TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 05/08 ppl157-170
Volume 18, Number 2, April 2013

A Study of Animated Transition in Similarity-Based
Tiled Image Layout

Huan Zhang, Jun Tao, Fang Ruan, and Chaoli Wang*

Abstract: For many information visualization applications, showing the transition when interacting with the data is

critically important as it can help users better perceive the changes and understand the underlying data. In this

paper, we investigate the effectiveness of animated transition in a tiled image layout where the spiral arrangement

of the images is based on their similarity. Three aspects of animated transition are considered, including animation

steps, animation actions, and flying paths. Exploring and weighting the advantages and disadvantages of different

methods for each aspect and in conjunction with the characteristics of the spiral image layout, we present

an integrated solution, called AniMap, for animating the transition from an old layout to a new layout when a

different image is selected as the query image. We show the effectiveness of our animated transition solution

by demonstrating experimental results and conducting a comparative user study.

Key words: animated transition; image layout; large image collections; user study

1 Introduction

Animation is a promising approach to facilitate
the perception of changes when transforming from
one layout to another. Previous research has found
that animated transition can significantly improve
graphical perception of changes between statistical
data graphics!!!, spatial relationship perception!?3!,
and decision making!*. In dynamic graphic drawing,
it was also suggested that tasks related to dynamic
evolution might be better handled via animation
compared to small multiples®!. However, others have
also warned that animation could become problematic

e Huan Zhang is with Dematic Corp, Grand Rapids, MI 49505,
USA. This work was performed when she studied at Michigan
Technological University. E-mail: huan.zhang @mtu.edu.

e Jun Tao and Chaoli Wang are with the Department of Computer
Science, Michigan Technological University, Houghton, MI
49931, USA. E-mail: {junt, chaoliw}@mtu.edu.

e Fang Ruan is with Google Inc, Mountain View, CA 94043,
USA. This work was performed when she studied at Michigan
Technological University. E-mail: fangruan@google.com.

* To whom correspondence should be addressed.

Manuscript received: 2013-03-05; accepted: 2013-03-06

if not used appropriately. Compared to static depiction
of trends, animation is the least effective in trend
analysis!®l. Besides, animation shows no significant
improvement in window navigation!’!. For browsing
image collections, although researchers have shown
that arranging a set of thumbnail images in a layout
according to their similarity does help viewers narrow
down their search and identify images of interest!®!,
whether or not animation can facilitate browsing and
querying requires a thorough study.

In this paper, we study animated transition for iMap
that tiles images in a collection based on their visual
and textual similarity®!. As shown in Fig. 1a, within a
rectangular display area, iMap shows the query image at
the center as the focus and arranges other images with
decreasing similarity ranks as the context following a
spiral pattern. By default, the focus image is displayed
in a normal size and the width and height are reduced
by half for the successive layers. The user can adjust the
number of repetition layers needed to keep the current
width and height. Although effective, a key challenge
of using iMap lies in the difficulty to follow and track
the changes when updating image arrangement as the

(@) (b)
iMap query without animated transition.
old layout (a), an image highlighted in yellow boundary is
selected as the new query image. The new layout after the
selection is shown in (b).

Fig. 1 In the

query image changes. Figure 1 shows such an example.

Tversky et al.['% suggested two high-level principles
for effective animation. One is congruence principle,
which states that “the structure and content of the
external representation should correspond to the desired
structure and content of the internal representation.”
In our case, the external animation should reflect
the internal similarity rank changes. The other is
apprehension principle, which states that “the structure
and content of the external representation should be
readily and accurately perceived and comprehended.”
That is, our animation should be wunderstandable
from the viewer’s perspective and the changes of
image similarity ranking should be accurately perceived
during the transition. Our animation design should
conform to these two principles. It should also abide
by the characteristics of the iMap layout by allowing
the user to focus on the centered query image and
similar images retrieved for the display. Furthermore,
our animation should strive to avoid distraction while
maintaining the efficiency.

In our work, we explore three aspects, animation
steps, animation actions, and flying paths, to design
effective animated transition. The new AniMap we
develop is an enhanced version of iMap, introducing
animated transition from an old layout to a new
layout when a different image is selected as the query
image. We demonstrate that by breaking down a
complex animated transition into several logical stages
and making each stage simple enough to comprehend,
we can improve the understanding of image changes.
By exploring different factors that might have an
impact on the animation, we propose our solution
for smoothing the animation and reducing the overlap
among images during the transition. To verify the
effectiveness of our animated transition solution, we
perform a user study to evaluate the three animation

Tsinghua Science and Technology, April 2013, 18(2): 157-170

conditions: no-animation, one-step animation, and
multi-step animation (used in the AniMap). Our results
show that multi-step animation is significantly more
accurate than no-animation and one-step animation, and
is noticeably faster than one-step animation. Due to the
nature of animated transition, we refer readers to the
accompanying video for the best evaluation of AniMap.

2 Related Work

Animation has long been a topic of research in
information visualization, focusing on user interface
for a variety of purposes!'!!. Hudson and Stasko!!?
introduced toolkit support for animation. The
Information Visualizer!'*! utilizes 2-D and 3-D
animation with cognitive coprocessor to explore
information and its structure. Other researchers have
concentrated on designing animations to facilitate
human perception and transition understanding. The
cone treel'*! and perspective walll'>! use 3-D animations
to help keep viewers oriented. DynaVis!!! supports
animated transitions between statistical data graphics
backed by a shared data table. Yee et al.'®! applied
animated transition to achieve smooth transition in
dynamic graphs with a radial layout. van Wijk and
Nuij''”! introduced a generic model for smooth and
efficient animation with simultaneous zooming and
panning for image viewing. Elmqvist et al.'¥! leveraged
animated 3-D rotations to show the transition among a
matrix of scatterplots. Gapminder’s Trendalyzer uses an
animated bubble chart to show trends over time, which
can be effectively utilized in analysis, exploration or
presentation. Microsoft’s Pivot demonstrates great
aesthetic and practical values of animated transition
in handling large image databases displayed in
regular row-and-column layouts. In contrast, our work
particularly focuses on a spiral image layout which
brings new challenges such as reducing image overlap
during animated transition.

