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ABSTRACT

We present the design of a scalable parallel pathline con-
struction method for visualizing large time-varying 3D vec-
tor fields. A 4D (i.e., time and the 3D spatial domain) rep-
resentation of the vector field is introduced to make a time-
accurate depiction of the flow field. This representation also
allows us to obtain pathlines through streamline tracing in
the 4D space. Furthermore, a hierarchical representation of
the 4D vector field, constructed by clustering the 4D field,
makes possible interactive visualization of the flow field at
different levels of abstraction. Based on this hierarchical
representation, a data partitioning scheme is designed to
achieve high parallel efficiency. We demonstrate the per-
formance of parallel pathline visualization using data sets
obtained from terascale flow simulations. This new capabil-
ity will enable scientists to study their time-varying vector
fields at the resolution and interactivity previously unavail-
able to them.

1. INTRODUCTION

Massively parallel supercomputers enable scientists to sim-
ulate complex phenomena in unprecedented detail. When
scientists attempt to analyze and understand the data gen-
erated by large-scale simulations, the sheer size of the data
is a major challenge. To address this challenge, many ad-
vances have been made for large-scale data visualization.
However, most of the techniques were developed for the vi-
sualization of scalar field data, regardless of the fact that
vector fields in the same data sets are equally critical to
the understanding of the modeled phenomena. While vector
field visualization has also been an active area of research [8,
11, 29, 19, 24], large-scale time-varying 3D vector fields have
rarely been studied for several reasons. First, most of the
effective 2D vector field visualization methods incur visual
clutter when directly applied to depicting 3D vector data.
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Second, a large vector data set contains three times the data
as its corresponding scalar field. A single PC generally does
not have the memory capacity and processing power to en-
able interactive visualization of the data. Next, additional
attention to temporal coherence is required for visualizing
time-varying vector data. Finally, it is challenging to simul-
taneously visualize both scalar and vector fields due to the
added complexity of rendering calculations and combined
computing requirements. As a result, previous works in vec-
tor field visualization primarily focused on 2D, steady flow
field, the associated seed/glyph placement problem, or the
topological aspect of the vector fields. This paper presents
our goal of visualizing large time-varying 3D vector fields
using a parallel computer with scalable performance. The
objective of our work is to provide scientists the capability
to look at their data at the desired resolution and precision
when a parallel computer is available to them.

Particle tracing is a commonly used method for portray-
ing the structure and direction of a flow vector field. When
an appropriate set of seed points are used, we can construct
paths and surfaces from the traced particles to effectively
characterize the flow field. Visualizing a large time-varying
vector field on a parallel computer using particle tracing,
however, presents some unique challenges. Even though the
tracing of each individual particle is independent of other
particles, a particle may drift to anywhere in the spatial do-
main over time, demanding interprocessor communication.
Furthermore, as particles move around, the number of par-
ticles each processor must handle varies, leading to uneven
workloads.

We present a scalable parallel pathline construction method
for visualizing time-varying 3D vector fields. We advocate
a high-dimensional approach by treating time as the fourth
dimension, rather than consider space and time as separate
entities. In this way, a 4D volume is used to represent a
time-varying 3D vector field. This unified representation
enables us to make a time-accurate depiction of the flow
field. More importantly, it allows us to construct pathlines
by simply tracing streamlines in the 4D space. To support
adaptive visualization of the data, we cluster the 4D space
in an hierarchical manner. The resulting hierarchy can be
used to allow visualization of the data at different levels of
abstraction as well as enable interactivity. This hierarchy
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allel pathline visualization of complex flow fields using both
a small graphics cluster and a large general-purpose cluster.
This new capability enables scientists to see their vector field



data in unprecedented detail and with higher interactivity.

The contributions of our works are the following. First,
the 4D representation for time-varying vector fields facili-
tates time-accurate pathline tracing, and tracing in this 4D
space is conceptually more intuitive and practically easier to
implement than traditional methods. Second, we introduce
a supplemental space partitioning grid to make it possible
to use a single PC to perform hierarchical clustering of a
large 3D vector field. Finally, using the clustering results,
we are able to derive an even partitioning of the vector field
for highly scalable parallel pathline tracing.

2. BACKGROUND AND RELATED WORK

In the modeling of many scientific and engineering prob-
lems, vector fields are used to describe moving fluids or
changing forces, where a vector (i.e., a direction with magni-
tude) is assigned to each point in the spacetime domain. Ef-
fective visualization of time-varying 3D vector fields is crit-
ical for the understanding of complex phenomena and dy-
namic processes under investigation. Streamline generation
with seed point placement is a popular method for visualiz-
ing vector fields. A streamline is a curve tangent to the field
at all points. In practice, a streamline is often represented as
a polyline (a series of points) iteratively elongated by bidi-
rectional (i.e., forward and backward) numerical integration.
The integration starts from a seed point, and continues until
the current polyline comes close to another streamline, hits
the domain boundary, reaches a critical point, or generates
a closed path. A valid placement of streamlines consists of
saturating the domain with a set of tangential streamlines
in accordance with a specified density, determined by the
separating distance between the streamlines.

Vector fields remain an active area of visualization re-
search. Existing techniques can be classified into glyph and
field-line based methods [29, 16], dense texture methods [19,
24], clustering-based methods [21, 7, 6], and topology-based
methods [8, 18]. Glyph or field-line visualization is particu-
larly effective for the visualization of isolated regions in the
vector field. Dense texture methods can give more realistic
depictions of a vector field but the fundamental occlusion
problem has not been solved. Clustering-based methods en-
able us to convey the structure of the vector field at dif-
ferent abstraction levels. However, the existing algorithms
have been restricted to the visualization of steady, not time-
varying, vector fields. Topology extraction and visualization
for 3D vector fields are still ongoing research.

