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Abstract— For large volume visualization, an image-based
quality metric is difficult to incorporate for level-of-detail selec-
tion and rendering without sacrificing the interactivity. This is
because it is usually time-consuming to update view-dependent
information as well as adjust to transfer function changes. In
this paper, we introduce an image-based level-of-detail selection
algorithm for interactive visualization of large volumetric data.
The design of our quality metric is based on an efficient way to
evaluate the contribution of multiresolution data blocks to the
final image. To ensure real-time update of the quality metric
and interactive level-of-detail decisions, we propose a summary
table scheme in response to run-time transfer function changes,
and a GPU-based solution for visibility estimation. Experimental
results on large scientific and medical data sets demonstrate the
effectiveness and efficiency of our algorithm.

Index Terms— Data compaction and compression, perceptual
reasoning, viewing algorithms, interaction techniques, hierarchi-
cal image representation, volume visualization.

I. INTRODUCTION

D IRECT volume rendering with hardware texture map-
ping has become a standard technique for visualizing

three-dimensional scalar fields from scientific and medical
applications. An increasing number of these applications are
now producing large-scale data sets, ranging from gigabytes
to terabytes. One example is the Visible Woman (VisWoman)
data set with resolution of 512×512×1728 from The National
Library of Medicine, generated as part of the Visible Human
Project. Another example is the Richtmyer-Meshkov Insta-
bility (RMI) simulation performed at Lawrence Livermore
National Laboratory. The simulation was executed on a 2048×
2048×1920 rectilinear grid, and it produced 7.5 gigabytes of
data at each time step.

While it is common for the domain scientists to gener-
ate enormous amount of data, the size of video memory
in the state-of-the-art high-end graphics hardware is limited
to only several hundred megabytes. This disparity severely
challenges brute-force conventional hardware-texturing based
volume rendering approaches. New visualization systems that
can scale adequately and ensure a high level of interactivity are
needed. Among several alternatives, multiresolution volume
rendering [13], [17], [31] is a solution that can reduce the
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rendering cost dramatically. To perform interactive rendering, a
multiresolution data hierarchy composed of multiple spatially
partitioned blocks is first created. At run time, as the user
navigates through the hierarchy, various amounts of data at
different levels of detail can be extracted and used for the
rendering.

Often, such a level-of-detail (LOD) is determined by various
user-specified parameters, such as the tolerance of errors based
on certain data-dependent metrics [1], [19], [29], different
view-dependent parameters [17], [21], or both [12], [13], [22],
[32]. In general, these metrics can be classified as data-based
and image-based metrics. Data-based metrics measure the
distortion between low and high (or full) resolution data blocks
in the volume. The most widely used data-based metrics are
mean square error (MSE), L2-norm, and signal-to-noise ratio
(SNR). These metrics have clear physical meanings and are
simple to compute. However, they are usually not effective in
predicting the quality of the rendered images due to the lack of
correlation between data and image, as indicated in [7], [15],
[22], [27], [30]. Image-based metrics focus on the ultimate
images the user perceives, and strive to capture the quality
loss in the rendered images introduced by rendering low
resolution data. These metrics are intrinsically view-dependent
and more difficult to develop in conjunction with interactive
LOD selections for large volume visualization. The major
challenge lies in designing an image-based metric for quality-
driven LOD selection, and updating the metric fast enough as
not to harm the interactivity.

In this paper, we present an interactive LOD selection and
rendering algorithm using an image-based quality metric for
visualizing large volumetric data. The main contributions of
our paper are:
• We introduce an image-space model for the quality metric

design, based on an efficient way to evaluate the impor-
tance values of coarse-grained multiresolution data blocks
on the final image. Fig. 1 shows a comparison of the LOD
rendering of the VisWoman data set using our image-
based quality metric and the MSE-based and SNRMSE-
based (MSE of SNR) metrics. Unlike traditional LOD
selection algorithms using data-based metrics, our LOD
selection algorithm captures the structural distortion of
the data and generates images of better visual quality
under similar block budgets.

• Our method is adaptive to changes of the input transfer
function. We utilize a zigzag run-length encoding scheme
to store summary tables of data blocks in the mul-
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Fig. 1. (a) shows a zoom to the upper skeleton of the VisWoman data set, rendered with full resolution. (b) (MSE-based, 36 blocks), (c)
(SNRMSE-based, 37 blocks), and (d) (image-based, 34 blocks) show a closer zoom to the spine while rendered in low resolution.

tiresolution hierarchy with very small storage overhead
(around 1% of the original volume data). During the run-
time rendering, we can update the quality metric within
seconds for large data sets whenever the transfer function
changes at run time.

• Based on summed area tables (SATs), we propose a
GPU reduction scheme that can efficiently perform the
visibility estimation for multiresolution data blocks, en-
suring real-time update of view-dependent information
and interactive LOD selection.

The remainder of the paper is structured as follows. First,
we present background and review related work in Section II.
In Section III, we briefly introduce our multiresolution data
representation for large three-dimensional data sets. In Sec-
tion IV, we describe our multiresolution LOD selection and
rendering algorithm in detail. Experimental evidence showing
the visual quality gain using our image-based LOD selection
over data-based ones is provided in Section V. The paper is
concluded in Section VI with future work for our research.

II. BACKGROUND AND RELATED WORK

A. Background

Multiresolution Data Representation: Building a multires-
olution data hierarchy allows the user to visualize data at
different scales, and balance image quality and computation
speed. A number of techniques have been developed to provide
hierarchical data representation for volumetric data, such as
the Laplacian pyramid [9], multi-dimensional trees [32], and
octree-based hierarchies [1], [17]. Muraki [25] first introduced
the use of wavelet transforms for volumetric data. Westermann
[31] presented a framework for approximating the volume
rendering integral using multiresolution spaces and wavelet
projections. More recently, Guthe et al. [13] presented a
wavelet-encoded hierarchical representation for large volume
data sets that supports interactive walkthroughs on a single
commodity PC.