3 Animation Factors

For iMap, while it is sufficient to show the final layout
from the perspective of the new focus, simply switching
to this new view can cause a highly disorienting
rearrangement especially when the number of images
displayed is large.
and improve visual comprehension, we consider our
animation from a global view and a local view.
The global view focuses on the overall animation

To reduce this disorientation

Huan Zhang et al.: A Study of Animated Transition in Similarity-Based Tiled Image Layout 159

structure and refers to animation steps such as one-step
and multi-step animations. The local view considers
animation details, including animation actions such as
fading and flying, and flying paths such as straight paths
and curved paths.

3.1 Animation steps

An animation usually consists of multiple sub-
animations. To complete an animation, all steps could
be finished simultaneously, or each successive step is
accomplished before the next step starts. We propose
two categories of animation steps: one-step and multi-
step. For one-step animation, after a new query image
is selected, all images are synchronously changed with
one kind of animation action, such as fading, flying or
size change. While it is easy to implement and indeed
informs the viewers that the change is happening, one-
step animation only provides fairly limited clue for
tracking images and their similarity rank changes.

To facilitate the tracking, we can break down
the animation into multiple steps, i.e., staging the
animation. Lasseter'!?! pointed out it is important, when
staging an action, that only one idea is seen by the
audience at a time. If many actions are happening
at once, the eyes do not know where to look at and
the main idea of the action will be “upstaged” and
overlooked. More importantly, the object of interest
should distinguish itself from the rest of the scene.
Since one is unable to perceive many different actions
at one time, every key action must be staged in the
strongest and simplest way before moving to the next
one. Based on these guidelines, only a few different
actions should be played simultaneously in one step,
and only those actions that will not confuse the viewers
can be issued together. Furthermore, the actions that
are totally contrasted with each other will be performed
separately, because it is very important for the viewers
to look in the right place at the right time.

3.2 Animation actions

Animation actions deal with how an image should be
brought in or out of the current layout. We implement
four representative animation actions: fade-out/fade-in,
[fly-out/fly-in, size-out/size-in, and card-flip. Here, “out”
means image disappearance, and “in” means image

appearance. The user is allowed to adjust the animation
time and the number of animation steps for each kind
of action. The first three animation actions can be
applied to both one-step and multi-step animations and
mixed together (e.g., fade-out/fly-in). The card-flip only
works for one-step animation due to its nature. The first
three actions we discuss in this section apply to one-step
animation. In multi-step animation, these three actions
will be utilized as well. However, at the same time, the
action taken by each image may be different (refer to
Section 4).

Fade-out/fade-in This action is the most popular
way to show the transition. In our scenario, all images
shown in the old layout fade out first and then all images
in the new layout fade in.

Fly-out/fly-in For this action, images in the old
layout fly out of the display area first and then images
in the new layout fly in (see Fig. 2). The center
of an image’s position before flying is the source p.
For one-step animation, the “virtual” destination g of
the image is located along the ray that connects the
center of the entire display area ¢ to p. Assuming
the distance between ¢ and p is d, we assign the
distance from ¢ to ¢ as d + Ad, where Ad is some
constant distance. For multi-step animation, the center
of the image’s new position after flying is the “actual”
destination. By flying each image from its source
to destination, we can detect if the image’s similarity
rank increases or decreases. As a matter of fact,
one of the greatest challenges for us is to design an
optimal way of flying to reduce image overlap. We
will analyze this and present our solution in Section
3.3. Another important factor of the fly-out/fly-in action
is timing control. Even though the user is able to
adjust the total flying time, we apply slow-in/slow-out
timing instead of straightforward linear timing for better
motion perception. We compute the velocity at each
flying step as

o = e—(ﬁ—o.5)2xx 0
where ¢ € [0, T — 1] is the ¢-th flying step, T is the total
number of flying steps, and s is a speed factor. Both
T and s can be adjusted by the user. When s is zero,
there is a constant velocity of image flying. When s is

——
\~2~‘\—1

~T]
[]

— -
5

=

paduuinpEiain

Fig. 2 Left: fly-out/fly-in action; Middle: size-out/size-in action; Right: card-flip action.

160

set to a larger value, the difference between the speed
at the middle of flying and the speed at both ends will
be larger, i.e., the animation begins slowly, smoothly
accelerates, and then decelerates in the end. Therefore,
most of the movement occurs during the middle one-
third of the given flying time, which provides a good
visual cue to help the user anticipate image movement.

Size-out/size-in For this action, we first gradually
shrink the size of an image into a point, and then grow
the size of the new image from a point to its target size
(see Fig. 2). The reason for us to take the size factor into
consideration is mainly due to its role in the multi-step
animation for overlap reduction, which we will discuss
in Section 4.

Card-flip Unlike all previous three actions, the
card-flip creates a 3-D effect for the transition. Each
image quad in the display area is now regarded as a
slab where the front face is mapped with an image in
the old layout. When a new focus is selected, images
shown in the new layout are first mapped to the back
faces of the slabs. Then in its local coordinate frame,
we simultaneously rotate each slab along the y direction
for 180° in an animated fashion, so that images on the
front and back faces are flipped (see Fig. 2).

Overlapping actions Under the condition that two
actions can not influence each other and make either
of them unreadable, overlapping actions is helpful for
conveying the main ideas of the transformation while
maintaining the efficiency. Lasseter!!! stated that an
action should never be brought to a complete stop
before another action starts, and the second action
should overlap the first. In this way, the overlapping
maintains a continuous flow among different phrases of
actions. We apply overlapping actions to both one-step
and multi-step animations. The user has the freedom to
adjust the degree of overlapping, from non-overlapping
to fully-overlapping.