Taking into account the temporal dimension of the vector
field makes the visualization even more challenging. Early
investigations mostly centered around dense texture advec-
tion [15, 19, 9, 24]. In previous work [26, 22], a time-varying
vector field is represented as a steady field in the space-
time domain that separates the spatial from the temporal
dimension. It is noted that some conventional operations
in the spatial domain, such as the distance calculation of
two points, cannot be performed in the spacetime domain.
However, these operations are essential for visualization cal-
culations, such as streamline placement [10, 13] and clus-
tering [21, 6]. Unlike the previous research, we achieve the
spatial and temporal coherence in a high-dimensional space.
More specifically, we construct a 4D steady field to represent
a time-varying 3D vector field, and each vector component
in the new field has the same physical scale. As a result,
this representation allows us to directly apply the techniques

previously developed for visualizing (and simplifying) steady
vector fields to make time-accurate, coherent visualization of
time-varying vector fields. It is conceptually more intuitive,
and practically easier, than conventional representations.

Parallel computing has been widely used in visualizing
large-scale steady or time-varying scalar field data. Typical
volume visualization methods, such as raycasting, volume
rendering, and isosurface rendering, have benefited from uti-
lizing a cluster of PCs for parallel rendering for performance
speedup [27, 1, 25, 28]. Nevertheless, less work has been
done on parallel methods for vector field visualization. Early
examples include the use of multiprocessor workstations,
such as Cray C90, Convex C3240, and SGI systems, to paral-
lelize particle tracing [11, 12]. There are also a few research
efforts focusing on parallel line integral convolution (LIC) [4,
30]. More recently, Muraki et al. [17] presented a scalable
PC cluster system for enabling simultaneous volume com-
putation and visualization, which includes 3D time-varying
LIC volumes for animation. Ellsworth et al. [5] described
a method for interactive visualization of particles from ter-
abytes of computational fluid dynamics (CFD) data using a
PC cluster. Bachthaler et al. [2] proposed a parallel scheme
to visualize flow fields on curved surfaces, where a hybrid
sort-first and sort-last algorithm is used to achieve a scal-
able rendering in terms of both visualization speed and data
size. In this paper, we present a clustering-based data parti-
tion scheme and a parallel representative streamline gener-
ation algorithm for large-scale time-varying 3D vector field
visualization.

Out-of-core techniques are commonly used in large-scale
data applications where data sets are larger than main mem-
ory. These algorithms focus on achieving high I/O perfor-
mance to access data stored on disk. For vector field visual-
ization, Ueng et al. [23] presented an approach to compute
streamlines of large unstructured grids. They used an oc-
tree to partition and restructure the raw data for fast data
fetching during streamline construction and achieving small
main memory footprints. Bruckschen et al. [3] described a
technique for real-time particle traces of large time-varying
data sets. In the preprocessing stage, the particle traces
are computed and stored into disk files for efficient data
retrieval. In the rendering stage, the precomputed traces
are read interactively. More out-of-core techniques for sci-
entific visualization and computer graphics applications are
reviewed in [20]. While also facilitating I/O operations, our
data partition and distribution scheme is mainly designed
for achieving optimal parallel scalability.

3. ALGORITHM OVERVIEW

Figure 1 gives an example of a time-varying 2D vector
field that illustrates our basic approach. Given a n-d large
time-varying vector field, we treat it as a unified (n + 1)-
d steady vector field, where the time is considered as the
(n+ 1)st dimension. Then, we create an adaptive grid from
the (n+1)-d data representation. The grid resolution adapts
to the feature size of the local flow. That is, those regions
having more uniform patterns will use coarser grids, while
regions with more distinct patterns will use finer grids. This
approximation outputs a manageable scale of adaptive grid
as the input to the hierarchical clustering algorithm. The
clustering merges neighboring grid cells of similar patterns
and thus creates a binary cluster tree.

At runtime, the user specifies the number of seed points
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Figure 1: Visualizing a time-varying 2D vector field using a hierarchical 3D representation of the spacetime field. A
sequence of 2D vector fields (a) is represented as a 3D steady field (b), from which we build an adaptive grid (c). The
cells in the adaptive grid are then clustered into a hierarchical data representation (d). Streamlines are derived for a
particular level of abstraction (e) from the original 3D field. Finally, projecting the streamlines back to the 2D space

gives a coherent pathline animation (f).

for particle tracing. We traverse the binary cluster tree and
obtain the seeds from the clustering of the adaptive grid rep-
resentation. The streamlines are then traced in parallel in
the original (n + 1)-d vector data to generate numerically-
accurate results. We carefully devise a data partition and
distribution scheme based on the hierarchical clustering re-
sults to ensure the workload balance among processors. Our
solution can effectively avoid heavy communication overhead
brought by typical parallel particle tracing algorithms.

In the rest of the paper, we describe key stages of our al-
gorithm in detail. First, we address the issue of streamline
generation for large steady 3D vector fields. Then, we dis-
cuss how to extend the 3D streamline generation algorithm
to 4D spacetime vector fields. After that, we present our
data partition and distribution scheme for parallel stream-
line generation and pathlet rendering. Implementation de-
tails and test results will follow.

