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Abstract. The growing power of parallel supercomputers gives scientists the ability to
simulate more complex problems at higher fidelity, leading to many high-impact scientific
advances. To maximize the utilization of the vast amount of data generated by these simulations,
scientists also need scalable solutions for studying their data to different extents and at different
abstraction levels. As we move into peta- and exa-scale computing, simply dumping as much
raw simulation data as the storage capacity allows for post-processing analysis and visualization
is no longer a viable approach. A common practice is to use a separate parallel computer to
prepare data for subsequent analysis and visualization. A naive realization of this strategy
not only limits the amount of data that can be saved, but also turns I/O into a performance
bottleneck when using a large parallel system. We conjecture that the most plausible solution
for the peta- and exa-scale data problem is to reduce or transform the data in-situ as it is
being generated, so the amount of data that must be transferred over the network is kept to a
minimum. In this paper, we discuss different approaches to in-situ processing and visualization
as well as the results of our preliminary study using large-scale simulation codes on massively
parallel supercomputers.

1. Introduction

To date, most large data visualization methods rely on an offline pre-processing step to reduce
the data. Visualization is almost exclusively done as a post-processing step. Even though it is
desirable to monitor some of the simulation stages, the cost of moving the simulation output to
a visualization machine could be too high to make interactive visualization feasible.

A better approach is not to move the data, or to keep the data that must be moved to
a minimum. That is, both simulation and visualization calculations run on the same parallel
supercomputer so the data can be shared. Such simulation-time co-processing can render images
directly or extract features, which are much smaller than the full raw data, to store for later
examination. As a result, reducing both the data transfer and storage costs early in the data
analysis pipeline optimizes the overall scientific discovery process. In practice, however, this
approach was seldom adopted because of two reasons. First, most scientists were reluctant to
use their supercomputer time for visualization calculations. Second, it could take a significant
effort to couple the parallel simulation code with the visualization code. In particular, the
domain decomposition optimized for the simulation is often unsuitable for parallel visualization,
resulting in the need to replicate data for speeding up the visualization calculations. Hence,
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the common practice was to store only a small fraction of the data or to study the stored data
at a coarser resolution, which defeats the original purpose of performing the high-resolution
simulations.

To enable scientists to study the full extent of the data generated by their simulations and
for us to possibly realize the concept of steering simulations at extreme-scale, we ought to begin
investigating the option of in-situ processing and visualization. In fact, many of the scientists we
have been working with are convinced that simulation-time feature extraction, for example, is a
feasible solution to their large data problem. A key fact is that during the simulation time, all
relevant data about the simulated field are readily available for the extraction calculations. We
have been experimentally studying in-situ processing and visualization for selected applications
to understand the impact of this new approach on the simulations, subsequent visualization
tasks, and how scientists do their work. The rest of this paper provides a comprehensive
discussion of in-situ processing and visualization for ultra-scale simulations using some of the
results from our study.

2. Related Work

Integrating analysis and visualization into the simulation pipeline will be a trend, but it is
not new. Many researchers have experimented with this approach. For the reasons we gave
in the previous section, running tightly coupled simulation and visualization on the same
parallel computer was rarely done in practice. Though some have demonstrated such runtime
visualization of simulation on a parallel computer, the scale of the system and problem was
rather small [16, 11].

The other type relies on a more loosely coupled setting. For example, Vista [19], VASE [7],
SCIRun [15, 9], and CUMULVS [3] are among the computational steering environments that can
support runtime tracking of simulations in this manner. Vista is an early remote visualization
system that offers an environment for effective debugging and program development with
little or no instrumentation of the underlying application. VASE defines an abstraction for
a steerable program structure and provides tools that create and manage collections of these
codes. SCIRun is a problem-solving environment that uses an object-oriented data flow approach
to enable the user to control scientific simulations interactively by varying boundary conditions,
model geometries, and computational parameters. CUMULVS is a library that, in addition
to providing access to distributed data at runtime, also supports fault-tolerance to failures by
checkpointing. The ability to steer a large-scale simulation allows the scientists to “close the
loop” and respond to simulation results as they occur by interactively manipulating the input
parameters. As changes in parameters become more instantaneous, the causal effects become
more evident, which helps scientists develop intuition, understanding, and insight into their
modeling, algorithms, and the data being studied.