Image-Based Quality Measurement: The lack of correlation
between the type of error in an image and the response of
the human visual system (HVS) to different types of errors
prompted researchers to develop image-based metrics. Jacobs
et al. [15] introduced an image-query metric for searching
in an image database using a query image similar to the
intended target. The metric makes use of multiresolution

wavelet decompositions of the query and database images, and
operates on the coefficients of these decompositions. Gaddipati
et al. [7] presented a wavelet-based metric which captures
the change in images wrought by operators and the image
synthesis algorithms. Sahasrabudhe et al. [27] proposed a
quantitative technique which accentuates differences in images
and data sets through a collection of partial metrics. A study
of different image comparison metrics, categorized into spa-
tial domain, spatial-frequency domain, and perceptually-based
metrics, was presented in [33]. Alternatively, Wang et al. [30]
proposed the use of structural similarity for the design of
image quality measures. Experimental results show that their
Structural Similarity Index simulates the response of the HVS
with low computation cost.

In the context of large volume visualization, an image-
based metric is difficult to incorporate because of the following
reasons: First, image-based metrics need to consider run-time
information, such as the viewing, projection, and occlusion.
Unlike most data-based metrics which can be easily computed
in a preprocessing stage, to get view-dependent occlusion
information for a large data set, one has to resort to either so-
phisticated precomputation with considerable overhead [8], or
run-time calculation with rough approximation [12]. Next, the
user may adjust the transfer function during the rendering in
order to reveal different features. Image-based metrics should
be adaptive to run-time transfer function changes. Previous
work on large data visualization usually assumes the input
transfer function is fixed, or is limited to a family of transfer
functions consisting of a series of basis functions [8]. Last, the
human observer plays a central role in perceiving the image
quality. Therefore, image-based metrics should also take into
account human perception [28] in the visualization process.
The factors need to be considered include the perception
of distance, coverage, shape, color, occlusion, texture, and
lighting. In this paper, we integrate an image-based quality
metric into the multiresolution LOD selection and rendering
framework.

Visibility Computation: To accelerate the process of image
generation, visibility culling has long been employed [2]
in rendering large polygonal models as well as volumetric
data sets. Klosowski and Silva [16] introduced the time-
critical Prioritized-Layered Projection (PLP) algorithm for fast
rendering of high depth complexity scenes, using a solidity-
based metric for visibility estimation. A similar approach that
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TABLE I

THE COMPARISON OF THE THREE APPROACHES.

approach Guthe et al. [12] Ljung et al. [22] our approach
data hierarchy octree-based flat block-based octree-based

error evaluation RGB, use max error CIELUV, MSE-based CIELUV, image quality measure
block projection projection size not considered luminance, projection size, thickness

visibility estimation assume uniform opacity use simplified histogram use low resolution data
occlusion only occlusion only emission + occlusion

raycasting, CPU raycasting, CPU SAT, GPU
transfer function not adaptive adaptive, 12-level simplified histogram adaptive, 256-level histogram

integrates occlusion culling with view-dependent rendering
was given in [4]. Gao et al. [8] proposed a Plenoptic Opacity
Function (POF) scheme, which encodes the view-dependent
opacity of a volume block for visibility culling of large
volume data. Utilizing visibility information for multiresolu-
tion volume rendering has not been widely studied, nor has
the potential of using programmable graphics hardware for
visibility estimation been fully explored.

B. Related Work

Two recent methods have been proposed for error mea-
surement and visibility calculation within the multiresolution
volume rendering framework. Guthe et al. [12] presented
several improvements on compression based multiresolution
rendering of large data sets to speed up the volume rendering
process. The screen-space error was measured as the maximum
error produced by each block multiplied by its projection
size. The maximum error was calculated by simply adding
the differences of RGB color and opacity components, rather
than more correct opacity-modulated color differences. The
visibility estimation was performed for empty space skipping
and occlusion culling to speed up the rendering. They took a
conservative way of visibility testing, and assumed a uniform
opacity for each data block for very rough approximation.
Ljung et al. [22] focused on incorporating transfer function
into adaptive decompression of volume data for multiresolu-
tion volume rendering. Similar to [21], they took a flat block-
based volume decomposition approach. At the compression
stage, they calculated the meta-data for each block: the average
scalar value, the root-mean-square (RMS) wavelet coefficients,
and a simplified histogram. The error metric was based on a
simplified version of MSE in the CIELUV space. To account
for occlusion, a low resolution ray-casting renderer was used
to estimate the average opacity of each block, followed by
empirical tests for approximating the simplified discrete ren-
dering equation with no emission factor.

In our work, the goal is to incorporate an image-based
quality metric for multiresolution volume rendering of large
data sets. Thus, our main focus is on quality-driven interactive
LOD selection, rather than compression based rendering [12],
or transfer function based decompression [22]. To achieve
this goal, we propose much more refined solutions at each
step of our algorithm. Our image-based quality metric takes
into account the emission as well as the occlusion of the
multiresolution data blocks, and is more accurate than the
simplified ones in [12] and [22]. We present a summary table

scheme to account for the run-time transfer function change
with much higher precision (256-level histogram) than the
one (12-level simplified histogram) in [22]. Using simplified
histogram has the risk of missing important details in the
data. Therefore, our refined solution is more suitable for large
data sets with high dynamic range. Our scheme allows one
to update the errors for a large volume of size around 10243

within seconds. Also, we introduce a GPU-based reduction
scheme for getting estimated visibility for the data blocks in
real time, while both of those methods in [12] and [22] used
only the software raycasting approach. We use low resolution
data for visibility estimation, which is more exact than just
assuming a uniform opacity [12] or taking the simplified
histogram [22] for each block. In Table I, we list the major
differences between our approach and the two related ones.

III. MULTIRESOLUTION DATA HIERARCHY

To build a multiresolution data hierarchy from a large three-
dimensional data set, we use wavelet transforms to convert the
data into a hierarchical multiresolution representation, called
the wavelet tree [13]. The wavelet tree construction algorithm
starts with subdividing the original 3D volume into a sequence
of blocks with the same size (assuming each has N voxels).
These raw volume blocks form the leaf nodes of the wavelet
tree. After performing a 3D wavelet transform on each block, a
low-pass filtered subblock of size N/8 and wavelet coefficients
of size 7N/8 are produced. The low-pass filtered subblocks
from eight adjacent leaf nodes in the wavelet tree are grouped
into a single block of N voxels, which becomes the low
resolution data stored in the parent node. We recursively apply
this 3D wavelet transform and subblock grouping process in a
bottom-up manner till the root of the tree is reached, where a
single block of size N is used to represent the entire volume.
To reduce the size of the coefficients stored in the wavelet
tree, the wavelet coefficients in each tree node are set to zero if
they are smaller than a user-specified threshold. These wavelet
coefficients are then compressed using run-length encoding
combined with a fixed Huffman encoder. Note that in the
wavelet tree, the multiresolution data blocks associated with all
the tree nodes have data of the same size, which is N. However,
the spatial resolutions they represent may vary, depending on
which level of the tree the corresponding nodes lie on.