4. STREAMLINE GENERATION FOR
LARGE STEADY VECTOR FIELDS

Most previous streamline placement methods explicitly
rely on streamline calculation, which are highly sensitive to
the data precision and require the complete data set as input
in the calculation. This makes those methods computation-
ally intensive when the size of the input vector field is large.
Another category of methods, vector field clustering [21, 6],
is successful in finding representative streamlines based on
the clustering analysis. These methods share some charac-
teristics with traditional clustering methods in data mining.
The advantages of these methods are: first, it does not re-
quire the in-depth knowledge about the flow field. Second, a
vector field is decomposed in a hierarchical fashion, so that
the visualization can contain both the global structures and
local details at different resolutions. Third, although not
discussed in the original papers, these methods have the
potential scalability for large vector data. Moreover, they
are able to yield approximate results with controllable error
bounds through some general strategies, such as sampling
and partitioning the vector field. In this section, we first
present a typical vector field clustering technique - the sim-
plified representation method [21] for steady vector fields.
Then we demonstrate how to extend this method to handle
large steady vector fields.

4.1 Vector Field Simplification

The vector field simplification method introduced by Telea
and van Wijk [21] is a typical agglomerative hierarchical
clustering method. First of all, the whole domain of an in-

put vector field is decomposed into clusters, each of which
is a connected subdomain. Before clustering, each cell (i.e.,
voxel) in the vector field is considered as a separate cluster.
Then, a bottom-up clustering algorithm is performed itera-
tively such that in each iteration, the two most resembling
neighboring clusters are merged into a larger cluster. This
merging process repeats until we arrive at a single cluster
that covers the entire domain. A binary tree is generated
during this clustering process, indicating which two clusters
are merged at each iteration. Each tree node has a level at-
tribute, [, indicating when the cluster is created. By default,
all leaves have the level of 0 and the root has the level of
N —1, where N is the number of cells in the initial data set.
The key step of this clustering algorithm is to evaluate the
similarity of two clusters and merge them. Each cluster has
a representative vector. Initially, for each cell, the represen-
tative vector is its corresponding cell’s vector data, with its
origin at the center of the cell. The similarity evaluation of
two clusters compares directions, magnitudes, and positions
of their representative vectors. When merging two clusters
into a new one, the representative vector for the new clus-
ter is the area-weighted (in 2D) or volume-weighted (in 3D)
average of the merged cluster. Thus, the position of the rep-
resentative vector is always the gravity center of a cluster.
Furthermore, the clustering can be orthogonal to (or along)
the underlying flow field by changing related parameters.
At the visualization stage, the user first selects the clusters
by choosing the level in the binary cluster tree. Then, the
selected clusters are visualized by computing representative
streamlines from the cluster’s center up and downstream,
or by rendering their representative vectors directly (e.g.,
in a glyph style). In this way, the vector field is simplified
and represented by a number of polylines in the final vi-
sualization. The number of polylines can be controlled by
selecting different levels in the cluster tree: the leaves are
the original data cells which provide the finest information.
The tree nodes in higher levels represent coarser information
and contain representation errors. Figure 2 illustrates the
whole procedure for this clustering-based visualization.

4.2 Adaptive Grid Construction

The hierarchical clustering calculation is time consuming.
When the size of the input 3D vector field is large, such as in
the gigabytes range or larger, since the output binary cluster
tree has a size comparable to that of the input data, a single
PC with limited memory space would not be usable for visu-
alizing large time-varying vector data, unless an out-of-core
method is used. To circumvent such demanding space and
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Figure 2: Given a vector field (a), a binary cluster tree (b) is generated via clustering. Each tree node represents a
cluster at a different level. With different levels specified by the user at runtime, a list of tree nodes (blue dots) are
selected (c) and the corresponding clusters are displayed in (d). Consequently, (e) shows the representative streamlines
generated from the clusters, blended with the LIC textures as background.

compute requirements, we partition the vector field to de-
rive an adaptive grid that is much coarser than the original
grid and use it instead for the hierarchical clustering. This
works well because the number of pathlines needed to faith-
fully depict the flow field is generally small. A coarser-level
partitioning of the vector field is thus sufficient in most of
the cases. The user chooses clusters from the cluster tree for
pathline visualization, and each chosen cluster is essentially
a simplified or lower resolution version of the underlying
vector field.

The adaptive grid is constructed as follows: first, we sub-
divide the original vector data into data blocks with an equal
size of m xm xm, where m depends on the resolution of orig-
inal data and is usually 8 or 16 in our experiments. Then,
we attempt to evenly subdivide each data block into eight
octants. We evaluate the dissimilarity of two neighboring
octants as in [21]. The representative vector in each octant
is the average of all vectors inside. The dissimilarity mea-
sure takes into account the directions and positions of the
representative vectors. If the maximum dissimilarity among
the eight octants is less than a threshold e, we stop the sub-
division. Otherwise, we perform the subdivision recursively
until the maximum dissimilarity is below the given thresh-
old, or the octant reaches the minimal grid size of n X n x n,
where n is 2 or 4 in our experiments.

In this way, we generate an adaptive grid from the original
vector data, in the sense that the grid resolution adapts to
the feature size of the local flow. In the adaptive grid, each
data block constitutes a cell, which is the input to the clus-
tering algorithm. This adaptive grid of manageable scale
enables us to perform hierarchical clustering of a large 3D
vector field on a single PC. Note that the adaptive grid is
only used for the clustering purpose. To ensure correctness,
subsequent streamlines are derived for a particular level of
abstraction from the original 3D vector data, not from the
adaptive grid. Figure 3 gives a 2D example of the hierarchi-
cal clustering and streamline generation using the original
voxel-level grid and an adaptive grid. As we can see, stream-
lines generated from the adaptive grid capture the features
of the underlying flow field quite well, and agree with the

streamlines generated from the original grid.