In line with this strategy, others have also demonstrated the power of run-time visualizing,
monitoring, and steering of specific large-scale scientific applications. Beazley and Lomdahl [1]
took a command-driven approach for controlling, analyzing, and visualizing large-scale molecular
dynamics simulations. Their primary focus was on issues including memory efficiency, long
running jobs, extensibility, and building steerable applications from existing code. Harrop et
al. [5] presented a tool called TierraLab that is built on top of a MATLAB interface and extends
the geoscientists’ existing tomography code with runtime interaction capabilities. Modi et al. [13]
introduced a new, light-weight steering system based on a client/server programming model and
demonstrated the effectiveness of the system on a real-time wake-vortex simulation for multiple
aircraft running on a parallel Beowulf cluster. More recently, Insley et al. [6] described an
application that aids in the monitoring and analysis of a simulation of the human arterial tree.
Using multiple views of data, their application provides visual feedback about the status of the
on-going simulation at different levels of detail.
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Figure 1. Post-processing, co-processing, and in-situ processing and visualization in the context
of ultra-scale scientific simulations. The blue connections may be used for in-situ processing and
visualization.

3. Co-Processing and Post-Processing Visualization

So far, routine data analysis and visualization of large-scale simulations running at a
supercomputing facility has been done almost exclusively with co-processing or post-processing.
Co-processing is done using a dedicated visualization machine, nowadays a PC cluster, connected
to the supercomputer with a fast network. Simulation output is directly transferred to the
visualization machine for immediate processing, and the resulting imagery is either stored to
a disk or shipped to a desktop machine for viewing. For simulations that can take many days
or even weeks to finish, or in the case that a dedicated visualization machine is not available
when running the simulation, the simulation output is simply dumped to a mass-storage system
and studied at a later time. Such post-processing, if done over a wide-area network, very much
limits what aspect and how much of the data that scientists can look at. Figure 1 shows different
settings of post-processing, co-processing, and in-situ processing/visualization. Exactly which
kind of processing should be used depends on many factors including the performance of disk
and network, the nature of the simulation, the type of visualization desired, and the openness
of the scientists to new data analysis and visualization options.

4. In-Situ Processing

Traditionally, the focus of supercomputing has been on the inner kernel of scientific simulations,
i.e., the solver. The following data analysis and visualization tasks are typically relegated to
a separate computing environment, such as a desktop PC or a PC cluster, which is much less
powerful than the supercomputer. As we move into the era of petascale computing, the enormous
amount of data produced by large-scale scientific simulations must be processed, decimated, and
summarized, resulting in a much condensed representation of the data for subsequent analysis
and visualization in an effective and efficient manner.

For large-scale simulations, in-situ processing is the most effective way to reduce the data
output since the reduction can benefit all the subsequent data movement and processing. A
variety of data reduction methods can be considered for in-situ processing. In-situ processing
may also be used to extract physically-based features of interest, which are generally much small
than the oringal data and can be used for offline examination and assessment. Compared to
the conventional post-processing approach, performing data reduction and feature extraction
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in-situ is a more appealing approach, provided that the processing calculations would only take
a small portion of the supercomputer time. With in-situ processing, if done by carefully utilizing
domain knowledge, there is no need to keep the full raw data, which saves a considerable amount
of disk space for data storage and network bandwidth for data transmission.

4.1. Data Reduction

Common data reduction techniques include subsampling, quantization, and transform-based
compression techniques. The simplest way to achieve data reduction is to subsample the data
in either the spatial or temporal domain such that the resulting reduced data matches our
capability to store and process it for analysis and visualization. For example, in-situ subsampling
is essentially what scientists have been using to keep their simulation output more manageable.
The common practice is to skip time steps based on the size of the available storage space and
network bandwidth. The number of time steps skipped may be as many as hundreds, which
creates a major challenge to temporal-space visualization and animation. This problem becomes
even worse if vector field visualization is desired because, for example, tracing of pathlines is
anticipated to be inaccurate. Therefore, other data reduction methods should be investigated.