Figure 3 shows the snapshots of two animation
actions, fly-out/fly-in and card-flip, for one-step

]
E
a
[]
]
"
B
]
]
B
B
-]
a
B
b
]
<]
2
1
]

zm H.H O ™
ugy O B | EY Sm e | i o33
PR -::-B
= m oE.,E @ = =
:--- 4] Tl - @ m
tEAm R P E N @
AEEorrmeaeEBEE R il g mpEErOEe
(@) (b)

UBppgpennERERE]

Tsinghua Science and Technology, April 2013, 18(2): 157-170

animation. With fly-out and fly-in overlap, images in
the old layout fly out while images in the new layout fly
in. Compared with straight paths, using curved paths
(refer to Section 3.3) makes the animated transition
more attractive. For the card-flip action, the flipping
effect incurs image overlapping during the transition.
However, since the images do not fly around, it is still
easy to follow even though many images are being
flipped simultaneously. The video clips also include
the results for the other two animation actions, fade-
out/fade-in and size-out/size-in.

3.3 Flying paths

For the fly-out/fly-in action, many images will fly
from their sources to destinations at the same time,
which easily leads to image overlapping and visual
cluttering. Unlike overlapping actions which we
leverage, overlapping images should be reduced as it
would confuse the user and make it difficult to track
the transition. To this end, we consider curved paths
with different radians and clockwise/counterclockwise
flying directions. We first present a naive solution
that optimizes each flying path separately without
considering their relationships. Then, we propose a
greedy approach that determines the flying paths on an
incremental basis. That is, for the current path to be
determined, our goal is to reduce its overlap with all
previously determined flying paths.

Measuring image overlapping We propose
an exact solution to quantitatively compare the
percentage of image overlapping before and after path
optimization. Since each image is loaded as a texture
and mapped to a quad for display, we compute the
amount of quad overlap (in pixels) and derive the
average percentage of overlapping during the flying
process as follows.

T
Z Z Qi N Qj,t

ieN,jeN,i<j t=1
Tx A

Fig. 3 One-step animation. (a) and (b) show two snapshots of the fly-out/fly-in action with curved paths and a 70% of overlap
in the action. (¢) and (d) show two snapshots of the card-flip action.

Huan Zhang et al.: A Study of Animated Transition in Similarity-Based Tiled Image Layout 161

where Q; ; and Q; ; denote the positions of image quads
Q; and Q; at flying step ¢ and N denotes the number
of pixels overlapped by the two quads; N is the total
number of images considered; T is the total number of
flying steps; and A is the entire display area.

To actually show pixel overlap in an animated
fashion, we draw all quads in red without texture with
the same amount of transparency at the beginning (the
background color is light blue). During the flying
process, we blend together overlapped quads. At each
flying step, the amount of opacity accumulated for each
pixel is in proportion to the number of overlaps it has.

Straight vs. curved paths The simplest flying
path between a source and its destination is to directly
follow the straight line connecting them. This solution
works well when the transition only involves a few
images. As illustrated in Fig. 4, moving along straight
lines more likely leads to image crossover, especially
around the center of the display area. Furthermore, in
our spiral image layout, using a straight-line pattern
would give the viewers a wrong impression. Since
a new query image could be quite similar to the old
one, in a typical transition, there could be many images
staying on the same or adjacent layer (i.e., their rankings
do not change dramatically). However, moving images
only along straight lines could force these images to
leave further away from its layer before turning back
(shown in Fig. 4).

For our spiral layout, we draw a curved path based
on the following parameters: the two endpoints (source
and destination) and radian (the higher the value, the
more curvy the path). We derive the radian of the curved
path as follows.

/
r = min %ro x d X (1.0— M) ,rmax% 3)
/4
and

“

0 — n—60, 60>mn/2;
) 6, 0 <m/2

where ro is a base radian which is a constant, d is

Fig. 4 Straight vs. curved paths. Curved paths work better
for the spiral layout and reduce the possibility of overlap
during the flying.

the distance between the two endpoints, 8 is the angle
formed between the straight path connecting the two
endpoints and the +Xx axis, and rp,x is the maximum
radian allowed. The intuition is that when the distance
is large and the angle is close to 45° or 135°, then
the straight path is likely to cross the center of the
display area. Therefore, the radian should be large so
that the curved path could be effectively deviated from
the center of the display area. On the other hand, r is
bounded by rp,x since a too large radian could force
the flying path mostly out of the display area which
is not desirable either. A naive solution is to follow
Eq. (3) for each flying path separately and determine
its radian accordingly. Besides the two endpoints and
radian, we also consider adding the flying direction
for the following greedy optimization where we take
into account the relationship among paths for occlusion
reduction.

Greedy optimization We further present a greedy
optimization method to reduce image overlapping. This
greedy approach is a grid-based approximation, where
each cell in the grid has the same size as the smallest
remaining image displayed in the layout for flying (we
assume that all these images will be shrunk to this
smallest size before flying). We create an occupancy
buffer, in which a total of n. x n, counters are used
to keep track of the number of paths in each cell for
each time step, where n. and n, are the total numbers of
cells and time steps, respectively. Assuming the number
of existing paths in cell i at time step j is n; j, the
occlusion among these existing paths in cell i at time
step j is n; ; — 1 if n; ; > 0; otherwise the occlusion
is zero. Therefore, the occlusion of a newly added path
will be Z n;,;j, where the new path goes through cell

i
i at time]step j. Since the paths are more likely to
occlude each other around the center of the display area,
we can also calculate the occlusion value as a weighted
sum Z w;n;, ;j, where the closer a cell to the center,
i
the higquer the weight w; .

Our approach starts from an empty set, and adds
the path which has the shortest Euclidean distance
between the two end points at each step, since there is
less space for the shorter paths to bypass the previous
ones. For each path, we compute the occlusion values
for several candidates, which include the straight line,
clockwise and counterclockwise curvy lines with radian
as 0.5, 1.0, 1.5, 2.0, and 2.5, respectively. From these

162

candidates, the one with the smallest value of occlusion
will be selected. This process terminates when all paths
are added.