5. PATHLET GENERATION FOR LARGE
TIME-VARYING VECTOR FIELDS

For a time-varying vector field, applying the clustering
method directly to each time step gives us a sequence of
representative streamline images. Animating these images,
however, does not give us a temporally accurate visualiza-
tion. To achieve accurate results for time-varying vector
fields, particle tracing needs to be performed in the space-
time domain instead of separately with each time step. In
this section, we first discuss the correlation between spatial
and temporal coherence, and then present a novel way to
represent a time-varying 3D vector field as a steady vector
field in the 4D space. This high-dimensional representa-
tion converts the particle tracing problem, originally stated
in the spacetime domain, to a problem stated in a unified
4D domain. Consequently, our clustering method, based on
the adaptive grid representation, can be applied directly to
generate representative pathlets from large time-varying 3D
vector fields.

5.1 Spatial and Temporal Coherence

Spatial and temporal coherence is critical for achieving the
accurate visualization of an unsteady flow field. These two
types of coherence are conventionally expressed in stream-
line and pathline visualization, respectively. Given a time-
dependent n-d flow field v(x,t) € R™ where ¢ is time and x
is a point in R™, a pathline is the path of a particle motion in
this field. More precisely, it is the solution of the following
differential equation

M) v, 1)

for a given starting position p(0), where p(t) is the position
of the particle at time ¢. Based on the definition of pathline,
advecting particles with some visual cue (e.g. color) along
the pathlines can generate images with strong temporal co-
herence.
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Figure 3: The comparison of clustering and streamline
generation results using the original voxel-level grid and
an adaptive grid. The original grid resolution is 400 x 400
and the clustering result is shown in (a). The initial block
size for the adaptive grid is 8 x 8 and the clustering result
is shown in (b). The streamlines generated based on the
clustering results from the original grid and the adaptive
grid are displayed in (c) and (d), respectively. Both (c)
and (d) generate a total of 100 streamlines. The com-
parison shows that, overall, the streamlines generated in
(d) approximate (c) quite well.

A streamline has an almost identical definition as Equa-
tion 1, except that ¢ is the parameter along the curve, and
does not represent the physical time. Streamlines illus-
trate the pattern of an instantaneous flow field and are
only spatially coherent. There is no temporal correlation
between streamlines at two consecutive time steps, because
two points on the same instantaneous streamline may belong
to different streamlines in the next time step. The problem
of using streamlines to visualize time-varying flow field has
been discussed in [19].

A pathline segment in a time interval € is referred as to
pathlet. If we plot the streamlines at a particular instance of
time ¢ and the pathlets in [t — ¢,¢] on an image, the differ-
ence between the streamlines and the pathlets depends on e.
When e is close to zero, the pathlets are degraded to particle
snapshots without any spatial correlation. When € is small
enough such that the flow changes slightly, the streamlines
and the pathlines nearly coincide. As € keeps increasing, the
difference between the streamlines and the pathlets becomes
more noticeable, so does the variation of the flow.

Therefore, spatial and temporal coherence can be estab-
lished together by utilizing pathlets in a small time interval
e: the pathlets coincide with the instantaneous streamlines,
thus demonstrating the spatial coherence. In addition, since
each pathlet belongs to a pathline, the temporal coherence

(©) ) (d)

Figure 4: (a) and (c) show two consecutive time steps,
where long curves are instantaneous streamlines, and
short arrows are pathlets. In each time step, the path-
lets are along instantaneous streamlines and are spatially
coherent. (b) shows that the pathlets’ movements are
continuous and the temporal coherence is maintained.
(d) shows that the instantaneous streamlines of two time
steps are not temporally coherent.

can be achieved by animating the movement of the pathlets.
Such spatial and temporal coherence is shown in Figure 4.

5.2 High-Dimensional Representation

Constructing pathlets at each time step and animating
them over time can achieve both spatial and temporal co-
herence. The placement of the pathlets is one of the key
issues that determine the quality of the consequent visual-
ization. In the spatial domain, similar to the seeding is-
sue in streamline generation, optimal placement of pathlets
can lead to an effective visualization that provides both the
global structure of the flow field and the local details in the
active flow regions, while avoiding the visual clutter and oc-
clusion. In the temporal domain, similar to the seeding issue
in particle tracing, since some pathlets leave the flow field as
time evolves, the new pathlets need to be injected in order
to maintain a constant coverage of pathlets over time. On
the other hand, some pathlets need to be removed to avoid
visual clutter.

A pathline can be treated as a curve in spacetime. Such
a curve is commonly referred to as the trajectory. Given
that a pathlet is a pathline segment, the above two issues
can be solved if we address the trajectory placement issue
in spacetime. This is because, given a particular type of
trajectory placement, the projections in both the spatial and
temporal domain reflect the corresponding placement.

Intuitively, a trajectory placement algorithm can be de-
rived from streamline placement in a high-dimensional space.
However, due to different scalars and physical meanings be-
tween the space axes and the time axis, it is non-trivial to ex-
plicitly construct trajectories and treat them as the stream-
lines. On the other hand, a n-d curve can be projected from
a curve in (n 4 1)-d space, or in (n + 1)-d spacetime do-
main. Therefore, the task of finding a trajectory placement
algorithm becomes easier if we can find streamlines in the
high-dimensional space, whose low dimensional projections
are identical to pathlets. In this paper, we call such curves
pseudo-trajectories.