Scientific simulations output data in the form of single precision (32-bit) or double precision
(64-bit) floating point numbers. Although scientists usually prefer to preserve the accuracy of
their simulation results, it may not always be necessary to use the high-precision floating point
data for data analysis and visualization. For example, if data analysis focuses on the shift of data
values through the simulation sequence, then the actual precision of data is less of a concern.
To make use of hardware acceleration for rendering, data is often stored in the texture memory
at 8- or 16-bit precision. If we know ahead of time that only a reduced precision of the data will
be used for visualization, quantization can be used as a cost-effective way to reduce data.

The simplest quantization method is direct scalar quantization, which maps the range of
original data values to a much smaller range. Scalar quantization is a light-weight option, as it
accesses only a single data value at a time and is very fast to perform. Scalar quantization could
be either uniform or non-uniform. With uniform quantization, the only information needed is
the minimum and maximum data values in the global domain and the number of quantization
levels. However, the quantization error introduced by this approach could be substantial when
data values are not uniformly distributed in the range. Non-uniform quantization, such as
the Lloyd-Max method [4], improves this by modifying the quantizer boundaries to match the
data statistics. Another promising alternative is to use adaptive scalar quantization, where the
quantization boundaries are selected on the fly online to reflect the local statistical characteristics
of the data. For example, the Jayant quantizer [8] is a good choice because it only requires a
one-word auxiliary memory while offering superior quantization performance.

Unlike scalar quantization, vector quantization (VQ) or block quantization groups data values
into the form of vectors and encodes them as single units. The most common Linde-Buzo-Gray
(LBG) algorithm [10] for VQ is similar to the K-means method [12] in data clustering. The usual
VQ model requires a global data sample for codebook training. Given a large input data set, it
would take a considerable amount of time to train the codebook and space to store the codebook.
An adaptive variant of VQ exists where the codebook is adjusted online according to the local
data statistics and no codebook training is required. We have employed vector quantization
for the encoding of data values from multiple time steps and even multiple variables in a post-
processing step [2]. Based on our test results, even though the compression performance is
appealing, VQ is too computationally expensive as an in-situ processing method.

Another category of data reduction is transform-based compression, commonly used in block-
based data encoding. In the transform-based encoding, the data is subdivided into blocks and
each block is transformed from the spatial domain to the frequency domain. The transform
by itself is reversible, and does not compress the data. The transform puts more energy into
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(a) original (b) quantized (c) DCT-compressed

Figure 2. Isosurfaces generated using the original data (32-bit) obtained from a
magnetohydrodynamics simulation, quantized data (8-bit), and block-based DCT-compressed
data. The isosurfaces are generated for the w-component of velocity with the following isovalues:
-0.1, -0.2, 0.05, 0.1.

fewer coefficients and results in a more energy-compact representation. This allows the less
important lower energy coefficients to be quantized more coarsely, thus requiring less storage.
The advantage of transform-based encoding is that it operates on each data block independent
of other blocks. Therefore, only a single block memory buffer is sufficient and efficient encoding
can be achieved with a moderate block size. If the simulation would also use a block-based
domain decomposition, then transform encoding could be considered.

The discrete cosine transform (DCT) and the wavelet transform are among the most popular
transform-based encoding and compression approaches. DCT has good information-packing
qualities and tends to have less error at the boundaries of a sequence, which is essential to avoid
discontinuities between blocks. The wavelet transform can also be configured for block-wise
encoding by imposing boundaries on the transform. For example, a common approach is to
apply the wavelet transform recursively within each block, resulting in a local multi-scale or
multiresolution data representation. The compression of the wavelet coefficients at different
scales provides data reduction. Such a multiresolution representation of the data could be
very useful as it allows various levels of detail to be selected according to the visualization
requirements and the available computing resources at runtime. Figure 2 shows examples of
isosurfaces generated from the original, quantized, and DCT-compressed data. As we can see,
the loss of quality due to both quantization and DCT compression is minimal. According to
our evaluation so far, transform-based compression is a better choice for in-situ data reduction
in terms of both its cost and performance. Additionally, it is possible to employ several data
reduction methods (e.g., quantization and subsampling) together to reduce the data to a greater
extent.