In Fig. 5, we show an example that compares
different ways to determine curved flying paths. Actual
image overlaps at the same time steps during the flying
are highlighted with arrows. For the flying paths with
the same radian, there are 41 overlaps for images
decreasing their ranks and 12 overlaps for images
increasing their ranks. These two numbers drop down
to 30 and 11 for the naive improvement, and further
down to 15 and 4 for the greedy optimization. It is clear
that our greedy solution is able to well reduce image
overlapping. This improvement has been consistently
observed in many of our trials.

4 Multi-Step Animation

Decomposing the transition into several steps facilitates
the understanding of layout changes. We propose
several guidelines for designing our multi-step
animation. First, the animation should be always
directing the viewers’ attention, leading them to look
at where they should focus on at the right moment.
Second, we should consider action overlapping for
efficiency while avoiding issuing too many different
kinds of actions at the same time for clarity. Third, the

Tsinghua Science and Technology, April 2013, 18(2): 157-170

animation should be as simple as possible, conveying
the main idea without distracting the viewers.

4.1 Stage design

Following the above guidelines, we design our
multi-step animation with three stages: preparation,
reorganization, and finalization. At the preparation
stage, we swap the new query image with the old
one. Meanwhile, we fade out those images that will
not be shown in the new layout. Removing these
images as early as possible helps the viewers pay more
attention to the images in the new layout. We know that
when staging an action, only one idea should be seen
by the audience at a time. Nevertheless, performing
swapping and fading actions simultaneously does not
have a negative impact on our animation. In a still
scene, the eye will be attracted to movement!'®!. Thus,
the swapping of the old and new query images is the
key action which takes the priority to attract viewers’
attention, while the fading evolves gradually without
distracting the viewers. After this stage, our new query
image is located at the center of the display area. Other
images remaining in the new layout stay put. At
the reorganization stage, we reorganize the positions
of images remaining from the old layout. For these
images, their positions in the new layout will likely

Fig. 5 Comparison of (a) flying paths with the same radian, (b) flying paths with naive improvement, and (c) flying paths
with greedy optimization. First row: flying paths for images with decreasing ranks. Second row: flying path for images with
increasing ranks. The paths are colored using a rainbow color map where the purple and red colors correspond to the beginning
and end of the flying, respectively. Arrows indicate image overlaps at the same time steps during the actual flying.

Huan Zhang et al.: A Study of Animated Transition in Similarity-Based Tiled Image Layout 163

change due to the change of their similarity ranking.
Each image flies to their new position following the
solutions proposed in Section 3.3. After this stage,
the remaining images are now located at their final
positions in the new layout. At the finalization stage,
we bring in newly added images by applying one of the
“in” processes discussed in Section 3.2.

4.2 Further consideration

Besides the three stages outlined above, there are
some other issues we need to consider for multi-step
animation. We find that at the reorganization stage, even
though we have already applied our greedy optimization
scheme for flying paths, image overlapping and visual
cluttering could still be rather severe. Therefore, we
seek two further improvements to reduce the overlap.

i B L] - = ! -

(a) original curved paths (b) (a) + size shrinking

First, at the preparation stage, in addition to image
swapping and fading, we also shrink all remaining
images to the same size as the smallest remaining
image in the layout. Second, at the reorganization
stage, we further split the flying process into two
steps: flying images with decreasing ranks first and then
flying images with increasing ranks. To avoid possible
distraction, we will fade still images to the background
when other images are flying. Combining size shrinking
and fly splitting, we are able to largely reduce image
overlapping.

In Fig. 6, we show the effectiveness of reducing
image overlap by adding one strategy at a time to the
original flying solution where curved flying paths are
used. Shrinking the size of images contributes to the
most overlap reduction, from 14.2% to 3.58% for this

(c) (b) + fly splitting (d) (c) + greedy optimization

Fig. 6 Comparison of the original flying solution with the addition of each new strategy to reduce image overlap. The transition
is for the two layouts shown in Fig. 1. In (a) and (b), solutions from top to bottom are selected at 20%, 40 %, 60 %, and 80 % of the
entire flying process. In (c) and (d), the top/bottom two are selected at 33% and 66 % of the flying process with flying images with
decreasing/increasing ranks. The average percentages of overlapping for the entire flying process are 14.2%, 3.58 %, 0.869 %,

and 0.375% for (a) to (d), respectively.

164

example. Furthermore, when we split the flying process
into two steps, the average percentage of overlap drops
to 0.869%. Finally, we optimize the flying paths with
our greedy strategy, further dragging down the average
percentage of overlap to 0.375%. Side-by-side visual
comparison also shows the gradual reduction in image
overlap, especially for the images in the second and
fourth rows where the bounding quads instead of the
actual images are drawn. Such a trend in overlap
reduction has been consistently observed and verified
in many of our trials with varying numbers of images in
the layout and different query images chosen.

4.3 AniMap — Put it all together

We present AniMap, a visualization framework that
builds on top of iMap and supports
transition. As shown in Fig. 7, AniMap utilizes multi-
step animation, decomposing the animation into the
preparation, reorganization, and finalization stages. At
the first preparation stage, the new focus image swaps
with the old focus image, and at the same time, the
images that will not be shown in the new layout will
be faded out and all remaining images will be shrunk
to the same size as the smallest remaining image in
the layout. At the second reorganization stage, images
with decreasing ranks will fly to their new destinations
first, and then images with increasing ranks will fly. We
leverage curved flying paths for overlap reduction and
apply the slow-in/slow-out timing technique for visual
consistency. We also use the greedy path optimization

animated

Tsinghua Science and Technology, April 2013, 18(2): 157-170

method to further reduce the overlap and improve the
readability. At the last finalization stage, all new images
will fade in and at the same time, all images (including
those remaining ones) will be enlarged to their target
sizes.