Coupled with the construction of the wavelet tree, multires-
olution error ε is evaluated for each of the tree nodes. We
calculate the error as the summation of the errors between the
parent block and its eight immediate child blocks. We also
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take into account the maximum error of the child blocks, as
an approximation of the error between the parent block and
the original full-resolution data block it represents. Written in
equation:

εbi =
7

∑
j=0

εi j +max{εb j |
7
j=0} (1)

where εi j is the voxel-wise error between parent block bi and
its jth child block b j (Note that b j contributes one eighth of
the low-pass filtered data to bi. For each voxel value in b j,
we linearly interpolate its corresponding value from its low-
pass filtered data in bi.); εbi and εb j are the multiresolution
errors of blocks bi and b j respectively. As a special case, if
block bi is associated with a leaf node in the hierarchy, we
define its error as a small constant C. Depending on the need,
εi j can be calculated in different ways. For example, we can
directly calculate it in the scalar data space using MSE or
SNRMSE (MSE of SNR), or in the RGB or the CIELUV
color space. The multiresolution errors in the data hierarchy
are then normalized for our use.

IV. LOD SELECTION AND RENDERING ALGORITHM

Our multiresolution LOD selection and rendering algorithm
optimizes the quality of rendered images through the use of an
image-based quality metric. Our quality metric evaluates the
importance values of multiresolution data blocks by examining
the contribution of data blocks to the final image, based on the
discretized volume rendering integral (DVRI). The evaluation
approximates the emission of each block, as well as takes
into account the occlusion caused by the blocks in front of
it. To capture the multiresolution error in the data hierar-
chy, we modulate the importance value with the distortion
between low and high resolution data blocks, calculated in
the roughly perceptually-uniform CIE L∗u∗v∗ (CIELUV) color
space. To ensure a real-time update of the quality metric, we
propose a summary table scheme to respond to changes of the
transfer function, and a GPU reduction scheme for visibility
estimation. At run time, for a given viewing direction, the
LOD selection is made based on a priority queue scheme
utilizing the importance values of multiresolution blocks as
their priority values. The wavelet tree traversal maintains the
LOD as a cut through the hierarchy, and the importance values
dictate the sequence of LOD refinements. A certain number
of blocks up to a user-specified budget are extracted and sent
to the texture hardware for rendering.

A. Volume Rendering Integral

According to the emission-absorption optical model [23],
the volume rendering integral (VRI) that calculates the amount
of light I along a viewing ray r through the volume is given
by:

Ir =
∫ D

0
c̃(s(~x(λ ))) exp(−

∫ λ

0
τ(s(~x(λ ′))) dλ ′) dλ (2)

where s(~x(λ )) is the scalar value at position ~x(λ ) in the
volume, parameterized by the distance λ to the viewpoint;

c̃(s) is the volume source term or intensity; τ(s) defines the
attenuation function.

In general, the VRI cannot be evaluated analytically. There-
fore, practical volume rendering algorithms discretize the VRI
by numerical approximation. Using Riemann sum for n equal
ray segments of length D/n, and further approximating the
exponential function with the first two terms of the Taylor
series expansion, we get the discretized volume rendering
integral (DVRI) [24], also known as the compositing equation
[20]:

Ir =
n

∑
i=0

c(si)α(si)
i−1

∏
j=0

(1−α(s j)) (3)

where c(s) and α(s) define the color and opacity transfer
function. This equation denotes that at each discrete sample
position i along the viewing ray r in the volume, light is
emitted according to the term c(si)α(si), which is absorbed
by the volume at all positions along r in front of i according
to the term α(s j). Eqn. 3 serves as the foundation for our
design of importance values for multiresolution data blocks.

B. Importance Value Design

The DVRI in Eqn. 3 evaluates the amount of light visible
to the eye on a per-ray basis. It is also possible to look at
the equation on a per-slice basis, which leads to the popular
slice-based compositing technique for volume rendering. In
this paper, the underlying entity for our LOD selection and
rendering algorithm is a data block. Therefore, we evaluate the
importance values of multiresolution data blocks by approxi-
mating Eqn. 3 on a per-block basis. The importance value of
a data block b along the viewing direction r is calculated as
follows:

Ib = (c(µ)α(µ) · t · a) · ν (4)

where µ is the mean scalar data value of block b; c(µ)
and α(µ) define the color and opacity transfer function (we
actually calculate the magnitude of its corresponding CIELUV
color); t is the average thickness (the length of the viewing
ray segment inside the block) of block b; a is the screen
projection area of the block, and ν is its estimated visibility.
Similar to Eqn. 3, here ((c(µ)α(µ) · t · a) approximates the
emission of block b along direction r, and ν accounts for
the attenuation. Given a viewing direction r, Ib essentially
evaluates the contribution of block b to the final image.

If we record the mean scalar value µ of each block during
the construction of the multiresolution data hierarchy, we can
quickly compute c(µ) and α(µ) on the fly. Also, given a
viewing direction r, the average thickness t and projection area
a of a block can be easily calculated at run time. However,
to obtain the estimated visibility ν of a block interactively
is non-trivial, and we will describe our real-time GPU-based
solution in Section IV-E.

Even if two multiresolution data blocks have the same
approximate emission and absorption terms, the distortions
between the blocks and their children can be different. Taking



WANG et al.: INTERACTIVE LEVEL-OF-DETAIL SELECTION USING IMAGE-BASED QUALITY METRIC FOR LARGE VOLUME VISUALIZATION 5

into account the relative distortion, we modulate the impor-
tance value with the multiresolution error between low and
high resolution data blocks. Eqn. 4 becomes:

Ib = (c(µ)α(µ) · ε · t · a) · ν (5)

where ε is the distortion between block b and its higher
resolution child blocks, normalized to [0,1]. The motivation
behind this modulation is that if a block contains larger
distortion, then it should receive a higher priority value for
LOD refinements.