4.2. Feature Extraction

Large-scale scientific simulations generate massive amounts of data that must be validated and
analyzed for understanding and possibly new discovery. This often boils down to identifying
features in the data. But what exactly is a feature? Different disciplines clearly carry different
definitions of features. Generally speaking, a feature is a small subset of the raw data isolated
with domain knowledge and represents a particular physical structure, pattern, or event of
interest. Some examples include vortices, shocks, eddies, critical points, etc. These features
can be categorized, and used to characterize and break down the overall modeled physical
phenomenon. The saving in storage space with feature extraction can be very significant;
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Figure 3. Feature tracking on a turbulent vortex data set [14]. Four selected time steps are
shown. Each tracked feature is rendered with a distinct color.

however, scientists do not always know exactly what to extract and track in their data.
In three-dimensional volume visualization, a feature is commonly referred to as a certain

space-time coherent region or object of interest [17]. Such a feature could be an isosurface
component in scientific data or a classified material in medical data. Basic visualization
algorithms exist for feature identification, extraction, and tracking, which incorporate principles
from image processing, computer vision, and machine learning. For example, Figure 3 shows
the results of feature tracking on a turbulent vortex flow data set using a new prediction and
morphing approach [14]. This approach is low cost and incremental so it is perfect for in-situ
processing. Another viable approach is to employ machine learning as demonstrated in [20]. The
basic idea is to capture scientists’ domain knowledge through interactive visualization augmented
with an intelligent system, and then apply that knowledge to feature extraction and tracking.
Better results can be obtained as more knowledge is accumulated over time.

Feature extraction and tracking remains to be an active area of research in the visualization
community. For many applications, feature extraction and tracking has yet to be considered.
In contrast to traditional data reduction methods described in Section 4.1, feature extraction
can be treated as a high-level data reduction method that explicitly takes into account domain
knowledge to solve specific problems. Focusing on features effectively reduces the amount of
data that has to be saved and studied. More importantly, in addition to this saving, the ability
to extract and track features also facilitates quantitative evaluation of modeled phenomena as
well as comparative study of features obtained from different simulation runs or codes.

4.3. Quality Assessment

If data has to be reduced, the corresponding information loss must be conveyed to the user of the
reduced data set. Quality assessment thus plays a crucial role in large-scale data analysis and
visualization since in many cases the reduced versions of data rather than the original version
are used for evaluating the simulation and modeled phenomena. In addition, the data itself
could also be distorted or corrupted during the transmission over a network. To compare the
quality of the reduced or distorted data, it is imperative to identify and quantify the loss of
data quality. Most existing data quality metrics, such as the mean square error and the peak
signal-to-noise ratio, require access to the original data and are full-reference methods. They are
not applicable to petascale applications simply because the original data is too large to acquire
or compare in an efficient way.

A more promising solution is to take a reduced-reference approach [22], where only important
statistical information extracted from the original data is used for quality evaluation. If such
information can be extracted while the simulation is running, we are able to use it as the basis
metric for offline quality assessment without the need to access the original data. This is achieved
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(a) uniform quantization (b) Gaussian filter (c) salt-and-pepper noise

Figure 4. Cross-type quality assessment on a low resolution supernova data set (432×432×432).
The data quality degrades as the overall distance increases from (a) to (c).

by computing the distance of feature components of the reduced or distorted version of data
with those derived from the original data, which gives us an indication of quality loss in relation
to the original data. Such feature information also enables us to perform a cross-comparison of
data with different reduction or distortion types. For example, Figure 4 gives quality assessment
results on the supernova data set under three different distortion types: uniform quantization
(with 1024 levels), Gaussian filter (using a kernel of size 5× 5 × 5 and a standard deviation of
1.0), and salt-and-pepper noise (with an equal probability of 1/216 for the bipolar impulse). The
comparison is achieved using the statistical information extracted from the original data in the
wavelet domain as the quality metric [21]. Moreover, by forcing some of its feature components
to match those of the original data, we may repair the reduced or distorted data for possible
quality improvement for offline visualization.

5. In-Situ Visualization

In many cases, it is also desirable and feasible to render the data in-situ for monitoring and
steering a simulation. Even in the case that runtime monitoring is not practical due to the
length of the simulation run or the nature of the calculations, it could still be desirable to
generate an animation characterizing selected parts of the simulation. This in-situ visualization
capability is especially helpful when a significant amount of the data is to be discarded. The
animation could capture the integrity of the simulation with respect to a particularly important
aspect of the modeled phenomenon.