5 User Study

To evaluate the effectiveness of AniMap, we performed
a 3 conditions (no-animation vs. one-step animation vs.
multi-step animation) X 2 input image numbers (small
vs. large) x 2 remaining image percentages (small vs.
large) x 2 playback speeds (normal vs. slow) x 5
questions within-subject experiment. Before the actual
user study, we also conducted a pilot study on six
users to identify the appropriate parameter values for
the image number and percentage, and playback speed.
After that, 24 new users were recruited to participate in
the actual experiments. All of them are undergraduate
and graduate students and each student was paid $10
in return. Each time, up to four users conducted
the user study concurrently with one of our student
researchers present. All experiments were conducted
in our graphics and visualization laboratory using four
standard desktop PCs with the same configuration.
The experiment interface consists of a single window
showing the image layout and its transition with one of
the three conditions (no-animation, one-step animation,
or multi-step animation). The users were seated in front
of 27 inch monitors with 1920 x 1080 screen resolution

Fig. 7 Snapshots of the AniMap. Stage 1: swapping the old and new focus images, fading out images that are not in the new
layout and shrinking all remaining images (a). Stage 1 finishes (b). Stage 2: images with decreasing ranks fly (c) and the fly
finishes (d). Images with increasing ranks fly (e) and the fly finishes (f). Stage 3: fading in new images while enlarging their sizes

(g). The entire animation finishes (h).

Huan Zhang et al.: A Study of Animated Transition in Similarity-Based Tiled Image Layout 165

while the image layout occupied 1400 x 1050 pixels.
They could sit in any fashion they found comfortable
and were asked to answer a question for each task given.
A question and its answer options with radio buttons
appear on the right-hand side of the window, which
were visible for the duration of each task. The users
selected their answer by clicking the corresponding
radio button and then clicked the “Next” button to move
on to the next question.

The tasks were drawn from screen shots of our
AniMap program running the Astronomy Picture of the
Day (APOD), a popular online astronomy archive with
thousands of handpicked pictures. Playing back the
screen shots yielded the animation. For the input image
number, we considered two cases: small (49 images
with four layers and one repetition level) and large (145
images with five layers and two repetition levels). For
the remaining image percentage, we considered two
cases: small (< 30% of the input image number) and
large (> 40% of the input image number). For the
playback speed, our pilot study result showed that 10
seconds of animation for each task was comfortable,
which we set it for the normal speed case. We doubled
the playback time to 20 seconds for the slow speed case.

For no-animation, an old layout was first displayed
together with the question and answer options. There
was no time limit for the user to read and understand
the question. Once the user clicked the “Start” button,
“Backward” and “Forward” buttons could be clicked
to see the old and new layouts back and forth within
the time limit, which is the same as the animation time
given. After that, no further interaction was allowed and
the user must answer the question and click the “Next”
button to move on to the next question.

For one-step animation, a repeated animation was
shown. The animation started playing automatically
after the user read the question and clicked the
“Start” button. Within the time limit, the animation
automatically repeated itself with an interval of two
seconds between two playbacks.
instructed that they could select the answer and moved
on to the next question even when the animation did not
finish the playing.

For multi-step animation, the entire process of
animation played only once. Similar to one-step
animation, the user could select the answer and moved
on to the next question before the animation finished.
Except for the no-animation condition which allowed
forward and backward interaction, no other forms of

The users were

interaction on the animation were allowed for all three
conditions.

5.1 Tasks

We designed the following five different questions in
order to evaluate whether or not the users comprehend
both the local and global layout structures under the
three animation conditions. The users were asked to
answer each question from multiple choices, making
their best effort to answer correctly. Nevertheless,
if there was no ground to make a choice, they were
suggested to select “I don’t know.” as the answer.

Our first question considers the local evolution of
image similarity rank. One image in the old layout
was highlighted with a yellow boundary, and the user
was asked: Q1. How does the similarity rank of the
image with yellow boundary change (increase, decrease
or keep the same)? We chose this question because the
essential difference between the old and new layouts
was the changes of image similarity ranks. The ability
to track such a change was one of the key criteria in our
evaluation.

The second question explores image disappearance.
Two images were highlighted in different colors, and
the user was asked to select the image as the answer
to: Q2. Given two images highlighted with yellow and
green boundaries respectively, which image disappears
in the new layout? We chose this question as image
appearance/disappearance is one of the most basic
results of the transition. This question is also locally
structured.

In our scenario, images are arranged according
to their degrees of similarity along a spiral pattern
from inside out. The third question measures if the
animation allows the user to detect the degree of
change for image similarity ranks. Two images were
highlighted in different colors, and the user was asked
to select the image as the answer to: Q3. Given two
images highlighted with yellow and green boundaries
respectively, which image’s similarity rank has a larger
(or smaller) degree of change?

In our fourth question, we test if the user is able to
notice more global trends. Specifically, the question
tests if an overall update in the number of images in the
new layout is perceived. No images were highlighted
and the user was asked: Q4. Given the total number of
images in the old layout, please estimate the number of
images that remain from the old layout. We selected
this question because it is globally structured. Since

166

the number of newly appeared images equals the total
number of images minus the number of remaining
images, we asked the user to estimate the number of
remaining images so that they did not need to make an
extra subtraction by themselves.

Finally, we tested whether the total number of images
that increase or decrease their similarity ranks could be
perceived or not. No images were highlighted and the
user was asked: QS. Given the number of remaining
images, please estimate the number of images that
increase (or decrease) their similarity ranks. This
question is more of a global question as it requires the
user to read both image updates and their similarity rank
changes.

