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Chaoli Wang, Member, IEEE,and Kwan-Liu Ma, Senior Member, IEEE

Abstract— Quality assessment plays a crucial role in data
analysis. In this paper, we present a reduced-reference approach
to volume data quality assessment. Our algorithm extracts
important statistical information from the original data in the
wavelet domain. Using the extracted information as feature and
predefined distance functions, we are able to identify and quantify
the quality loss in the reduced or distorted version of data,
eliminating the need to access the original data. Our feature
representation is naturally organized in the form of multiple
scales, which facilitates quality evaluation of data with different
resolutions. The feature can be effectively compressed in size. We
have experimented with our algorithm on scientific and medical
data sets of various sizes and characteristics. Our results show
that the size of the feature does not increase in proportion to the
size of original data. This ensures the scalability of our algorithm
and makes it very applicable for quality assessment of large-scale
data sets. Additionally, the feature could be used to repair the
reduced or distorted data for quality improvement. Finally, our
approach can be treated as a new way to evaluate the uncertainty
introduced by different versions of data.

Index Terms— Quality assessment, reduced reference, wavelet
transform, statistical modeling, generalized Gaussian density,
volume visualization.

I. I NTRODUCTION

L EVERAGING the power of supercomputers, scientists
can now simulate many things from galaxy interaction to

molecular dynamics in unprecedented details, leading to new
scientific discoveries. The vast amounts of data generated by
these simulations, easily reaching tens of terabytes, however,
present a new range of challenges to traditional data analysis
and visualization. A time-varying volume data set produced by
a typical turbulent flow simulation, for example, may contain
thousands of time steps with each time step having billions
of voxels and each voxel recording dozens of variables.
As supercomputers continue to increase in size and power,
petascale data is just around the corner.

A variety of data reduction methods have been introduced
to make the data movable and enable interactive visualization,
offering scientists options for studying their data. For instance,
subsets of the data may be stored at a reduced precision
or resolution. Data reduction can also be achieved with
transform-based compression methods. A popular approach is
to generate a multiresolution representation of the data such
that a particular level of details is selected according to the
visualization requirements and available computing resources.
In addition, data may be altered in other fashions. Furthermore,
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it could be desirable to smooth the data or enhance a particular
aspect of the data before rendering. Finally, the data may be
distorted or corrupted during the transmission over a network.

Research has been conducted to evaluate the quality of
rendered imagesafter the visualization process [6], [29].
However, few studies focus on analyzing the data quality
before the visualization actually takes place. It is clear that
the original volume data may undergo various changes due to
quantization, compression, sampling, filtering, and transmis-
sion. If we assume the original data has full quality, all these
changes made to the data may incur quality loss, which may
also affect the final visualization result. In order to compare
and possibly improve the quality of the reduced or distorted
data, it is important for us to identify and quantify the loss
of data quality. Unequivocally, the most widely used data
quality metrics aremean square error(MSE) andpeak signal-
to-noise ratio (PSNR). Although easy to compute, they do
not correlate well with perceived quality measurement [18].
Moreover, these metrics require access to the original data
and arefull-referencemethods. They are not applicable to our
scenario, since the original data may be too large to acquire or
compare in an efficient way. Therefore, it is highly desirable to
develop a data quality assessment method that does not require
full access of the original data.

In this paper, we introduce areduced-referenceapproach
to volume data quality assessment. We consider the scenario
where a set of important statistical information is first extracted
from the original data. For example, the extraction process
could be performed at the supercomputer centers where the
large-scale data are produced and stored, or ideally, in situ
when the simulation is still running. We then compress the
feature information to minimize its size. This makes it easy
to transfer the feature to the user as “carry-on” information
for volume data quality assessment, eliminating the need to
access the original data again. Our feature representation not
only serves as the criterion for data quality assessment, but also
could be used as quality improvement to repair the reduced
or distorted data. This is achieved by matching some of its
feature components with those extracted from the original data.
We have tested our algorithm on scientific and medical data
sets with various sizes and characteristics to demonstrate its
effectiveness.