C. Multiresolution Error Evaluation

Previously, researchers have proposed various ways to cal-
culate the multiresolution error ε in the scalar data space [1],
[19], [29], and in the RGB [5], [12] or the CIELUV [22] color
space. In this paper, we take an image-space approach and
opt to evaluate the multiresolution error in the perceptually-
adapted CIELUV color space, as suggested by Glassner [10].

Let us consider two data blocks bi and b j, where b j is an
immediate child block of bi. We define the multiresolution
error between bi and b j as follows:

εi j = σ̃i j ·
µ̃2

i + µ̃2
j +C1

2µ̃iµ̃ j +C1
·

σ̃ 2
i + σ̃ 2

j +C2

2σ̃iσ̃ j +C2
(6)

where σ̃i j is the covariance between bi and b j; µ̃i and µ̃ j are
the mean values of bi and b j respectively; σ̃i and σ̃ j are the
standard deviations of bi and b j respectively (small constants
C1 and C2 are included to avoid instability when µ̃iµ̃ j and
σ̃iσ̃ j are very close to zero):

σ̃i j =
1

N−1

N

∑
k=1

(x̃ik− µ̃i)(x̃ jk− µ̃ j) ; (7)

σ̃i =
1

N−1

N

∑
k=1

(x̃ik− µ̃i)
2 ; σ̃ j =

1
N−1

N

∑
k=1

(x̃ jk− µ̃ j)
2 . (8)

Here, N is the number of voxels in the block, and x̃ is the
volume source term. Using Eqn. 1 and 6, we can calculate
the multiresolution error for each tree node as we build up
the multiresolution data hierarchy. Eqn. 6 consists of three
parts, namely, covariance, luminance distortion, and contrast
distortion. The first part is the covariance between bi and
b j, which measures the degree of linear correlation between
the two blocks (σ̃i j is always non-negative since we actually
calculate it based on the CIELUV color differences of the
pairs (x̃ik, µ̃i) and (x̃ jk, µ̃ j), as explained in Eqn. 9 and 10).
Even though bi and b j are linearly related, there still might be
relative distortions between them. Therefore, we add two more
parts to the equation. The second one, measures how close the
mean luminance is between bi and b j. The minimum value of
1.0 is achieved if and only if µ̃i = µ̃ j. On the other hand,
σ̃i and σ̃ j can be viewed as estimate of the contrast of bi

and b j, so the third part measures how similar the contrasts
of the two blocks are. Also, the minimum value of 1.0 is
achieved if and only if σ̃i = σ̃ j. Collectively, these three parts
capture the distortion between the two blocks. The luminance
distortion and contrast distortion are originally from the image

quality assessment literature [30], and have been shown to be
consistent with the luminance masking and contrast masking
features in the HVS respectively.

One should notice that the input source terms, x̃ and µ̃ , are
CIELUV color values, rather than original scalar data values.
Accordingly, we define x̃ik − µ̃i as follows (x̃ jk − µ̃ j can be
defined similarly):

x̃ik− µ̃i = ∆E( f (crgb(xik)α(xik)), f (crgb(µi)α(µi))) (9)

where xik is the scalar data value at the kth voxel position in
block bi; µi is the mean scalar value of bi; crgb and α define
the color and opacity transfer function; f is the function that
converts an RGB color to its CIELUV color [6]; ∆E is the
Euclidean distance between a pair of colors specified in the
CIELUV color space:

∆E =
√

∆L∗2 + ∆u∗2 + ∆v∗2 (10)

where ∆L∗, ∆u∗, and ∆v∗ are the differences of L∗, u∗, and v∗

components for the pair of CIELUV colors.

D. Summary Table Scheme

As we can see, the calculation of multiresolution error εi j

in Eqn. 6 requires the input of the color and opacity transfer
function (Eqn. 9). At run time, whenever the user adjusts the
transfer function, the multiresolution errors in the entire data
hierarchy have to be recomputed all over again. This entails a
considerable amount of computation overhead and makes the
whole LOD selection and rendering process non-interactive.
In the following, we describe a summary table scheme that
ensures real-time update of the errors in response to transfer
function changes.

Our summary table scheme is based on the observation
that, for large data sets, the size of the data range is often
many orders of magnitude smaller than the number of voxels
in the volume. For instance, the RMI data set is byte (8-bit)
data with a data range size of 256. However, the number of
voxels in the volume is 2048×2048×1920. Therefore, instead
of calculating Eqn. 7 and 8 by going through the individual
voxels, it suffices to count the frequencies of unique error
terms, which is much faster (similar observations have been
made and utilized in [5], [18]). In the case of byte data, there
are 2562 = 65536 combinations for σ̃i j, and only 256 cases for
σ̃i or σ̃ j. To compute the error, rather than adding individual
error terms voxel by voxel, we add the products of each unique
error term and the frequency of that term.

To realize this, first of all, for each of the data blocks at
the multiresolution hierarchy, we precompute the mean scalar
value µ , and keep a local histogram table H (256 entries):

m = H (xi)

where xi is the scalar value, m is the frequency of xi in the
block.

Next, for each data block associated with a non-leaf node in
the hierarchy, we keep a local correspondence table C (65536
entries):
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m = C (xi, x j)

where xi is the scalar data value in the current (parent)
block; x j is the data value in one if its eight immediate child
blocks; m is the frequency of the data pair. We refer to these
histogram and correspondence tables as summary tables. They
are created during the construction of the data hierarchy and
are precomputed only once. Besides this, we keep a global
distance table D (1+2+ . . .+255 = 32640 entries):

∆E = D (xi, x j)

where xi and x j are scalar data values, and xi < x j; ∆E is the
distance between xi and x j in the CIELUV color space.

Finally, we keep a global function table F (the number of
entries in the transfer function, usually 256):

L∗u∗v∗ = F (rgbα)

where rgbα is the RGB color and opacity in the current
transfer function, L∗u∗v∗ is the corresponding CIELUV color.
The global distance table and function table are initialized at
run time and are updated when the transfer function changes.

