a). We find that the flow directions on the
spirals are easy to follow, but those on the other critical points may
not be easily perceived at the first glance. We therefore add stream-
lines to enhance the perception of these critical points. The saddle
between the green and red surfaces can be observed clearly. The
saddle at the bottom left corner and the source near the center of
the volume are captured by the streamlines, but their patterns are
not outstanding. In (b), we switch to attribute-based coloring. The
critical points can be noticed easily when the curvature attribute is
used, since all critical points correspond to the high-curvature re-
gions shown in red. We also find two extra saddles on the purple
surface between the upper spiral and the source, and on the upper
region of the red surface, by simply looking for all red regions. The
connections among critical points can be observed clearly as well.
A stream surface with multiple red regions is likely to connect dif-
ferent critical points. We can see that the blue surface connects the
two spirals, the green surface connects the source and the bottom
right saddle, the red surface connects the upper spiral and two sad-

Figure 7: (a) and (b) show three stream surfaces of the square
cylinder data set with surface-based coloring and attribute-based
coloring, respectively.

(b)

Figure 8: (a) and (b) show four stream surfaces of the two swirls
data set with surface-based and attribute-based coloring, respec-
tively.

dles on the right, the brown surface connects the spiral and the bot-
tom left saddle, and the purple surface connects the upper spiral, the
source and one saddle between them. In (d), we render the stream
surfaces from the opposite viewpoint to observe the two spirals and
the connection between the source and the upper spiral.

Other Data Sets. The visualization results for the other data sets
are shown in Figures 7 to 9. We generate three surfaces for the
square cylinder data set to capture the upper, middle and lower lay-
ers of the flow (Figure 7), and four surfaces for the two swirls data
set to capture the flow patterns in the front and back halves of each
swirl (Figure 8). In Figure 9 (a), we show four surfaces for the tor-
nado data set. To better reveal the inner pattern, we use the brush
tool to adjust the opacity so that the low entropy regions become
more transparent, as shown in Figure 9 (b). The flow pattern can
be captured by a single surface as well, as shown in Figure 9 (c).
Although the single surface in (c) provides a more compact visual-
ization result, the four surfaces in (a) with their tails pointing into
different directions reveal additional information of the flow field.

6 Discussion and Future Work

Seeking Optimal Seeding Curves. We approximate the user’s
sketch to generate the seeding curve by following the binormal di-



(a) (b) (©

Figure 9: (a) shows four stream surfaces of the tornado data set
with surface-based coloring. (b) shows the surfaces with attribute-
based coloring and edited color mapping. (c) shows one single
stream surface that covers the entire domain.

l 5
i ; b
o | i
(a) (b) (©
Figure 10: The alignment errors of three stream surfaces from the

(a) electron, (b) tornado, and (c) two swirls data sets. Blue (red)
color indicates small (large) alignment errors.

rection. From Section 3.1, we can see that surfaces seeded along the
binormal direction reveal more interesting 3D shapes than the sur-
faces seeded along the normal direction. It is easy to verified that
a stream surface aligned with the binormal direction everywhere
maximizes the average squared normal curvature. For this kind of
surfaces, the normal ng of the surface at a point p will be perpen-
dicular to the binormal vector b and flow direction v at p. Since
Jv(= xn) is also perpendicular to both b and v by definition, ng and
Jv are parallel, which maximizes the dot product of ng and Jv. On
the other hand, a stream surface aligned with the normal direction
minimizes the mean normal curvature. Although seeding along the
binormal direction does not guarantee that the entire surface will
align well with the binormal field, our experiment in Section 3.1
shows that it yields a reasonably good approximation. In Figure 10,
we show the alignment errors measured on three stream surfaces.
The error at a surface point is measured by the angle between ng
and n. For simpler flow patterns, the timelines mostly follow the
binormal direction at all time steps, as shown in (a) and (b). For the
more complicated flow pattern shown in (c), although we can ob-
serve alignment errors on the boundaries of the surface, the overall
error is still acceptable as most of the surface is colored in blue.

In the future, we would like to use the seeding curve following the
binormal direction as a starting point to seek an optimal seeding
curve. Searching the seeding rakes with different orientations may
produce better results than using the binormal direction. However,
it is far from optimal as the search space is quite limited. For exam-
ple, the curvy surfaces in Figure 10 (a) can be hardly captured by
straight seeding rakes. We propose to adopt an algorithm based
on simulated annealing to gradually optimize the seeding curve.
In each iteration of the optimization algorithm, we may randomly
move a seed to update the seeding curve and estimate the quality of
the generated surface. The new seeding curve is accepted only if the
generated surface has better quality than the surface generated by

the previous seeding curve. Note that we only need to consider the
curves that are perpendicular to the flow everywhere, since moving
a seed along the flow direction will not change the generated stream
surface. Therefore, a seed can be restricted to move in the plane per-
pendicular to the flow direction without sacrificing the search space
of all possible stream surfaces.