5.1. Issues

Compared with a traditional visualization task that is performed in a postprocessing fashion,
in-situ visualization brings some unique challenges. First of all, the visualization code must
interact directly with the simulation code, which requires both the scientist and the visualization
specialist to commit to this integration effort. To optimize memory usage, they have to find
a way for the simulation and visualization codes to share the same data structures to avoid
replicate data. Second, visualization workload balancing is more difficult to achieve since the
visualization has to comply with the simulation architecture and be tightly coupled with it.
Unlike parallelizing visualization algorithms for standalone processing where we can partition
and distribute data best suited for the visualization calculations, for in-situ visualization, data
partition and distribution is dictated by the simulation code. Moving data frequently among
processors is not an option for visualization processing. We need to rethink to possibly balance
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Figure 5. A live demonstration of remote, in-situ visualization of a terascale earthquake
simulation at SC ’06. This work won the HPC Analytics Challenge.

the visualization workload so the visualization is at least as scalable as the simulation. Finally,
the visualization calculations must be low cost, with decoupled I/O for delivering the rendering
results while the simulation is running. Since the visualization calculations on the supercomputer
cannot be hardware accelerated, we must find other ways to simplify the calculations such that
adding visualization would take away only a very small fraction of the supercomputer time
allocated to the scientist.

5.2. A Case Study

We have realized in-situ visualization for a terascale earthquake simulation [18]. This work also
won the HPC Analytics Challenges of the SC 2006 Conference [23] because of the scalability and
interactive volume visualization we demonstrated. Over a wide-area network, we were able to
interactively change view angles, adjust sampling steps, edit color and opacity transfer function,
and zoom in and out for visually monitoring the simulation running on 2048 processors of a
supercomputer at the Pittsburgh Supercomputing Center. Figure 5 shows photos of the live
demonstration at the Conference.

We were able to achieve high parallel efficiency exactly because we made the visualization
calculations, i.e., direct volume rendering, to use the data structures used by simulation code,
which removes the need to reorganize the simulation output and replicate data. Rendering
is done in-situ using the same data partitioning made by the simulation, and thus no data
movement is needed among processors. Similar to the traditional parallel volume rendering
algorithms, our parallel in-situ rendering pipeline consists of two stages: parallel rendering and
parallel image compositing. In the rendering stage, each processor renders its local data using
software raycasting. Note that this stage may not be balanced given a set of visualization
parameters and the transfer function used. In the image compositing stage, a new algorithm is
designed to build a communication schedule in parallel on the fly. The basic idea is to balance
the overall visualization workload by carefully distributing the compositing calculations. This
is possible because parallel image compositing uses only the data generated by the rendering
stage and is thus completely independent of the simulation. Furthermore, our new compositing
algorithm is optimal in the sense that it not only helps balance the overall workload of rendering
and compositing, but also substantially reduces network traffic typically required in post-
processing rendering and visualization solutions.

For implementation of in-situ visualization, no significant change is needed for the earthquake
simulation code for the integration. The only requirement for the simulation is to provide APIs
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for the access of the simulation internal data structure, which does not require much effort in
practice. Furthermore, because all the access is read operation, the simulation context is not
affected by the visualization calculations. The advantage of our approach is obvious. Scientists
do not need to change their code to incorporate in-situ visualization. They only need to provide
an interface for the visualization code to access their data, as everything else is taken care of by
the visualization part. This approach is certainly the most acceptable by scientists.

6. Conclusion

By 2011, it is anticipated that high performance computing systems running at sustained
petaflop speeds will be a reality for scientists and engineers to perform simulations at the peta-
and exa-scale. To possibly understand such extreme-scale simulations and extract meaning
from petabytes of the simulation output, it is imperative that domain scientists and visualization
researchers begin to work closely together so a viable solution will be ready by then. In this paper,
we discuss the grand challenges facing petascale data analysis and visualization, and propose
in-situ processing and visualization as a promising solution for ultrascale simulations. While
we have demonstrated some success in realizing this solution, further research and experimental
studies are needed to derive a set of guidelines and usable visualization software infrastructure
for others to adopt the in-situ approach.
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