II. BACKGROUND AND RELATED WORK

Unlike the Fourier transform with sinusoidal basis functions,
the wavelet transform is based on small waves, calledwavelets,
of varying frequency and limited duration [7]. Wavelet trans-
forms provide a convenient way to represent localized signals
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simultaneously in space and frequency. The particular kind
of dual localization makes many functions and operators
using wavelets “sparse” when transformed into the wavelet
domain. This sparseness, in turn, brings us a number of useful
applications such as data compression, feature detection, and
noise removal.

Besides sparseness, wavelets have many other favorable
properties, such as multiscale decomposition structure, linear
time and space complexity of the transformations, decorrelated
coefficients, and a wide variety of basis functions. Studies of
the human visual system(HVS) support a multiscale analysis
approach, since researchers have found that the visual cortex
can be modeled as a set of independent channels, each with a
particular orientation and spatial frequency tuning [4], [21].
Therefore, wavelet transforms have been extensively used
to model the processing in the early stage of biological
visual systems. They have also gained much popularity, and
have become the preferred form of representation for image
processing and computer vision algorithms.

In volume visualization, Muraki [15] introduced the idea
of using the wavelet transform to obtain a unique shape
description of an object, where a 2D wavelet transform is
extended to 3D and applied to eliminate wavelet coefficients
of lower importance. Over the years, many wavelet-based
techniques have been developed to compress, manage, and
render three-dimensional [8], [11] and time-varying volumetric
data [12], [23]. They are also used to support fast access
and interactive rendering of data at runtime. In this paper, we
employ the wavelet transform to generate multiscale decom-
position structures from the input data for feature analysis.

Fig. 1. Multiscale wavelet decomposition of a three-dimensional
volumetric data. L = low-pass filtered; H = high-pass filtered. The
subscript indicates the level and a larger number corresponds to
a coarser scale (lower resolution). An example of three levels of
decomposition is shown here.

The wavelet transform on a one-dimensional signal can be
regarded as filtering the signal with both the scaling function (a
low-pass filter) and the wavelet function (a high-pass filter),
and downsampling the resulting signals by a factor of two.
The extension of the wavelet transform to higher dimension is
usually achieved using separable wavelets, operating on one
dimension at a time. The three-dimensional wavelet transform
on volume data is illustrated in Fig. 1. After the first itera-
tion of wavelet transform, we generate one low-pass filtered
wavelet subband (LLL1) with one eighth of the original size,
and seven high-pass filtered subbands (HLL1, LHL1, HHL1,
LLH1, HLH1, LHH1, and HHH1). We can then successively

apply the wavelet transform to the low-pass filtered subband,
thus creating a multiscale decomposition structure (a good
introduction of wavelets for computer graphics can be found in
[24]). In our experiment, the number of decomposition levels
is usually between three and five, depending on the size of
original data.

There is a wealth of literature on quality assessment and
comparison in the field of image and video processing. De-
tails on this are beyond the scope of this paper and we
refer interested readers to [2] for a good survey. Here, we
specifically review some related work in the field of graph-
ics and visualization. Jacobs et al. [9] proposed an image
querying metric for searching in an image database using
a query image. Their metric makes use of multiresolution
wavelet decompositions of the query and database images,
and compares how many significant wavelet coefficients the
query has in common with potential targets. In [6], Gaddipati
et al. introduced a wavelet-based perceptual metric that builds
on the subband coherent structure detection algorithm. The
metric incorporates aspects of the HVS and modulates the
wavelet coefficients based on the contrast sensitivity function.
Sahasrabudhe et al. [18] proposed a quantitative technique
which accentuates differences in images and data sets through
a collection of partial metrics. Their spatial domain metric
measures the lack of correlation between the data sets or
images being compared. Recently, Wang et al. [26] introduced
an image-based quality metric for interactive level-of-detail
selection and rendering of large volume data. The quality
metric design is based on an efficient way to evaluate the
contribution of multiresolution data blocks to the final image.

In [29], Zhou et al. performed a study of different im-
age comparison metrics that are categorized into spatial do-
main, spatial-frequency domain, and perceptually-based met-
rics. They also introduced a comparison metric based on the
second-order Fourier decomposition and demonstrated favor-
able results against other metrics considered. In our work, we
use the wavelet transform to partition the data into multiscale
and oriented subbands. The study on volume data quality
assessment is thus conducted in the spatial-frequency domain
rather than the spatial domain.