At run time, we can quickly calculate the multiresolution
error ε for each block using Eqn. 1 and 6-10, by looking up
the mean scalar value µ and summary tables (H and C) stored
in each of the blocks, as well as the global distance table D

and function table F. The lookup relationships are as follows:

µ̃i, µ̃ j ← µ,F ;

σ̃i, σ̃ j ← H,F ;

σ̃i j ← C,D .

Whenever the user changes the transfer function, only the
global distance table and function table need update.

For data sets other than byte data, quantization is necessary
in order to reduce the size of summary tables (otherwise,
the size of these tables could be even larger than the size
of actual data blocks, and the time for error calculation would
increase dramatically). For example, we can quantize the scalar
data range into 256 levels either uniformly or based on the
histogram of the whole data set. In this way, the total size of
the summary tables will remain small regardless of the data
type of the input volume.

One can observe that, usually there is a strong degree
of correlation between parent and child blocks in the data
hierarchy. This means that in the correspondence table C,
when xi is close to x j (i.e., the entry is close to the major
diagonal of the table), the frequency m is large. m is smaller,
actually often zero, if the entry is further away from the major
diagonal. Leveraging this observation, we can perform run-
length encoding on the correspondence table C in a zigzag
manner, as illustrated in Fig. 2. The zigzag run-length encod-
ing not only reduces the storage of correspondence tables, but
also improves the run-time performance. For instance, using
the run-length encoded correspondence tables C for the RMI

Fig. 2. Run-length encoding on the correspondence table C in a
zigzag manner. An example of an 8× 8 table is shown here. The
encoding starts from the red circle, and follows the red arrows.

data set, the total size of summary tables reduces from 208MB
to 44.1MB, and accordingly, the time to update multiresolution
errors decreases from 43 seconds to 13 seconds.

E. GPU-Based Visibility Estimation

Obtaining the exact visibility of the multiresolution data
blocks requires rendering the blocks. This is similar to ren-
dering the entire hierarchy, which could be rather slow and
defeats the purpose of the visibility test. For coarse-grained
multiresolution rendering, getting an approximate visibility of
a block suffices. In this scenario, the visibility computation
should be done prior to the actual rendering of blocks.

Fig. 3. Visibility estimation via rendering a low resolution of the
data. The visibility of a block is acquired when its nearest vertex is
in-between the current slice and the latest drawn one.

In our algorithm, we render a low resolution of the data
(for example, we can use the root of the data hierarchy)
by drawing front-to-back view-aligned slices, and evaluate
the approximate visibility of all the blocks during the slice
drawing, as illustrated in Fig. 3. The visibility of a block
is computed as (1− α), where α is the average opacity
within the block’s screen projection on the occlusion map,
accumulated right before the first slice intersecting the block
(α is considered as the accumulated opacity in front of that
block). Here we assume the visibility of a data block is
independent of the resolutions of all the occluding blocks
in front of it, because opacity correction is performed to
compensate the varying slice distances within data blocks of
different resolutions. Note that a conservative way of taking
the minimum opacity, commonly used in occlusion culling, is
unnecessary. For occlusion culling, the decision is to either
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render or discard a block, and getting the minimum opacity is
crucial to avoid producing incorrect images by leaving holes.
For multiresolution rendering, the whole volume is rendered
anyway, because the question is to select proper LODs for
different regions within the volume, rather than to render or
discard a region. Therefore, it is reasonable to get the average
instead of the minimum opacity.

To compute the estimated visibility for a data block, a naive
way is to read the alpha channel of the framebuffer to an off-
screen buffer after a certain number of slices are rendered, and
iterate through the pixels that the data block projects to and
obtain an average of the opacities. This software approach
is slow due to the framebuffer reads from the GPU to the
CPU (refer to the timing in Table IV). The testing time is
proportional to the size of output images and the number of
pixels each block projects to. To minimize the transferring of
pixels from the GPU to the CPU, we move all operations
to the GPU. Our GPU reduction scheme is based on the
summed area tables (SATs) [3]. The construction of a SAT
is linear to the number of pixels on the area being considered,
in our case the whole rendering screen. However, it only
takes constant time to retrieve the sum over any rectangular
area, which is done in one addition and two subtractions.
This fits perfectly in getting the corresponding averages from
the projections of the blocks. We build the SATs in multiple
passes with the support of framebuffer objects having double
auxiliary buffers (see the Appendix for the implementation
detail). Getting the estimated visibility for a block is performed
by another fragment program that looks up the four corners of
its projection in the output auxiliary buffer holding the SAT.

Testing shows that the time to perform GPU-based visibility
estimation is not negligible. For instance, with output image
resolution of 5122, each SAT takes around 10ms to compute
on an nVidia GeForce 7800 GT graphics card. In total, it took
about 0.3 second (recall that we need to recompute the SAT
whenever a certain number of slices of the low resolution data
are drawn) to update the visibility of 10499 non-empty blocks
for the RMI data set. If we perform such a test for every
frame, then the frame rate would be limited to around 3.3fps.
To overcome this constraint, we incorporate the following two
strategies to improve the rendering frame rates.

First, the number of block budget the user specifies is
usually much smaller than the total number of blocks in the
data hierarchy. For such a typical block budget and a given
transfer function, normally a large portion of the updated
visibility of blocks farther away from the viewpoint (more
likely to be occluded from the blocks in front of them) never
gets a chance to contribute to the current LOD decision.
Actually, for the RMI data set, tests show that about 30-
50% of the total number of blocks fall into this category.
In view of this, we can only draw the front slices up to a
certain percentage of the total number of slices, and update
the corresponding visibility of blocks that are closer to the
viewpoint. Any block whose visibility is not updated in this
run uses whatever it has from the latest previous run. In this
way, we can reduce the visibility estimation time to around
0.18 second for the RMI data set, if we only update 60% of
the front slices and blocks.

Second, the visibility of the blocks only changes a little bit
if the view does not change greatly. Therefore, if the angle
between the current viewing direction and the latest one with
the visibility updated is less than a threshold angle θ , we do
not update the visibility and use whatever we have from the
latest run. Otherwise, we need to update again. Here, θ is a
predefined small angle (initialized to 5 degrees in our test), and
is adaptive to the zooming of the data during the rendering.

By reducing the load to perform each run of visibility
estimation and the frequency of performing such estimations,
we can reuse visibility computation and utilize frame to frame
coherence, achieving smoother rendering and better frame
rates.