We present a high-dimensional representation of a time-
varying vector field to capture pseudo-trajectories. In this
study, we assume a time-varying 3D vector field is defined
in the Cartesian grid (i.e., uniform rectangular grid). Then,
given a n-d unsteady vector field:



v1(T1,. ..y Tn,t)
V(T1,...,Zn,t) = (2)
Un(Z1,. ..y Tn,t)

where t is time and (z1,...,%,) describes the R™ domain,
we construct a (n + 1)-d steady vector field by connecting
the grid vertices of every two consecutive time steps:

v1(T1, - Try Tng1)
V(T1, .oy Ty Tng1) = : (3)
OUn(T1,. .. Ty Tny1)
Un+1

where ¢ is treated as a spatial axis @n41, (T1,...,%Tnt1)
describes the R domain, (v1,...,v,) are the same as
the original vectors, but v,4+1 is unknown. If a particle
P(po, ..., Pn+1) is released in this (n + 1)-d steady field, in
n-d space it travels along the original unsteady flow field.
Along the (n + 1)st axis, its traveling is dependent on vy, 41:

t+At
Pnt1(t + At) = pnya(t) + /t vn1(P(t)dt  (4)

According to the construction of our (n + 1)-d Cartesian
grid, along the (n + 1)st axis the particle p travels across
one grid cell, which corresponds to one time step. The time
interval between two consecutive time steps is referred to as
7. Thus, replacing At with 7 in Equation 4, we obtain:

/ttJrT Un1(P()dt = pri1(t +7) —put1(t) =1 (5)

There are an infinite number of functions satisfying Equa-
tion 5. But since v,41 reflects a uniform time elapse, it is
safe to assume that F(t), the antiderivative of vny1, is a
linear function of ¢:

Ft)=at+k (6)
where o and k are constants. According to the first fun-
damental theorem of calculus, Equation 5 can be written
as
t+7
/ vmsr (P(D))dE = F(t+7)— F(t) = a(t+7—1) =1 (7)
t

That is,

1
a== (8)
Therefore,
d 1
n = —F = = —
Uni1 = L F(t) =a=— 9)

This means at each (n + 1)-d grid vertex, we only need to
use this constant value as the new vector component v, 1.
From the above derivation, we can see that streamlines in
this (n + 1)-d field are exactly the pseudo-trajectories we
want. The pathlets in the original n-d space can be ob-
tained by slicing the streamlines/pseudo-trajectories along

Figure 5: Images at two different time steps, which are
generated by projecting the 3D LIC volume back to 2D
at each time step. The animation is spatially and tem-
porally coherent.

the direction of v,,4+1. In this way, we convert a time-varying
vector field to a high-dimensional steady field.

A number of steady flow visualization algorithms can be
easily extended to this high-dimensional space. By applying
them to this data representation and projecting the high-
dimensional results back to the original space, we are able
to derive the accurate time-dependent visualization. For
instance, applying LIC can generate dense texture advec-
tion that is time-accurate, as shown in Figure 5. Since our
focus is pathlet placement, we can also cluster this high-
dimensional data representation directly.

5.3 4D Hierarchy Construction

When applying the simplified representation method to
our data representation, we choose appropriate parameters [21]
(e.g., A =0.9,B = 0.9 for the supernova data set) to form
clustering along streamlines in high-dimensional space, i.e.,
pseudo-trajectories. Mapping the clustering in the high-
dimensional space back to the original space can generate
spatial and temporal coherent clustering due to the follow-
ing two reasons. First, the additional vector component
in our data representation is a constant. The similarity of
two vectors mainly depends on the original vector compo-
nents. Therefore, the flow clustering of the original field
at any time instant is still along the instantaneous stream-
lines; thus, the spatial coherence is achieved. Second, the
additional vector component ensures the clustering in the
high-dimensional space along the pseudo-trajectory. There-
fore, the flow decomposition of the original field also moves
along the pathlines, and the temporal coherence is achieved.
Figure 6 demonstrates these two types of coherence with a
2D circular flow.

The effective visualization of the clusters is to render the
representative streamlines rather than to show the area (in
2D) or the volume (in 3D) covered by the clusters directly.
To obtain such a visualization, one intuitive approach is to
first obtain the lower dimensional clusters from the high-
dimensional results, and then compute the representative
streamlines of the lower dimensional clusters, as shown in
Figure 7 (a). However, the cluster centers in the lower di-
mensional space are not necessarily correlated over time.
Therefore, the streamlines tracking from the centers are not
correlated temporally. We present an alternative solution
to address this issue. First, we compute the representative
streamlines from the high-dimensional clusters. Then, we



Figure 6: The 2D clustering results of a circular vor-
tex flow at two different time steps (the right one is the
later time step), which are obtained by projecting the 3D
clustering result in Figure 1 (c). The simplified represen-
tation method is used to form the 3D clustering result
along the pseudo-trajectory. The 2D cluster coincides
with the results presented by Telea and van Wijk, but
also moves along the flow over time.

project the streamlines into the lower dimensional space to
obtain the representative streamlines of the lower dimen-
sional clusters, as shown in Figure 7 (b). The representative
streamlines /1 and ls are also the pathlets of the same path-
line, and thus are coherent spatially and temporally.

() (b)

Figure 7: A 2D unsteady vector field is represented as
a 3D steady field. C is a 3D cluster. c; and c2 are the
2D projections. (a) p1 and p2 are the gravity centers of
c1 and c2, respectively. The streamlines [; and [ tracing
from them are not necessary correlated. (b) P is the
gravity center of C. L is the representative streamline
of C from P. The streamlines [; and l> projected from L
are correlated.

A 2D example of the spatial and temporal coherence achieved

using our high-dimensional data representation is given in
Figure 8. In this figure, (a) and (b) show the visualization of
2D clustering results of two consecutive time steps, derived
from the 3D hierarchy construction. The flow structure can
be clearly expressed with the movement of the pathlets. (c)
superimposes the same regions of (a) and (b) indicated by
the red bounding boxes. As we can see, the pink curves are
connected with blue ones, which clearly demonstrates the
temporal coherence of the time-varying vector field.