III. A LGORITHM OVERVIEW

From a mathematical standpoint, we can treat volume data
as three-dimensional arrays of intensity values with locally
varying statistics that result from different combinations of
abrupt features like boundaries and contrasting homogeneous
regions. In line with this consideration, we advocate a statis-
tical approach for volume data quality assessment. Given a
volumetric data set, a first attempt may lead us to examine its
statistics in the original spatial domain. However, even first-
order statistics such as histograms would vary significantly
from one portion of data to another, and from one data set to
another. This defies simple statistical modeling over the entire
data set, as well as the subsequent quality assessment.

Instead of spatial domain analysis, we can transform the
volume data from the spatial domain to the spatial-frequency
domain using the wavelet transform, and analyze its frequency
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(a) Lena image, HL1 subband (b) vortex data set, HHL2 subband (c) brain data set, HLL1 subband

Fig. 2. (a)-(c) are three wavelet subband coefficient histograms (blue curves) fitted with a two-parameter generalized Gaussian density model
(red curves) for the Lena image, the vortex data set, and the brain data set, respectively. The estimated parameters(α ,β ) are(1.2661,0.6400),
(5.8881e−003,0.4181), and(7.1276e−003,0.2709)for (a), (b), and (c), respectively. The overall fitting is good for all three examples.

statistics. Since frequency is directly related to rate of change,
it is intuitive to associate frequencies in the wavelet trans-
form with patterns of intensity variations in the spatial data.
Furthermore, the wavelet transform allows us to analyze the
frequency statistics at different scales. This will come in handy
when we evaluate the quality of reduced or distorted data
with different resolutions. Compared with the statistics of
data in the spatial domain, the local statistics of different
frequencysubbandsare relatively constant and easily modeled.
This is realized usinggeneralized Gaussian density(GGD)
to model the marginal distribution of wavelet coefficients at
different subbands and scales (Section IV-A). We also record
information about selective wavelet coefficients (Section IV-
C) and treat the low-pass filtered subband (Section IV-D) as
part of our feature representation.

Our feature thus consists of multiple parts, and each part
corresponds to certain essential information in the spatial-
frequency domain. Note that this data analysis and feature
extraction process can be performed when we have the access
to the original data, or ideally, in situ where a simulation is
running. Once we extract the feature from data, we are able
to use it for quality assessment without the need to access the
original data. Given a reduced or distorted version of data, we
compare its feature components with those derived from the
original data using predefined distance functions. This gives
us an indication of quality loss in relation to the original data.
We can also use the feature to perform a cross-comparison of
data with different reduction or distortion types to evaluate the
uncertainty introduced in different versions of data. Moreover,
by forcing some of its statistical properties to match those of
the original data, we may repair the reduced or distorted data
for possible quality improvement.

IV. WAVELET SUBBAND ANALYSIS

In the multiscale wavelet decomposition structure, the low-
pass filter subband corresponds to average information that
represents large structures or overall context in the volume
data. After several iterations of wavelet transforms, the size
of the low-pass filter subband is small compared with the
size of original data (already less than 0.2% for a three-level
decomposition). Thus, we can directly treat it as part of the

feature. On the other hand, the high-pass filtered subbands
correspond to detail information that represents abrupt features
or fine characteristics in the data. They spread across all
different scales with an aggregate size nearly equal to the size
of original data. The key issues are how to extract important
feature information from these high-pass filtered subbands, and
how to compress the feature.

A. Wavelet Subband Statistics

Studies on natural image statistics reveal that the histogram
of wavelet coefficients exhibits a marginal distribution at a
particular high-pass filtered subband. An example of the Lena
image and the coefficient histogram of one of its wavelet
subbands is shown in Fig. 2 (a). They-axis is on a log scale
in the histogram. As we can see, the marginal distribution
of wavelet coefficients creates a sharp peak at zero and
more extensive tails than the Gaussian density. The intuitive
explanation of this is that natural images usually have large
overall structures consisting of smooth areas interspersed with
occasional abrupt transitions, such as edges and contours. The
smooth areas lead to near-zero coefficients, and the abrupt
transitions give large-magnitude coefficients. In [14], Mallat
shows that such a marginal distribution of the coefficients in
individual wavelet subbands can be well-fitted with a two-
parameter generalized Gaussian density (GGD) model:

p(x) =
β

2αΓ( 1
β )

exp(−(
|x|
α

)β ), (1)

whereΓ is the Gamma function, i.e.,Γ(z) =
∫ ∞

0 e−ttz−1dt, z>
0.