5.2 Experiment design

The interface for each of the three conditions was
They
could ask questions, figure out the tasks, and see
how the answers to the questions could be inferred.
The experimental procedure required that the users
answered all questions under each condition in order.
Therefore, any cognitive shift required to move
from one interface to another only occurred twice.
We counterbalanced between users by presenting six
different orders of three conditions with four users
following one of the orders. However, within 40
tasks for each condition, the order of tasks was not
counterbalanced, but rather given in the order from
simple to complex so that the users could better prepare
for the more difficult tasks. The user could take a short

demonstrated to the users before the test.

break between experimental conditions if preferred.

To help overcome the Ilearning effect, each
condition block was preceded by a practice block
of five questions, selected randomly from the set
of experimental tasks. The users were not aware
that this initial block of five questions did not form
part of the experimental data collection. Each user,
therefore, completed a total of 135 tasks. To avoid
possible rushing toward the end of the tasks, we did
not show the question number or the overall progress
to the users. The time to read questions before the
start of animation was not recorded. The completion
time was recorded to include the animation time
and the time to answer questions. The users were
instructed to focus more on the accuracy rather than
the completion time. On average, it took about 90
minutes for a user to complete all the tasks, which
includes the pre-experiment training, practice tasks,

Tsinghua Science and Technology, April 2013, 18(2): 157-170

experimental tasks for all three animation conditions
and a post-experiment questionnaire.

5.3 Results

Based on our experience in the pilot study, we
anticipated that using multi-step animation would be
faster in completion time and more accurate than using
no-animation and one-step animation, but we were
not sure whether or not the input image number and
playback speed would have a significant effect on the
performance.

Since the data we collected do not form a normal
distribution for most cases, instead of using ANOVA,
we used a nonparametric Kruskal-Wallis (KW) one-
way analysis of variance by ranks with a standard
significance level o = 0.05 to determine statistical
significance between conditions. Using correlation
coefficients to analyze user behaviors, we removed
three users from further analysis due to their large
negative coefficient values comparing against other
users. Therefore, the data collected from 21 users were
used in the statistical analysis.

Accuracy As shown in Figs. 8a and 8c, the
results for different animation conditions indicated
a strong advantage for multi-step animation. KW
analysis found a significant difference among the three
animation conditions (H(2) = 24.69, p < 0.0001)
and post-hoc analysis found that multi-step animation
was significantly more accurate than no-animation
(H(1) =17.89, p = 0.0002) and one-step animation
(H(1) =21.01, p <« 0.0001). No-animation was not
significantly distinguishable from one-step animation.

Post-hoc analysis using Bonferroni corrections
showed that, for Q4 and Q5, multi-step animation was
significantly more accurate than both no-animation
(Q4: H(1) =5.84,p =0.015,Q5:H(1) =32.25, p K
0.0001) and one-step animation (Q4: H(1) = 14.92,
p = 0.0001, Q5: H(1) = 34.53,p « 0.0001). No
significant difference was found in terms of accuracy
for Q1, Q2, and Q3.

No significant difference was found under different
input image numbers for all three animation conditions
and all five categories of question except that for Q3,
one-step animation was significantly more accurate
with the small image number (H(1) =5.37,p =
0.0205) but multi-step animation was significantly
more accurate with the large image number (H(1) =
10.30, p = 0.0013).

Considering the playback speeds, KW analysis

Huan Zhang et al.: A Study of Animated Transition in Similarity-Based Tiled Image Layout 167

Average error
o0

(a)

25 = 6
5 g
5 20 Zg5
E 52,
5215 g &
o
ég —<ED:3
2210 2% 5
gl) a)g
g5 g2 1
> 5}
< 2 0

ONo-animation One-step Multi-step

= No-animation
= One-step
Multi-step

Average error
S =N WA WUV

QL Q@ @ Q4 Qs
(d)

No-animation One-step Multi-step

©

%)
(=

= No-animation
= One-step
Multi-step

5]
W

— =
S n S

S W

Average task completion
time (s)

QL Q2 Q3 Q4 Q5
(e)

Fig. 8 Mean values and standard errors of (a) the average number of task errors, (b) the average task completion time, (c) the
average number of “I don’t know.” responses, (d) the average number of task errors for each category of questions, and (e) the

average task completion time for each category of questions.

results were significant at the 0.01 level under the multi-
step animation condition (H (1) = 14.36, p = 0.0002)
for Q3, for which the average number of errors was
significantly higher with the slow playback speed.

Figure 8c shows the average number of “I don’t
know.” responses for the three animation conditions,
where users were unwilling to make an estimate.
A significant difference was found among the three
animation conditions (H(2) = 25.09, p <« 0.0001),
with post-hoc tests showing that multi-step animation
was the fewest in the number of “I don’t know.”
responses. Considering task variants, “I don’t know.”
responses were all from Q4 and QS, i.e., questions on
the global layout structure.

Task completion time The time to complete a
task was measured from when the user clicked the
“Start” button to when the user clicked the “Next”
button. Figures 8b and 8e show the average task
completion time. We analyzed all tasks combined
as well as tasks in each category of questions.
In terms of task completion time, a significant
difference was found among the three animation
conditions (H(2) = 13.61, p = 0.0001), with post-hoc
tests showing a significant interaction effect between
multi-step animation and one-step animation (H (1) =
8.01, p = 0.0047). The mean time for completion for
multi-step animation was 15.00s compared to 19.37s
for one-step animation (about 29% faster). Multi-
step animation and no-animation were not statistically
distinguishable. For all animation conditions, the input

image numbers did not have a significant effect in terms
of task completion time. Considering the playback
speed, KW analysis results were significant at the 0.01
level for both one-step animation (H(1) = 8.30,p =
0.0040) and multi-step animation (H (1) = 18.08, p K
0.0001). Decreasing the playback speed noticeably
increased the task completion time.

Subjective preferences After the experiments,
users completed a survey with six statements as listed
in Table 1. Each was answered with a 5-point Likert
scale (1 = strongly disagree, 5 = strongly agree). KW
analysis was conducted on ratings for each condition.
Table 1 gives the pair-wise comparison results.