F. LOD Selection and Rendering

At run time, the user specifies the number of blocks as
a budget for rendering. Given a viewing direction, the LOD
selection is made based on a priority queue scheme. The
priority values of blocks are their importance values calculated
according to Eqn. 5 (where ν is updated per view and ε per
transfer function). Thus, a block with a higher importance
value is more likely to be selected for refinement during the
wavelet tree traversal. Constrained by the given budget, the
traversal maintains the LOD as a cut through the multireso-
lution data hierarchy, and refines the blocks on the cut in a
greedy manner.

The LOD selection and rendering works as follows: First,
we initialize the priority queue with the data block of the
lowest resolution, i.e., the root of the multiresolution data
hierarchy. Then, we successively refine the block with the
highest priority value in the queue until the budget is met.
The refinement is performed by deleting the block b with
the highest priority value, updating the importance values of
b’s eight child blocks, and inserting the child blocks into the
queue. Finally, all the data blocks in the queue are sorted in
front-to-back viewing order. These blocks are reconstructed,
if necessary, and sent to texture hardware for rendering.

As we may anticipate reusing most of the reconstructed data
blocks for subsequent frames due to the spatial locality and
coherence exploited by the multiresolution data hierarchy, it
is desirable to cache the data blocks that have already been
reconstructed for better performance. The user can predefine
a fixed amount of disk space and memory dedicated for
the caching purpose. Upon requesting a data block for the
rendering, we retrieve its data from memory, provided the
block is cached in main memory. Otherwise, we need to load
the data from disk if the reconstructed data block is cached
on disk. If it is neither cached in memory nor on disk, then
we need to reconstruct the data block and load it into main
memory. When the system runs short of the available storage
for caching the reconstructed blocks, our replacement scheme
will swap out a data block that has been visited least often.

V. RESULTS AND DISCUSSION

A. Results

We experimented with our LOD selection and rendering
algorithm on the VisWoman and RMI data sets, as listed in
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k)

Fig. 4. First row: (a) shows an overview and (b)-(e) show a zoom to the pelvis. One can observe that (d) (image-based, 77 blocks, 8.29%
of full data) shows more details than (b) (MSE-based, 80 blocks, 8.61%) and (c) (SNRMSE-based, 79 blocks, 8.50%). The reference image
(e) is rendered with full resolution (929 blocks). Second row: objective image comparison in the CIELUV color space. (f), (g), and (h) show
the difference between (b) and (e), (c) and (e), and (d) and (e) respectively. The color map (i) maps ∆E to color. Third row: (j) and (k) show
the numbers of blocks selected in each of the multiresolution error levels for (b) and (c) respectively.

Table II. The decision for the block size was based on the cost
of performing the wavelet transform for a single data block,
and the rendering overhead for final image generation. We ex-
tended one voxel overlapping boundaries between neighboring
blocks in each dimension when breaking the original volume
data into blocks in order to produce seamless rendering. As a
result, both hierarchies have a tree depth of six. For both data
sets, the Haar wavelet transform with a lifting scheme was
used to construct the data hierarchies. A lossless compression
scheme was used with the threshold set to zero to compress
the wavelet coefficients. For LOD rendering, we compared the
images generated using our image-based quality metric and
two data-based metrics: MSE and SNRMSE (MSE of SNR).
For the MSE-based (SNRMSE-based) metric, we directly used
the multiresolution error as the importance value, while εi j is
the MSE (SNRMSE) of the scalar data values of blocks bi and
b j in Eqn. 1. Similar block budgets were set for all three cases
for fair comparison. All tests were performed on a 3.0GHz
Intel Xeon processor with 3GB main memory, and an nVidia
GeForce 7800 GT graphics card with 256MB video memory.

The first row of Fig. 4 shows the LOD rendering of the
VisWoman data set using the three metrics. The full-resolution
reference image is provided for comparison. We used a transfer
function that highlights the skeleton. It can be observed that

TABLE II

THE VISWOMAN AND RMI DATA SETS.

data set (type) VisWoman (short) RMI (byte)
volume dimension 512×512×1728 2048×2048×1920
block dimension 32×32×64 128×128×64

volume (block) size 864MB (128KB) 7.5GB (1MB)
# non-empty blocks 9446 10499
compression ratio 2.37:1 5.60:1

when we rendered the data in low resolution, the LOD selec-
tion using the image-based quality metric shows more details
than the MSE-based and SNRMSE-based metrics. In Fig. 4 (j)
and (k), we compare the numbers of blocks selected in each
of the multiresolution error levels for (b) and (c) respectively
(the multiresolution errors have been normalized). Assuming
that our multiresolution errors are able to capture the structural
distortion of the data, we can infer that both MSE-based and
SNRMSE-based metrics perform much worse due to their
selections of not-so-highly prioritized multiresolution data
blocks. An objective image comparison was also conducted
to testify the visual quality gain obtained using our image-
based quality metric. We calculated the pixel-wise differences
between the low resolution image and the reference image in
the CIELUV color space. The difference threshold ∆E ≥ 6.0
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(a) (b) (c)

(d) (e)

Fig. 5. (a) (MSE-based, 55 blocks), (b) (SNRMSE-based, 55 blocks), and (c) (image-based, 55 blocks) show a zoom to the center of the
RMI data set, while an overview is shown in (d). (e) shows the numbers of blocks rendered in each of the ten visibility levels for (a)-(c)
respectively.

(a) (b) (c) (d) (e)

Fig. 6. (a) shows the reference image with full resolution (1237 blocks). (b) shows the percentage of pixels with ∆E ≥ 6.0 in the difference
images for the three metrics, under five different block budgets. (c)-(e) show three difference images near 5%, as indicated in (b): (c)
(MSE-based, 150 blocks), 5.51%, (d) (SNRMSE-based, 128 blocks), 5.48%, and (e) (image-based, 50 blocks), 4.75%.

gives the noticeable pixel distortion [22]. At the second row of
Fig. 4, we show these difference images side by side. Clearly,
the ones with the MSE-based and SNRMSE-based metrics
contain larger visual distortion. Another rendering example of
the VisWoman data set is shown in Fig. 1. We can see that
the image-based LOD selection shows clearer structures along
the spine.