In the GGD model,α is thescaleparameter that describes
the standard deviation of the density, andβ is the shape
parameter that is inversely proportional to the decreasing rate
of the peak. As an example, the plots of the GGD distribution
under varied(α,β ) values are illustrated in Fig. 3. The model
parameter(α,β ) can be estimated using themoment matching
method [25] or themaximum likelihoodrule [16]. Numerical
experiments in [25] show that 98% of natural images satisfy
this property. Even for the remaining 2%, the approximation
of the real density by a GGD is still acceptable. Note that the
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GGD model includes the Gaussian and the Laplacian distribu-
tions as special cases withβ = 2 andβ = 1, respectively. The
GGD model provides a very efficient way for us to summarize
the coefficient histograms of an image, as only two parameters
are needed for each subband. This model has been used in
previous work for noise reduction [22], image compression
[3], texture image retrieval [5], and quality encoding [28].
In this paper, we use the moment matching method which
takes the mean and the variance of wavelet coefficients in a
subband to compute its GGD model parameters(α,β ) (see the
Appendix for the implementation detail). In Fig. 2 (a), the red
curve is the GGD function with parameters estimated using the
moment matching method. The result fits the original wavelet
coefficient distribution quite well.

(a) β = 0.5

(b) α = 1.5

Fig. 3. The GGD distribution and its model parameters(α ,β ). (a) α
varies whileβ = 0.5. (b) β varies whileα = 1.5. The figure shows
the sensitivity of the shape of GGD plots with respect to the model
parameters.

We extend this statistical model to three-dimensional vol-
ume data since many scientific and medical data share the
same intrinsic characteristics as natural images; i.e., homoge-
neous regions mixed with abrupt transitions. Moreover, the rate
or proportion of homogeneous regions and abrupt transitions
is also similar for image and volume: in 2D, we have area
of homogeneous regions versus the edge length of abrupt
transitions; and in 3D, we have volume of homogeneous
regions versus the surface area of abrupt transitions. Initial
experiments on two small data sets give very promising results.
Fig. 2 (b) and (c) show one example of wavelet subband

coefficient histograms for each data set and their respective
well-fitted GGD curves. Thus, with only two GGD parameters,
we are able to capture the marginal distribution of wavelet
coefficients in a subband that otherwise would require at
least hundreds of parameters using histogram. We shall see
in Section V that this GGD model works well for larger data
sets too. Next, we discuss the distance measure for wavelet
subband statistics.

Let p(x) and q(x) denote the probability density functions
of the wavelet coefficients in the same subband of the original
and distorted data, respectively. Here, we assume the coef-
ficients to be independently and identically distributed. Let
x = {x1,x2, . . . ,xN} be a set of randomly selected coefficients.
The log-likelihoods ofx being drawn fromp(x) andq(x) are

l(p) =
1
N

N

∑
i=1

logp(xi) and l(q) =
1
N

N

∑
i=1

logq(xi) (2)

respectively. Based on the law of large numbers, whenN is
large, the log-likelihoods ratio betweenp(x) andq(x) asymp-
totically approaches theKullback-Leibler distance(KLD) (also
known as therelative entropyof p with respect toq):

d(p||q) =
∫

p(x) log
p(x)
q(x)

dx. (3)

Although the KLD is not a true metric, i.e.,d(p||q) 6=
d(q||p), it satisfies many important mathematical properties.
For example, it is a convex function ofp. It is always
nonnegative, and equals zero only ifp(x) = q(x). In this paper,
we use the KLD to quantify the difference between wavelet
coefficient distributions of the original and distorted data. This
quantity is evaluated numerically as follows:

d(p||q) =
M

∑
i=1

P(i) log
P(i)
Q(i)

, (4)

where P(i) and Q(i) are the normalized heights of theith
histogram bin, andM is the number of bins in the histogram.
Note that the coefficient histogramQ is computed directly
from the distorted data, while the coefficient histogramP is
approximated using its GGD parameters(α,β ) extracted from
the original data.