To compute the (n + 1)-d representative streamlines, we
use each cluster’s gravity center as the seed point and trace
the streamlines up and downstream. The bounding box
of each cluster is used to limit the length of the stream-
line. Each initial cluster’s bounding box is the corresponding

bounding box of the cell. When merged, the new cluster’s
bounding box is the bounding box of the union of the child
bounding boxes. The bounding box is in (n + 1)-d, where
the bounds at the (n + 1)st axis actually represent the lifes-
pan of a cluster. The root of the cluster tree corresponds to
the entire lifespan of the time-varying vector field. After the
clustering is completed, given any time ¢ and simplification
level [, we can easily find the clusters such that ¢ is in their
bounding boxes, and [ is greater than or equal to their levels
but less than the level of their parents.

6. PARALLEL STREAMLINE GENERATION

After obtaining the seeds from the clustering of the adap-
tive grid representation, the streamlines are then traced in
the original vector field to ensure that the results are nu-
merically accurate. When a field becomes too large to fit
into memory, or the computational cost of streamline gen-
eration is too high, interactivity cannot be achieved us-
ing only a single PC. A traditional solution for this is to
distribute the data and the computation among multiple
processors. Even though particle tracing is embarrassingly
parallel on a shared-memory machine [11], it is nontriv-
ial on a distributed-memory machine because particles can
move from one subdomain to the other, incurring frequent
interprocessor communication. This is because a particle
may frequently travel among partitions assigned to differ-
ent processors, causing heavy interprocessor communication.
In this section, we present our data partition and parallel
streamline generation algorithm based on the hierarchical
clustering results. Our algorithm achieves a balanced work-
load and minimizes the communication overhead between
Pprocessors.

6.1 Data Partition and Distribution

The hierarchical clustering of the vector field provides us
with a viable solution to address the issue of interprocessor
communication. This is based on an important observation
of the relationship between streamlines, clusters, and the
underlying flow field. As we can see in Figure 3, a represen-
tative streamline is largely contained inside its correspond-
ing cluster, since the cluster is formed along the flow direc-
tion. Therefore, if we distribute the clusters among mul-
tiple processors, the representative streamline calculations
are also distributed, and can be performed independently
among processors. Thus, no interprocessor communication
is necessary for parallel particle tracing.

Figure 9 illustrates our clustering-based data partition
and distribution scheme. First, we select a coarse level from
the binary cluster tree, where the number of clusters is usu-
ally two or three times the number of processors. The blue
nodes in Figure 9 (a) represent the selected clusters in the
cluster tree. Then, we estimate the workload associated with
each cluster, and partition the clusters in a way so that
each processor gets a similar amount of workload. This is
achieved by partitioning the whole binary cluster tree into
subtrees, where the blue nodes as well as the clusters are
assigned to the processors, as shown in Figure 9 (b). At run-
time, given a user-specified tree level, each processor selects
the clusters by searching its local subtree for particle tracing.
Note that the minimal number of streamlines is determined
by the initial coarse level chosen. Such a number (e.g. six or
twelve as shown in Figure 9) is usually much smaller than
the number of streamlines visualized. If a smaller number
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Figure 8: Visualizing a time-varying 2D vector field using the 3D hierarchy construction.

(a) and (b) show the

rendering of two consecutive time steps. To demonstrate the temporal coherence, we show in (c) the superimposition
of the same regions of (a) and (b). They are indicated by the red bounding boxes and rendered in blue and pink,

respectively.

(a) (b)

PE1 PE2

(©

Figure 9: Our clustering-based data partition and distribution scheme. The dotted lines and blue nodes in the binary
cluster tree indicate the boundary of each subtree. (b) and (c) show the distribution of six and twelve clusters among

three processors (PEO, PE1, and PE2), respectively.

of streamlines is specified, then a cluster at a coarser level
may actually be distributed across multiple processors, thus
introducing interprocessor communication. However, such a
scenario is not typical and is unlikely to happen.

For data partitioning and distribution, workload estima-
tion is the single most important factor that affects the scal-
ability and efficiency of our parallel algorithm. Since there
is no runtime communication cost involved if we distribute
clusters to processors, the workload is then mainly dictated
by the cost of streamline generation. The cost of generating
streamline depends on the number of streamlines, as well as
the length of each streamline. Both of them vary when the
user specifies different tree levels at runtime. It is clear that
the number of streamlines equals the number of clusters cho-
sen for the rendering. In addition, a cluster at a coarser level
can split into several smaller ones in a finer level, as illus-
trated in Figure 9 (b) and (c). Thus, if we evenly distribute
the clusters at a coarser level, then the workload could be
severely unbalanced among processors when the user picks
a finer level for rendering. To solve this problem, we add
a new attribute to each cluster tree node that records the
total number of its descendent nodes. This value is actually
the total number of subclusters of a tree node, and can be
easily calculated during the stage of binary cluster tree gen-

eration. Moreover, because a streamline is formed along its
corresponding cluster, the length of the streamline is propor-
tional to the length of the diagonal of the cluster’s bounding
box. The bounding box is one of a tree node’s attributes by
default and can be easily obtained. Finally, in our approach,
the workload associated with a cluster is estimated as a lin-
ear function of the number of subclusters and the length of
the diagonal of its bounding box.