Fig. 5 shows the LOD selection and rendering of the RMI
data set using the three metrics. We zoomed into the center
of the data and compared fine details after an overview. The
image-based quality metric takes into account the multireso-
lution error and visibility of each data block, thus puts more
refinement effort on the blocks that have larger visual contribu-
tion. Fig. 5 (e) shows the numbers of blocks rendered in each
of the ten visibility levels for Fig. 5 (a)-(c) respectively. As we
can see, compared with the ones with MSE and SNRMSE, the
image-based one selected more blocks with higher visibility.
Similar conclusions can be drawn from Fig. 6, where the
image-based quality metric achieves near 5% noticeable pixel
distortion with a block budget of only 50, as opposed to
150 and 125 for the MSE-based and SNRMSE-based ones
respectively. To verify that including estimated visibility ν in

Eqn. 5 does help in LOD selections, we tested our image-
based LOD selection algorithm without and with visibility
information. The results in Fig. 7 show that adding visibility
information in the LOD selection leads to more refinement on
blocks closer to the viewpoint and with higher visibility. All
the results in Fig. 1 and 4-7 confirm the effectiveness of our
image-based LOD selection algorithm.

We also experimented with our summary table scheme for
updating the multiresolution errors. With 256-level histograms
and transfer functions, the statistics is shown in Table III. For
both data sets, the zigzag run-length encoding scheme takes at
least 70% less time to update the multiresolution errors with
much smaller storage overhead than the one with no coding.
The summary table scheme proved very efficient in response to
the transfer function changes with negligible storage overhead.
A rendering example of the VisWoman data set is shown in
Fig. 8, where a different transfer function was used to highlight
both the skin and the skeleton. We zoomed into the left foot
and rendered in close to full resolution. The three methods
generated similar results as we approached full resolution.
Still, it can be seen that the MSE-based method contains much
noise coming from the 3D test bed surrounding the cadaver



10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

(a) (b) (c) (d) (e)

Fig. 7. (a) shows a zoom to the knee joints of the VisWoman data set, rendered with full resolution (1033 blocks). (b) (w/o visibility, 156
blocks) and (c) (with visibility, 154 blocks) show the different images. (d) (w/o visibility, 37 blocks) and (e) (with visibility, 32blocks) show
a zoom of the RMI data set with block boundaries drawn to illustrate different LODs.

TABLE III

THE STATISTICS OF SUMMARY TABLE SCHEMES.

no encoding zigzag run-length encoding
data set space (overhead) update time space (overhead) update time

VisWoman 175MB (20.25%) 34s 9.22MB (1.07%) 5s
RMI 208MB (2.71%) 43s 44.1MB (0.57%) 13s

(a) (b) (c) (d)

Fig. 8. (a) (MSE-based, 107 blocks), (b) (SNRMSE-based, 108 blocks), and (c) (image-based, 106 blocks) show a zoom to the left foot,
rendered close to full resolution. The reference image (d) is rendered with full resolution (151 blocks). White frames are drawn in (a) and
(b) to indicate some of the differences.

(the blocks corresponding to the test bed have larger MSEs
yet less visual importance than the blocks corresponding to
the foot.). Although the SNRMSE-based one generates the
result with the least noise, it leaves some portion rendered in
lower resolution, which is discernable when compared with
the reference image.

After applying the two strategies on visibility estimation
for improving the performance (Section IV-E), we compared
the timing of visibility estimation for CPU and GPU solutions.
We evaluated the visibility of the multiresolution blocks in the
data hierarchy for a wide variety of block budgets (from 10
to 11000), together with different combinations of translation,
scale, and rotation. Table IV gives the upper bounds of the
timing for the two data sets with four output image resolutions.
The timing results show that the solution with the GPU is
about three to four times faster than the CPU one.

B. Discussion

Compared with the traditional MSE-based and SNRMSE-
based metric, our experience shows that for most of the
cases, the image-based quality metric gives LODs better visual

quality. This is especially true when the block budget is small
(usually below 20%) compared with the number of blocks for
full resolution. As one gradually increases the block budget,
the three metrics generate closer results as expected. However,
as shown in Fig. 8, we still get some improvement over the
data-based metrics. Our image-based quality metric performs
quite well even when the data contains noise. For example, the
VisWoman data set contains noise from the 3D test bed. Fig. 4
shows that the image-based quality metric is insensitive to the
noise and captures the structural distortion of the data, since
more refinement effort was put on the blocks corresponding
to the pelvis. This result is consistent with the image quality
measure using structural similarity [30]. Finally, we compared
our image-based quality metric with Guthe’s screen-space
metric (refer to Section II-B). We used the same estimated
visibility with an implementation of the screen-space error and
tested both data sets. The results in Fig. 9 show the advantage
of our image-based quality metric over the screen-space error
metric.

Our summary table scheme works well when the space
overhead for storing the tables is small, compared with the
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TABLE IV

THE TIMING OF VISIBILITY ESTIMATION WITH DIFFERENT OUTPUT IMAGE RESOLUTIONS.

VisWoman
image resolution CPU draw FB read get avg GPU draw SAT

256×256 0.219s 8.72% 63.37% 27.91% 0.072s 9.72% 90.28%
512×512 0.578s 3.84% 58.59% 37.57% 0.151s 17.21% 82.79%
768×768 1.078s 2.56% 52.96% 44.48% 0.312s 17.63% 82.37%

1024×1024 1.531s 1.79% 42.83% 55.38% 0.487s 21.56% 78.44%
RMI

256×256 0.359s 6.41% 56.02% 37.57% 0.103s 9.71% 90.29%
512×512 0.828s 3.53% 52.16% 44.31% 0.185s 17.84% 82.16%
768×768 1.594s 2.09% 44.30% 53.61% 0.372s 16.13% 83.87%

1024×1024 2.338s 1.35% 34.47% 64.18% 0.538s 20.45% 79.55%
FB read = framebuffer read, get avg = get average occlusion

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9. First row: (a) (full resolution, 486 blocks), (b) (Guthe’s screen-space metric, 56 blocks), and (c) (our image-based metric, 53 blocks)
show a zoom to the left pelvis. (d) and (e) show the difference between (b) and (a), and (c) and (a) respectively. Second row: (f) shows a
zoom rendered in high resolution (427 blocks). (g) (Guthe’s screen-space metric, 43 blocks), and (h) (our image-based metric, 41 blocks)
show a zoom of (f). (i) and (j) show the difference images for (g) and (h) respectively.

size of the input data set. In our experiments, good results
were obtained with block sizes of 323 or 643 for a data set of
size around 10243. This allows one to have histogram tables
with sufficient entries (such as 256 in our experiments), while
still keeping the scheme efficient. For a smaller block size,
such as 163, we can reduce the number of entries in the
histogram table, or use a simplified histogram to maintain an
effective tradeoff between storage and processing requirements
versus having enough precision for summary tables generation.
On the other hand, our current solution is suitable for value-
based transfer functions. There is a need of further research on
generalizing the summary table scheme for multidimensional
transfer functions.