Finally, the KLD between the distorted and original data
over all subbands is defined as:

D1 = log(1+
B

∑
i=1

d(pi ||qi)), (5)

whereB is the total number of subbands analyzed,pi and qi

are the probability density functions of theith subbands in the
original and distorted data respectively, andd(pi ||qi) is the
estimated KLD betweenpi andqi .

B. Voxel Visual Importance

At runtime, a transfer function is applied to the input volume
where the scalar data values are mapped to optical quantities
such as color and opacity, and the volume is projected into
2D images. To capture the visualization-specific contribution
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Fig. 4. A voxel’s visual importance in the low resolution volume is
the multiplication of its opacity and average visibility. The average
visibility is calculated using a list of evenly-sampled views along the
volume’s bounding sphere.

for each voxel, we define a voxel’s visual importanceω as
follows:

ω(i) = α(i) · ν̄(i) (6)

where α(i) is the opacity of voxeli, ν̄(i) is its average
visibility. As sketched in Fig. 4, given an original large
volume data, we use its low resolution form (for practical and
performance concern) to calculate visual importance values of
all voxels within the volume. In Eqn. 6,α(i) andν̄(i) account
for the emission and attenuation of voxeli, respectively.

To calculate the average visibility, we consider a list of
evenly-sampled views along the bounding sphere that encloses
the volume and take the average of the visibility from those
sample views. Given a view along the bounding sphere, the
visibility for each voxel in the low resolution data is acquired
in this way: we render the low resolution data by drawing
front-to-back view-aligned slices and evaluate the visibility of
all the voxels during the slice drawing. The visibility of a
voxel is computed as (1-α) right before the slice containing
the voxel is to be drawn, whereα is the accumulated opacity
at the voxel’s screen projection. This process repeats for each
sample view. Finally, for each voxel in the volume, we use the
average of its visibility from all sample views to calculate its
visual importance. Essentially, the visual importance indicates
the average contribution of a voxel in association with a
given input transfer function. This visualization-specific term
is then normalized and incorporated into the following wavelet
coefficient selection.

C. Wavelet Coefficient Selection

The GGD model captures the marginal distribution of
wavelet coefficients at each individual subband. Using the
distance defined in Eqn. 5, we are able to know how close
the coefficient distributions of distorted data are in relation
to the original data. Nevertheless, the histogram itself does
not tell the spatial-frequency positions of wavelet coefficients.
This limits our ability to compare the data in finer detail and

possibly repair the distorted data. Therefore, along with the
global GGD parameters per wavelet subband, we also need
to recordlocal information about wavelet coefficients for data
quality assessment and improvement.

Fig. 5. The parent-child dependencies of wavelet coefficients in
different subbands. In this 2D example, a coefficient in a coarse scale
has four child coefficients in the next finer scale of similar orientation.
The arrow points from the subband of the parents to the subband of
the children.

An important observation is that, although the coefficients of
wavelet subbands are approximately decorrelated, they are not
statistically independent. For example, Fig. 5 shows a three-
level decomposition of the Lena image. It can be seen that
coefficients of large magnitude (bright pixels) tend to occur at
neighboring spatial-frequency locations, and also at the same
relative spatial locations of subbands at adjacent scales and
orientations. Actually, in 2D, a coefficientc in a coarse scale
has four child coefficients in the next finer scale. Each of the
four child coefficients also has four child coefficients in the
next finer scale. Furthermore, ifc is insignificant with respect
to some thresholdε, then it is likely that all of its descendant
coefficients are insignificant too. This coefficient dependency
has been exploited in several image compression algorithms,
such as the embedded zerotree wavelet (EZW) encoding
[20] and a following image codec based on set partitioning
in hierarchical trees (SPIHT) [19]. These algorithms have
also been extended to three-dimensional volumetric image
compression in medical application [13]. In this paper, we
utilize the coefficient dependency to store selective wavelet
coefficients in an efficient manner.