6.2 Data Boundary Approximation

A cluster generated using the hierarchical clustering algo-
rithm on the adaptive grid captures the local flow direction
and feature. The boundary of such a cluster may go to
the finest voxel level when the local feature becomes subtle.
However, for the purpose of data partitioning, it may not be
necessary to assign the data exactly according to the cluster
boundary because of the following reasons. First, it requires
a sophisticated data structure to extract the data exactly
following the cluster boundary. Second, there is no need
to determine the exact portion of data. An approximate
boundary will suffice as long as it covers the original bound-
ary of the cluster. Therefore, we advocate an approximate
solution here, where we first partition the input volume in an
octree style (a sixteen tree in 4D), and then use the bound-



Figure 10: The exact boundary (in dark purple) of a
cluster and the actual boundary (in light purple) of the
data distributed to a processor.

aries of octree nodes to approximate the actual boundary
of a cluster. Figure 10 shows a 2D case where the exact
boundary of a cluster is shown in dark purple, and the ac-
tual boundary of the data distributed to a processor is shown
in light purple. This treatment would bring some overhead
of the data distributed to processors, which depends on the
block size of the octree leaf nodes. However, the storage
overhead is well offset by the simple and easy data parti-
tioning and distribution we gain from this approximation.
Actually, our experiments show that the storage overhead
introduced by the octree boundary approximation is quite
reasonable too. For example, the overhead is 8.5% for the
supernova data set, when the octree has a level of seven.
The octree itself is around 2MB in size.

6.3 Streamline Generation and Pathlet Ren-

dering

After data distribution, each processor receives portions
of the binary cluster tree, the octree for data boundary ap-
proximation, as well as the original data blocks assigned
to it. For parallel particle tracing, given a user-specified
tree level, each processor traverses its partial binary cluster
tree, and gets the seed point and the bounding box of each
cluster. Then, a processor reads the data blocks according
to the octree approximation and traces the particles. Note
that the complexity for particle tracing is similar to the case
without data boundary approximation, since visiting neigh-
boring data blocks of the siblings or parent octree nodes is
a constant time operation. Our clustering algorithm allows
each processor to trace each particle independently, delimi-
tated by its corresponding cluster’s boundary. All pathlets
generated at different processors are then gathered by a host
processor. The actual rendering of pathlets is done by the
host processor equipped with advanced graphics hardware.

7. RESULTS AND DISCUSSION

Table 1 lists the two time-varying vector data sets used
in our experimental study. For both test data sets, the
initial block size for the adaptive grid generation is set to
16 x 16 x 16 x 4 and the minimal grid size is 4 x 4 x 4 x 1.
We tested our parallel particle tracing method on two PC
clusters with different configurations. The first one is a Mac
Pro cluster, consisting of eight PCs connected by the Gigabit
Ethernet. Each PC has two 2.66GHz Dual-Core Intel Xeon

processors, sharing 8.0GB of memory. The second machine
is a Cray XT3 MPP system. It has 2068 computing nodes
linked by Cray SeaStar Interconnect. Each node has two
2.6GHz AMD Opteron processors, sharing 2.0GB of mem-
ory. In our test, we used up to 256 processors for studying
the scalability of our method.

data set TXYXz t total size
supernova 864 x 864 x 864 | 100 | 720.8GB
solar plume | 504 x 504 x 2048 | 30 174.4GB

Table 1: The two time-varying vector data sets used in
our experiment.
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Figure 11: Load balancing and scalability results on
the supernova data set with a single time step. (a)
shows the processing time deviated from the average on
each of 32 Mac Pro processors with two different num-
bers of streamlines generated: 100,000 and 1,000,000,
respectively. The total processing time is 0.0247s for
100,000 streamlines, and 0.2075s for 1,000,000 stream-
lines. (b) shows the tracing time in the log scale with
different numbers of processors for two different num-
bers of streamlines.

Based on the high-dimensional hierarchical clustering re-
sults, our data partition and distribution scheme effectively
facilitates load balancing. For example, Figure 11 (a) shows
the processing time deviated from the average on each of
the 32 Mac Pro processors, when two different numbers of
streamlines are used for a single time step of the super-
nova data set. It can be seen that good load-balancing
was achieved, because the processors spent approximately
the same amount of time. Figure 11 (b) shows the perfor-
mance speedup when the number of processors increases.
The tracing time for 1,000,000 streamlines on 32 processors
is 7.6 times faster than on 4 processors. For time-varying
3D vector fields, Figure 12 (a) shows the processing time
deviated from the average on each of the 128 Cray proces-
sors, when two different numbers of pathlines are used for
100 time steps of the supernova data set. Again, we can
see that a good load-balancing was achieved. Figure 12 (b)
shows the performance speedup when the number of proces-



Figure 13: Levels of detail rendering of the solar plume data set at a single time step. There are a total of 40, 352,
and 4,789 pathlets for (a), (b), and (c), respectively. As the number of pathlets increase, more details of the flow
structure are revealed, at the expense of possible visual cluttering.
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Figure 12: Load balancing and scalability results on the
supernova data set with 100 time steps. (a) shows the
processing time deviated from the average on each of 128
Cray processors with two different numbers of pathlines
generated: 100,000 and 1,000,000 for each time step,
respectively. The total processing time is 1.3563s for
100,000 pathlines, and 11.2678s for 1,000,000 pathlines.
(b) shows the tracing time in the log scale with differ-
ent numbers of processors for two different numbers of
pathlines.

sors increases. The tracing time for 1,000,000 pathlines on
256 processors is 31.4 times faster than on 8 processors.

To visualize the pathlets, we used glyphs with the taper-
ing effect [10] rather than arrows. We utilized illuminated
lines [14] to render the glyphs, which not only accelerates the
rendering, but also achieves more pleasing 3D effects. Fig-
ure 13 shows the rendering results of the solar plume data
set. In the figure, the magnitudes of the vectors map to the
colors of the pathlets. As we can see, pathlets derived from
our hierarchical clustering algorithm capture the essence of
the internal flow structure. For instance, in Figure 13 (a),
there are only a few pathlets showing on the right part of
the image, due to the uniform flow structure around that
volume region. Furthermore, Figure 14 shows the spatially
and temporally coherent rendering results at selected time
steps of the supernova data set.