To our knowledge, we are the first to utilize the GPU
implementation of SATs for visibility estimation. We tested
our GPU-based algorithm on the nVidia GeForce 7800 GT
graphics card, which is based on the new generation PCI
Express bus architecture. With PCI Express, the bandwidth

between the CPU and the GPU increases to over 4GB per
second in both upstream and downstream data transfers. In
this case, framebuffer reads become less a constraint for the
CPU-based solution. Still, it can be seen from Table IV that
framebuffer reads take at least one third of the total time for
the CPU solution. Our experiment reports that utilizing the
GPU for visibility estimation, one can achieve a speedup up
to four times.

For a typical output image resolution of 5122, the summary
of block classification is listed in Table V. For data-based
metrics, the classification time is almost negligible since we
only use the MSE or SNRMSE for block prioritization. For our
image-based metric, taking into account the time for visibility
estimation, we are able to prioritize all the multiresolution
data blocks for LOD selection at a speed of 19.1kblocks/s for
the VisWoman data set, and 14.0kblocks/s for the RMI data
set. This result is comparable to the significance classification
performance presented in [22], considering that we take a more
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TABLE V

THE SUMMARY OF BLOCK CLASSIFICATION WITH 5122 OUTPUT

IMAGE RESOLUTION.

data set VisWoman RMI
block dimension 32×32×64 128×128×64

# blocks 9446 10499

data-based 0.028s 0.032s

visibility 0.151s 0.185s
prioritization 0.343s 0.563s

transfer function 5s 13s

refined and exact solution for block classification and visibility
estimation. Note that the timing for visibility and prioritization
gives the upper bound for all blocks. In actual rendering,
the block budget is usually around tens to hundreds, and the
classification time is much smaller than the upper bound (for
instance, the prioritization time for the RMI data set is 0.016
second when the block budget is 1000). The classification of
the blocks in the entire data hierarchy can be finished within
seconds even if the user changes the transfer function at run
time. This timing performance could be further improved with
the support of transfer function preview at reduced resolutions.
For example, the transfer function update time reduce to 1.7
seconds and 4.8 seconds from Table III for the VisWoman
and RMI data sets respectively, if both use 64-level rather
than 256-level transfer functions.

VI. CONCLUSION AND FUTURE WORK

The focus of this work is to develop an image-based LOD
selection algorithm for large volumetric data, and produce
images of better visual quality compared with traditional data-
based LOD selection algorithms, under similar block budgets.
In this paper, we have presented an interactive LOD selection
and rendering algorithm through the use of an image-based
quality metric. Experimental results on large scientific and
medical data sets demonstrate the effectiveness and efficiency
of our image-based LOD selection algorithm.

Our approach is promising due to its generality and flex-
ibility. The summary table scheme greatly alleviates the de-
pendence of the error calculation on the transfer function, and
thus allows one to update the errors within seconds whenever
the transfer function changes. The GPU reduction scheme for
visibility estimation is not limited to multiresolution volume
rendering, and is readily applicable to other large volume visu-
alization scenarios that capitalize on the visibility information.
Moreover, the hierarchical data representation and the user-
specified budget for rendering make our LOD selection scheme
suitable for time-critical multiresolution volume rendering
and remote visualization applications. Finally, one can have
different definitions and thus different ways of measurement
for the multiresolution error in Eqn. 5, which we plan to
explore more. In the future, we also would like to extend our
method for large-scale time-varying data visualization.

APPENDIX

THE GPU IMPLEMENTATION OF SATS

Nowadays, GPUs and fragment programs support render-
to-texture (RTT) with 32-bit floating-point channels for pixel

buffers (pbuffers) as well as framebuffer objects (FBOs).
This is important for the construction of SATs since the
sums require more precision. Our implementation uses the
GL_EXT_framebuffer_object extension to avoid the
context switching of pbuffers. Given an input FBO, a SAT
can be built by successively adding the columns from left
to right and then the rows from bottom to top. However, this
requires that the FBO is treated as both an input and an output
texture, which highly depends on the kinds of hardware and
graphics library available. To date, most implementations do
not have this capability. Therefore, we take an alternative and
build the SATs in passes with the support of FBOs having
double auxiliary buffers: one is the input, and the other is
the output. Both auxiliary buffers have the same size as the
rendering framebuffer. At the beginning, the alpha values from
the rendering buffer is mapped to the input buffer.

The construction of a SAT in the GPU is as follows: First
of all, we operate on the columns. At the ith pass, each texel
Ti(x,y) in the output buffer is updated using two texels from
the input buffer according to the following equation:

Ti(x,y) = Ti−1(x,y)+Ti−1(x−2i−1,y) (11)

where sampling off texture returns zero and does not affect
the sum. At the end of each pass, the auxiliary buffers are
swapped. For a rendering screen with resolution of n2, the
number of passes needed is log2(n). Then, the process is
repeated over the rows in a similar way to complete the SAT
construction.

The GPU implementation of SATs was first given by Green
[11] from nVidia, where a simple scanline-based algorithm
was presented and used for antialiasing in the traditional
way. For an input table of size n2, the number of passes is
2n. Our implementation requires 2 log2(n) passes with two
sample reads per pass. Actually, this could be further improved
by performing up to 16 sample reads per pass. Hensley
et al. [14] performed study on the tradeoff between the number
of rendering passes and the number of samples per pass. The
optimal tradeoff between the number of passes and the cost per
pass largely depends on the overhead of render target switches
and the design of the texture cache on the target platform.
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