There are two categories of wavelet coefficients that are
of importance for the purpose of quality assessment and
improvement. One category is the coefficients of large mag-
nitude which correspond to abrupt features like edges or
boundaries. As we can see in Fig. 2, they are along the tails
of the marginal coefficient distribution where the perceptually-
significant coefficients generally reside. The other category is
neighboring near-zero coefficients which correspond to homo-
geneous regions. They are close to the zero peak of the distri-
bution and are important indications of data regularity. Taking
into account the visualization-related factor, we modulate the
wavelet coefficients with the voxel visual importance values
(Section IV-B) at their nearest spatial-frequency locations. In
this case, a wavelet coefficient is large only if it has both
large magnitude and high voxel visual importance; a wavelet
coefficient is near zero if it has either near-zero magnitude or
near-zero voxel visual importance.
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Fig. 6. Scan of wavelet coefficients in the raster order and the Morton
order. The blue dashed line segments indicate discontinuities in the
scan. Compared with the raster order, the Morton order preserves the
spatial-frequency locality better.

Starting from the coarsest scale, we scan each wavelet
subband and encode coefficients of interest. As illustrated with
a 2D example in Fig. 6, we follow theMorton order (Z-
curve order) as opposed to the ordinary raster order to better
utilize the spatial-frequency locality. For neighboring near-zero
coefficients (at least eight consecutive coefficients in 3D), we
run-length encode their positions (i.e., the scan orders). For
large-magnitude coefficients, we encode their positions and
values as well. In general, most scientific and medical data
have a low-pass spectrum. When the data are transformed
into a multiscale wavelet decomposition structure, the energy
in the subbands decreases from a fine scale (high resolution)
to a coarse scale (low resolution). Therefore, the wavelet
coefficients are, on average, smaller in the finer scales than
in the coarser scales. Accordingly, we vary the thresholds
of near-zero coefficients (ε) and large-magnitude coefficients
(τ) for different scales. Finally, information of the selective
coefficients is further compressed using the open sourcezlib
compressor.

We define the distance for the selective wavelet coefficients
as follows:

D2 = log(1+
B

∑
i=1

√

√

√

√∑Li
j=1(

c j−c
′
j

cmaxi
)2 +∑Zi

k=1(
c
′
k

cmaxi
)2

Li +Zi
), (7)

whereB is the number of subbands over all the scales,Li and
Zi are the numbers of large-magnitude coefficients selected and
near-zero coefficients selected in theith subband, respectively.
c j and c

′
j are the jth large coefficients selected from the

original and distorted data respectively, andcmaxi is the largest
magnitude (modulated by visual importance) of all coefficients
at the ith subband. For near-zero coefficients, we assume the
original coefficientsck = 0 and only consider coefficients in
the distorted data with|c′k| > ε for the calculation.

D. Low-Pass Filtered Subband

The low-pass filter subband in the multiscale wavelet de-
composition structure corresponds to average information that
represents large structures or overall context in the volume
data. Compared with the size of original data, the size of this
subband is usually small after several iterations of wavelet
decomposition. Therefore, we directly incorporate it as part

of the feature. Letbi and b j be the low-pass filter subbands
of the original and distorted data, respectively. The similarity
betweenbi andb j is defined as:

S=
σi j

σiσ j
· 2 µi µ j

µ2
i + µ2

j

· 2 σiσ j

σ2
i +σ2

j

=
4 σi j µi µ j

(σ2
i +σ2

j )(µ2
i + µ2

j )
, (8)

where σi j is the covariance betweenbi and b j , µi and µ j

are the mean values ofbi and b j respectively, andσi and σ j

are their standard deviations. Eqn. 8 consists of three parts;
namely,loss of correlation,luminance distortion, andcontrast
distortion. Collectively, these three parts capture the structure
distortion of the low-pass filtered subband in the distorted
data. This similarity measure comes from the image quality
assessment literature [27], and has been shown to be consistent
with the luminance masking and contrast masking features in
the HVS, respectively. The dynamic range ofS is [−1,1]. The
best value of 1 is achieved whenbi = b j . Hence, we define
the distance betweenbi andb j as follows:

D3 =
√

1.0− (S+1.0)/2.0. (9)

Fig. 7. Our feature representation of the original data in the wavelet
domain.