Quality Estimation. The optimization of seeding curves requires
the quality of seeding curves to be evaluated efficiently, especially
for an interactive approach. We would like to develop a parallel
scheme to estimate the quality of the seeding curve without generat-
ing the surface. We can first trace a streamline from each seed along
the seeding curve and check for the diverging flow by measuring the
widths of the ribbons between any two consecutive streamlines. If
the maximum width of a ribbon exceeds some threshold, the di-
verging flow exists and we place additional seeds to fill the gap;
otherwise, the ribbon can be considered as part of the surface and
used for quality evaluation. In order to avoid excessively diverg-
ing the flow, we determine the number of seeds to be placed by the
maximum width of the ribbon. Tracing the streamlines and comput-
ing the maximum width for each stream ribbon can be performed
in parallel, so that the performance is independent of the number
of seeds. We repeat this procedure for the new seeds in multiple
passes to ensure that the surface quality in the diverging case can
be estimated more accurately. The total time cost of this parallel
scheme mainly depends on the number of passes taken. With more
seeds added for each divergence case, we expect to achieve a rea-
sonably accurate measure within a few passes. We will compare the
quality estimation results without and with generating the surface to
evaluate the estimation accuracy.

Interaction and Rendering. Currently, once the stream surfaces
are confirmed, users are not able to further adjust them. In the fu-
ture, we would like to enable post-editing so that users can pol-
ish the generated stream surfaces. For example, users may simply
drag the surface and extend it to include certain flow features. Our
current hand tool can only extend the surface along the original
seeding curve following the binormal direction. If a flow feature is
not passed by the streamlines generated from the extended seeding
curve, the surface will not cover the flow feature. An ideal ap-
proach should identify a smooth seeding curve that covers both the
intended flow feature and the flow patterns of the original surface,
if possible. Users may also use the eraser tool to remove a part of
stream surface that covers less interesting flow patterns.

Moreover, it may be worthy to investigate surface rendering to en-
hance the perception of flow directions in complex regions. Many
layers of surface can stack in those regions. When the opacity is
high, the inner layers are occluded; but when the opacity is low, the
flow pattern can be hardly perceived. The opacity based on normal
variation considers only surface shape and viewing direction, but
not visual occlusion. Our attribute-based coloring can only reduce
the opacity for all regions sharing similar values, which does not
take occlusion into consideration either. We will design a render-
ing scheme that can adjust the opacity of surface patches according
to their occlusion relationships, allowing users to better perceive
flow patterns in complex regions. Additionally, ambient occlusion
and other global illumination techniques may be applied to further
enhance the rendering results.

7 Conclusions

We have presented a novel sketch-based interface to generate
stream surfaces. The interface is designed to follow the commonly
used painting metaphor, requiring less learning effort. We provide
a suite of tools to users so that they can peel the flow field layer by
layer to obtain desired stream surfaces with customized rendering



effects. By following the binormal direction, we efficiently gener-
ate surfaces with acceptable quality to support interactive perfor-
mance. Our approach allows users to obtain customized visualiza-
tion results that describe the flow field according to their own needs.
To the best of our knowledge, our work is the first that leverages
user sketching and painting metaphor for semi-automatic stream
surface generation.

Acknowledgements

This work was supported in part by the U.S. National Science
Foundation through grants 1IS-1456763 and IIS-1455886. Special
thanks to Dr. Reid Johnson for his narration of the accompanying
video and the anonymous reviewers for their insightful comments.

References

BORN, S., WIEBEL, A., FRIEDRICH, J., SCHEUERMANN, G.,
AND BARTZ, D. 2010. Illustrative stream surfaces. IEEE Trans-
actions on Visualization and Computer Graphics 16, 6, 1329—
1338.

Boykov, Y. Y., AND JOLLY, M.-P. 2001. Interactive graph cuts
for optimal boundary & region segmentation of objects in N-D
images. In Proceedings of IEEE International Conference on
Computer Vision, vol. 1, 105-112.

BRAMBILLA, A., AND HAUSER, H. 2015. Expressive seeding of
multiple stream surfaces for interactive flow exploration. Com-
puters & Graphics 47, 123-134.

CAl, W., AND HENG, P.-A. 1997. Principal stream surfaces. In
Proceedings of IEEE Visualization Conference, 75-81.

CARNECKY, R., FucHS, R., MEHL, S., JANG, Y., AND PEIKERT,
R. 2013. Smart transparency for illustrative visualization of
complex flow surfaces. IEEE Transactions on Visualization and
Computer Graphics 19, 5, 838-851.

DALLMANN, U. 1983. Topological structures of three-dimensional
flow separations. Tech. Rep. 221-82 A 07, Deutsche Forschungs-
und Versuchsanstalt fuer Luft- und Raumfahrt.