Our visualization allows the scientists to manipulate the
pathlet using different representations such as slicing, ad-

Figure 15: The view of pathlets mixed with the volume
rendering. We add the volume rendering of the super-
nova’s angular momentum in (a) and the solar plume’s
velocity magnitude in (b) to provide a context for each.

justing transfer function, and superimposing with volume
rendering to further explore the internal flow structure. Fig-
ure 15 (a) shows the flow on the equatorial plane of the su-
pernova simulation by slicing the pathlets. The pathlets are
blended in a depth-accurate fashion with the volume render-
ing of the supernova’s angular momentum scalar field. We
added a halo effect to distinguish the pathlets more clearly
from the volume rendering. It is clear that the flow is moving
clockwise in the outer region of the shock wave, and there
is a counter-rotating flow in the inner region. Both of these
are the phenomena that the scientists were trying to verify
and observed in detail. Another example on the solar plume
data set is shown in Figure 15 (b).

| task | input, output, time |
| grid construction [ 720.8GB, 98MB, 5.5hrs |
task time
pathline clustering | 15mins
task # lines, output

1,000,000, 100MB
100,000, 14.6MB
10,000, IMB

pathline clustering

Table 2: The preprocessing results of the supernova data
set using a single Mac Pro PC.

In adaptive grid construction, the original data is first par-
titioned into M/G blocks, where M is the total number of
cells in the original data, and G is the total number of cells
in the initial grid. The adaptive octree (sixteen tree) con-
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Figure 14: Rendering of the supernova data set at four selective time steps. There are a total of 2,486, 2,622, 2,673,
and 2,938 pathlets for (a), (b), (c), and (d), respectively. The 3D pathlets are temporally coherent since they coincide

with the instantaneous streamlines in 4D.

struction of each block requires O(G) time in the worst case.
Thus, the overall complexity of adaptive grid construction
requires O(M) time. The size of the adaptive grid is be-
tween O(M/G) and O(M/Q), where Q is the total number
of cells in the minimal grid. In practice, the size is relatively
close to O(M/G). The time to construct the adaptive grid
for the supernova data set is listed in Table 2.

The complexity of our high-dimensional clustering algo-
rithm is the same as the one presented in [21], which requires
O(Nlog N) time. In our approach, N is the total number
of cells in the adaptive grid. As listed in Table 2, it takes 15
minutes to cluster all the pathlines for the supernova data
set using a single Mac Pro PC. The binary cluster tree con-
structed has a size of O(PT), where P is the maximum num-
ber of pathlets shown in a time step, and T' is the number
of time steps. Obviously, the upper bound for PT is N. In
practice, PT is usually much smaller than N. For example,
when the maximum number of pathlines is 1,000,000, the
size of the binary cluster tree is 100MB for the supernova
data set, which is split and distributed among processors.
The height of the cluster tree is O(log PT'), which is also
the time to find each cluster with a particular level of detail
and a time step. Therefore, this low time complexity allows
us to interactively visualize time-varying 3D vector fields at
different levels of detail using the binary cluster tree.

Time Steps
~10GB x 100 *| Parallel Particle Tracing HRendering}
v
High Dimensional Adaptive Grid Hierarchical
Representation Construction Clustering

~1TB ~100MB

puissaosoidald

~100MB / ~10MB
(1,000,000 / 100,000 clusters)

Figure 16: The pipeline of our parallel hierarchical vi-
sualization of terascale time-varying 3D vector fields.

In summary, Figure 16 illustrates our pipeline for parallel
hierarchical visualization of terascale time-varying 3D vector
fields. Through the construction of adaptive grid and hier-
archical clustering on a single PC, we build a condensed,
efficient representation from the original large-scale, time-

varying data in the high-dimensional space for subsequent
particle tracing and rendering. Our adaptive grid solution
essentially allows us to perform clustering using only a sin-
gle desktop PC and the sixteen tree partition in 4D provides
us a way to index the terabyte data for out-of-core parallel
particle tracing. In our current implementation, only par-
ticle tracing is conducted in parallel. However, since each
block is processed independently, the construction of the
adaptive grid can be easily parallelized by distributing the
blocks among multiple processors. Additionally, there is also
a need of research on I/O. The strategy presented in [28] can
be used to reduce or hide I/O overhead in parallel pathline
tracing.

8. CONCLUSION AND FUTURE WORK

The ability to visualize large-scale time-varying vector
field data is not generally available. Many important aspects
of the data are thus not looked at. In this paper, we have
developed a scalable, parallel pathline construction method
for the visualization of time-varying 3D vector fields. Un-
like previous parallel particle tracing designs, our method
is based on a new 4D representation of the time-dependent
vector fields and a hierarchical clustering of the correspond-
ing 4D space. As shown by our test results, our method
allows for interactive navigation of a large time-varying flow
field using a parallel computer while keeping the communi-
cation overhead to a minimum. Our algorithm achieves a
well-balanced workload among the processors, leading to a
highly scalable solution. Incorporating this new capability
into an existing scalable parallel volume renderer, we are
able to simultaneously visualize 3D scalar and vector fields
at high fidelity and interactivity.

Our high-dimensional data representation unifies vector
field visualization methods based on streamlines and path-
lines. Many of the streamline-based visualization methods
previously designed for steady flow data, such as streamline
placement, streamsurface construction, LIC, and clustering,
can be applied directly to our 4D data representation to
generate both spatially and temporally coherent results for
unsteady flow fields. Our current streamline generation de-
sign relies on the hierarchical clustering results derived from
an adaptive grid, which generally leads to good approxi-
mation in contrast to the results derived from the original
voxel-level grid. There is a need of quantitative study on the
error introduced by this approximation. We would also like



to add the ability to construct feature surfaces from time-
accurate pathlines as well as the ability to perform feature
extraction and tracking, guided by interactive visualization
of an evolving multifield data.
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