KW analysis results found a significant difference in
rating among the three animation conditions (H(2) =
39.32, p <« 0.0001), with post-hoc analysis showing
that multi-step animation obtained significantly higher
grades than no-animation (H(1)=29.88, p < 0.0001)
and one-step animation (H (1) = 32.16, p <« 0.0001).
The users’ subjective feeling that multi-step animation
was much easier for all tasks was also consistent with
the previous result that multi-step animation got the
fewest “I don’t know.” responses, i.e., the users were
more willing to estimate the answer.

At the end of the survey, many users indicated in
the open comments section that the movement of multi-
step animation was understandable and clear. One user
reported that “It’s very easy to track specific picture and
a limited number of pictures.” Many users commented
in a similar way that “It’s detectable and easy to track

168

Tsinghua Science and Technology, April 2013, 18(2): 157-170

Table 1 Average ratings for six statements for each animation condition. * indicates significant differences (p < 0.01).

Statement Multi-step animation One-step animation No-animation
S1. It was easy to estimate the number of images remaining from the old layout. 4.43, *one-step, *no 1.76 2.00
S2. It was easy to estimate the number of images that increase or decrease their similarity ranks. ~ 4.38, *one-step, *no 1.90 2.10
S3. It was easy to track the changes of image similarity ranking. 4.71, *one-step, *no 243 243
S4. It was easy to detect the appearance or disappearance of images. 4.86, *one-step, *no 3.14 3.24
S5. It was easy to estimate the degree of changes of image similarity ranking. 4.38, *one-step, *no 2.48 2.81
S6. Overall, the solution was effective. 4.67, *one-step, *no 2.38 2.52

and relocate desired objects.” but some users also
pointed out that “It’s much slower than no-animation.”
and “It could be more than perfect if the speed of
animation could be controlled.”

For one-step animation, users complained that “The
shift between old layout and new layout totally
confuses me and destroys my impression on the old
layout if I have any.” and “It was difficult to track
changes and estimate the numbers.” Furthermore, some
users pointed out that one-step animation was time
consuming.

The users also expressed their preferences for no-
animation because it was easy to focus and would
not be interrupted by animations. Another important
advantage of no-animation was the control of switching
between the old and new layouts. However, in terms of
estimating the numbers in Q4 and Q5, there was no clue
for guessing under the no-animation condition.

Discussion of user study results Overall, we have
compelling evidence that using multi-step animation
was significantly more accurate than the other two
conditions in terms of answering questions and was
significantly faster than one-step animation in terms of
completion time.

In terms of accuracy, we found significant differences
among the three animation conditions between
questions on local and global structures. No significant
difference was found for questions on local structures,
which asked about the change of image similarity
ranks and the disappearance of images. We discovered
that it was not difficult to obtain the right answer as
long as the users were able to identify highlighted
images in the new layout. = However, multi-step
animation was significantly more accurate than the
other two conditions when answering questions on
global structures such as estimating the number of
remaining images. Different image sizes and limited
comparison time added the difficulty to estimate under
no-animation and one-step animation conditions. Some
users might try their best to get an estimated answer,

while many other users selected “I don’t know.” as the
answer without much thinking or reasoning, increasing
the errors in these two conditions. This was why the
most number of “I don’t know.” answers came from Q4
and Q5.

In terms of task completion time, one-step animation
was significantly slower than multi-step animation and
no-animation, and no significant difference was found
between multi-step animation and no-animation. Post-
hoc analysis found a significant difference between
multi-step animation and no-animation at the slow
playback speed (H (1) = 8.59, p = 0.0034), but not at
the normal playback speed. Besides, no significant
difference was found in playback speed for the
no-animation condition, but multi-step animation
was significantly slower in completion time at the
slow playback speed (H(1) = 18.18, p <« 0.0001).
Therefore, it is very likely that, using multi-step
animation at the slow playback speed, more task
completion time needed was simply due to the longer
animation time itself. The users could not answer the
questions without waiting for the animation playing
to that specific step. For example, if the users want
to estimate the number of images that increase their
similarity ranks, they must wait until the second flying
process begins at the reorganization stage.

Our results indicated that the input image number
did not have a significant effect on the accuracy and
task completion time. Only one exception need to be
noticed, that is, multi-step animation was significantly
more accurate with a large number of input images
for Q3, which asked the users to track images with
larger or smaller similarity rank changes. Since the
large number of image input consists of five layers with
two repetition levels, it might be easier to identify the
difference between each layer, so as to identify the
degree of image similarity rank change.

No significant difference was found in terms of
accuracy under different playback speeds except that,
for Q3, multi-step animation generates significantly

Huan Zhang et al.:

more errors at the slow playback speed. It could be
possible that, given the slow playback speed, the users
would be more likely to forget the positions of images
in the old layout after the animation finished, leading
to wrong answers to the questions on similarity rank
change.

6 Conclusions and Future Work

Animated transition plays an important role in helping
the viewers grasp the changes of data, both locally
and globally. We have presented the AniMap, an
animated transition solution specifically designed for
similarity-based tiled image layouts. The image and
video results demonstrate the effectiveness of AniMap
in terms of improved understanding and increased
engagement. We have also conducted a user study to
compare our multi-step animated transition against no-
animation and one-step animation solutions. The results
show that multi-step animation significantly improves
the accuracy (especially for questions on global layout
structure) and the overall ratings. We plan to further
investigate flying paths by staggering the start times
for images going different distances and incorporating

temporal distortion factors?"l.

We would also apply
the general approach presented in this work to other
visualization applications where such a transition is not

inherently given.
Acknowledgements

This work was supported in part by the US National
Science Foundation (Nos. IIS-1017935 and CNS-
1229297). We would like to thank Dr. Robert Nemiroff
for providing the Astronomy Picture of the Day (APOD)
image collection to us. All the images at the APOD
website are credited to the owners or institutions where
they originated.