EDMUNDS, M., LARAMEE, R. S., MALKI, R., MASTERS, 1.,
CROFT, N., CHEN, G., AND ZHANG, E. 2012. Automatic
stream surface seeding: A feature centered approach. Computer
Graphics Forum 31, 3, 1095-1104.

EDMUNDS, M., MCLOUGHLIN, T., LARAMEE, R. S., CHEN,
G., ZHANG, E., AND MAX, N. 2012. Advanced, automatic
stream surface seeding and filtering. In Proceedings of Theory
and Practice of Computer Graphics, 53-60.

GARTH, C., TRICOCHE, X., SALZBRUNN, T., BOBACH, T., AND
SCHEUERMANN, G. 2004. Surface techniques for vortex visu-
alization. In Proceedings of Eurographics - IEEE TCVG Sympo-
sium on Visualization, 155-164.

GARTH, C., KRISHNAN, H., TRICOCHE, X., BOBACH, T., AND
Joy, K. I. 2008. Generation of accurate integral surfaces in time-
dependent vector fields. IEEE Transactions on Visualization and
Computer Graphics 14, 6, 1404-1411.

GUo, H., MAO, N., AND YUAN, X. 2011. WYSIWYG (what you
see is what you get) volume visualization. IEEE Transactions on
Visualization and Computer Graphics 17,12, 2106-2114.

HULTQUIST, J. P. M. 1992. Constructing stream surfaces in steady
3D vector fields. In Proceedings of IEEE Visualization Confer-
ence, 171-178.

HUMMEL, M., GARTH, C., HAMANN, B., HAGEN, H., AND JOY,
K. I. 2010. IRIS: Illustrative rendering for integral surfaces.
IEEE Transactions on Visualization and Computer Graphics 16,
6, 1319-1328.

KLEIN, T., GUENIAT, F., PASTUR, L., VERNIER, F., AND ISEN-
BERG, T. 2012. A design study of direct-touch interaction for
exploratory 3D scientific visualization. Computer Graphics Fo-
rum 31,3, 1225-1234.

LowE, D. G. 2004. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision 60, 2, 91—
110.

MARTINEZ ESTURO, J., SCHULZE, M., ROssL, C., AND
THEISEL, H. 2013. Global selection of stream surfaces. Com-
puter Graphics Forum 32,2, 113-122.

McCLOUGHLIN, T., LARAMEE, R. S., AND ZHANG, E. 2009.
Easy integral surfaces: A fast, quad-based stream and path sur-
face algorithm. In Proceedings of Computer Graphics Interna-
tional, 73-82.

SADLO, F., PEIKERT, R., AND PARKINSON, E. 2004. Vorticity
based flow analysis and visualization for pelton turbine design
optimization. In Proceedings of IEEE Visualization Conference,
IEEE, 179-186.

SCHAFHITZEL, T., TEJADA, E., WEISKOPF, D., AND ERTL, T.
2007. Point-based stream surfaces and path surfaces. In Pro-
ceedings of Graphics Interface, 289-296.

SCHEUERMANN, G., BOBACH, T., HAGEN, H., MAHROUS, K.,
HAMANN, B., Joy, K. I., AND KOLLMANN, W. 2001. A
tetrahedra-based stream surface algorithm. In Proceedings of
IEEE Visualization Conference, 151-158.

SCHNEIDER, D., WIEBEL, A., AND SCHEUERMANN, G. 2009.
Smooth stream surfaces of fourth order precision. Computer
Graphics Forum 28, 3, 871-878.

SCHROEDER, D., AND KEEFE, D. F. 2016. Visualization-by-
sketching: An artist’s interface for creating multivariate time-
varying data visualizations. IEEE Transactions on Visualization
and Computer Graphics 22, 1, 877-885.

SCHROEDER, D., COFFEY, D., AND KEEFE, D. F. 2010. Draw-
ing with the flow: A sketch-based interface for illustrative vi-
sualization of 2D vector fields. In Proceedings of ACM SIG-
GRAPH/Eurographics Symposium on Sketch-Based Interfaces
and Modeling, 49-56.

SCHULZE, M., MARTINEZ ESTURO, J., GUNTHER, T., ROSSL,
C., SEIDEL, H.-P., WEINKAUF, T., AND THEISEL, H. 2014.
Sets of globally optimal stream surfaces for flow visualization.
Computer Graphics Forum 33, 3, 1-10.

TzeENG, F.-Y., LuM, E. B., AND MA, K.-L. 2003. A novel
interface for higher-dimensional classification of volume data.
In Proceedings of IEEE Visualization Conference, 505-512.

VAN WK, J. J. 1993. Implicit stream surfaces. In Proceedings of
IEEE Visualization Conference, 245-252.

WEI, J., WANG, C., YU, H., AND MA, K.-L. 2010. A sketch-
based interface for classifying and visualizing vector fields. In
Proceedings of IEEE Pacific Visualization Symposium, 129-136.