References

[1] J. Heer and G. G. Robertson, Animated transition
in statistical data graphics, IEEE Transactions on
Visualization and Computer Graphics, vol. 13, no. 6, pp.
1240-1247, 2007.

[2] B.B.Bederson and A. Boltman, Does animation help users
build mental maps of spatial information? in Proceedings
of IEEE Symposium on Information Visualization, 1999,
pp. 28-35.

[3] T. Bladh, D. A. Carr, and M. Kljun, The effect of
animated transitions on user navigation in 3D treemaps,
in Proceedings of IEEE Symposium on Information

Visualization, 2005, pp. 297-305.

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A Study of Animated Transition in Similarity-Based Tiled Image Layout 169

C. Gonzales, Does animation in user interfaces improve
decision making? in Proceedings of ACM SIGCHI
Conference, 1996, pp. 27-34.

D. Curvehambault, H. C. Purchase, and B. Pinaud,
Animation, small multiples, and the effect of mental map
preservation in dynamic graphs, IEEE Transactions on
Visualization and Computer Graphics, vol. 17, no. 4, pp.

539-552, 2011.
G. G. Robertson, R. Fernandez, D. Fisher, B. Lee,

and J. T. Stasko, Effectiveness of animation in trend
visualization, IEEE Transactions on Visualization and
Computer Graphics, vol. 14, no. 6, pp. 1325-1332, 2008.

M. Donskoy, Window navigation with and without
animation: A comparison of scroll bars, zoom and fisheye
view, in Proceedings of ACM SIGCHI Extended Abstracts,

1996, pp. 279-280.
K. Rodden, W. Basalaj, D. Sinclair, and K. Wood,

Does organization by similarity assist image browsing? in
Proceedings of ACM SIGCHI Conference, 2001, pp. 190-

197.

C. Wang, J. P. Reese, H. Zhang, J. Tao, and R. J.
Nemiroff, iMap — A stable layout for navigating large
image collections with embedded search, in Proceedings
of IS&T/SPIE Conference on Visualization and Data
Analysis, 2013.

B. Tversky, J. Morrison, and M. Betrancourt. Animation:
Can it facilitate? International Journal of Human-

Computer Studies, vol. 57, no. 4, pp. 247-262, 2002.
R. Baecker and I. Small, Animation at the interface, in The

Art of Human-Computer Interface Design, B. Laurel, Ed.

Addison-Wesley, 1990, pp. 251-267.

S. E. Hudson and J. T. Stasko, Animation support in
a user interface toolkit: Flexible, robust, and reusable
abstractions, in Proceedings ACM Symposium on User

Interface Software and Technology, 1993, pp. 57-67.
G. G. Robertson, S. K. Card, and J. D. Mackinlay,

The cognitive coprocessor architecture for interactive user
interfaces, in Proceedings ACM Symposium on User

Interface Software and Technology, 1989, pp. 10-18.
G. G. Robertson, J. D. Mackinlay, and S. K. Card,

Cone trees: Animated 3D visualizations of hierarchical
information, in Proceedings of the ACM SIGCHI

Conference, 1991, pp. 189-194.
J. D. Mackinlay, G. G. Robertson, and S. K. Card, The

perspective wall: Detail and context smoothly integrated,
in Proceedings of ACM SIGCHI Conference, 1991, pp.

173-176.
K. Yee, D. Fisher, R. Dhamija, and M. Hearst,

Animated exploration of dynamic graphs with radial
layout, in Proceedings of IEEE Symposium on Information

Visualization, 2001, pp. 43-50.
J. J. van Wijk and W. A. A. Nuij, A model for

smooth viewing and navigation of large 2D information
spaces, IEEE Transactions on Visualization and Computer
Graphics, vol. 10, no. 4, pp. 447-458, 2004.

170

[18] N. Elmgqvist, P. Dragicevic, and J.-D. Fekete, Rolling

the dice:

Multidimensional visual exploration using

scatterplot matrix navigation, [EEE Transactions on

Visualization and Computer Graphics, vol. 14, no. 6, pp.
1539-1148, 2008.
[19] J. Lasseter, Principles of traditional animation applied

interfaces.

Huan Zhang is a software engineer in
Dematic Corp. She received her BS
degree in Computer Science from Hunan
University of Commerce, China, in 2010,
and her MS degree in Computer Science
from Michigan Technological University
in 2012. Her research interests include
animation, data visualization, and user

Jun Tao is a PhD student of computer
science at Michigan Technological
University. His research interests include
flow visualization, image resizing, and
mesh editing. He received his BS degree
in software engineering from Sun Yat-sen
University, China, in 2008, and his MS
degree in computer science from Michigan

Technological University in 2010.

Tsinghua Science and Technology, April 2013, 18(2): 157-170

to 3D computer animation, in Proceedings of ACM
SIGGRAPH Conference, 1987, pp. 35-44.
[20] P. Dragicevic, A. Bezerianos, W. Javed, N. Elmqvist, and

J.-D. Fekete, Temporal distortion for animated transitions,
in Proceedings of ACM SIGCHI Conference, 2011, pp.
2009-2018.

Fang Ruan is a software engineer in
Google Inc. She received her MS degree
in Electrical Engineering from Huazhong
University of Science and Technology,
China, in 2004. From 2004 to 2009, she
was a software engineer in Guangdong
Nortel, China. She received her MS
degree in computer science from Michigan

Technological University in 2011. Her research interests include
multimedia system, animation, and large-scale data analysis.

l- _\

Chaoli Wang is an assistant professor
of computer science at Michigan
Technological University. His research
focuses on large-scale data analysis
and visualization, high-performance
computing, and wuser interfaces and
interaction. He received his BEng and
MEng degrees in computer science from

Fuzhou University, China, in 1998 and 2001, respectively, and
a PhD degree in computer and information science from the

Ohio State University in 2006. From 2007 to 2009, he was a
postdoctoral researcher at the University of California, Davis.
He has served on the program committees of the IEEE SciVis,
EuroVis, and IEEE PacificVis.