E. Summary

In summary, as shown in Fig. 7, our feature representation
of the original data in the wavelet domain includes three parts:
the GGD model parameters from wavelet subband statistics,
selective wavelet coefficients, and the low-pass filtered sub-
band. Given a reduced or distorted version of data, we analyze
the quality loss by calculating its distances to the original
data for each of the feature components (Eqn. 5, 7, and 9).
Each partial distance indicates some quality degradation with
reference to the original data and the summation of all these
partial distances gives the overall degradation. Thus, an overall
distance could be computed heuristically as the weighted sum
of the three individual distances:

D = k1D1 +k2D2 +k3D3, (10)

where ki > 0, i = 1, 2, and 3. Note that there is no need
for normalizing this overall distance. For the purpose of data
quality improvement, it is advantageous to keep each distance
separate (or further at the subband level) so that we know
which parts cause significant quality degradation. We can then
repair accordingly using the feature extracted from the original
data.
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data set dimension data size DL LP dimension LP size HP size feature size ratio

turbulent vortex flow 1283 8.0MB 3 163 16.0KB 42.2KB 58.2KB 0.710%
solar plume velocity magnitude 5122×2048 2.0GB 5 162×64 64.0KB 376.0KB 440.0KB 0.021%
supernova angular momentum 8643 2.40GB 5 273 76.9KB 852.6KB 929.5KB 0.037%

UNC brain 1282×72 4.5MB 3 162×9 9.0KB 53.7KB 62.7KB 1.361%
head aneurysm 5123 512MB 4 323 128.0KB 198.0KB 326.0KB 0.062%
visible woman 5122×1728 1.69GB 5 162×54 54.0KB 753.4KB 807.4KB 0.046%

DL = decomposition levels
LP dimension (size)= low-pass filtered subband’s dimension (size);HP size= all high-pass filtered subbands’ feature size

TABLE I

THE SIX FLOATING-POINT DATA SETS AND THEIR FEATURE SIZES.

(a) visible woman data set, HLH2 subband (b) solar plume data set, LLH2 subband

Fig. 8. (a) and (b) are two wavelet subband coefficient histograms (blue curves) fitted with the GGD model (red curves) for the visible
woman and the solar plume data sets, respectively. The estimated parameters(α ,β ) are(1.6786e−002,0.2425)and(1.4922e−009,0.1405),
respectively. In general, the fitting works well for these two data sets.

V. RESULTS

We experimented with our algorithm on six floating-point
data sets, as listed in Table I. Among the six data sets, three
of them are from scientific simulation, and the remaining
three are from medical application. These six data sets vary
greatly in size, and exhibit quite different characteristics. For
multiscale wavelet decomposition, we specifically restricted
our attention to the Daubechies family of orthogonal wavelets,
as evaluation of all possible wavelet transforms is out of the
scope of our experiments. The decision for levels of wavelet
decomposition is based on the size of input data, as well as
the tradeoff between the size of feature and the robustness of
GGD model parameters.

In our test, the threshold for near-zero wavelet coefficientsεi

at theith subband was chosen ascmaxi/(2L+3), wherecmaxi
is the largest magnitude (modulated by visual importance)
of all coefficients at theith subband, andL is the total
number of decomposition levels we have. The threshold for
large-magnitude wavelet coefficientsτi at the ith subband
was chosen ascmaxi/(2s+2), wheres is the scale in which
the ith subband locates. We variedτi according to the scale
because the wavelet coefficients in a subband become more
important as the scale increases. In Table I, the size of low-
pass filtered subband is the uncompressed size of LLLn, after

n levels of decomposition. The feature size of all high-pass
filtered subbands includes their respective GGD parameters
and selective wavelet coefficients in the compressed form.

From the last column in Table I, we can see that for all
six data sets, the size of feature is small compared with the
original data. Note that the size of feature does not increase in
proportion to the size of original data. This is mainly due to
the increase of decomposition levels for larger data sets, as we
can afford to have more levels of wavelet decomposition while
still keeping the GGD parameters robust. Our experiment
confirms that the GGD model generally performs well when
the size of the input data becomes larger. For instance, Fig. 8
shows one of the wavelet subband coefficient histograms for
the visible woman and the solar plume data sets, and their
respective GGD curves. On the other hand, the feature size
is also data and transfer function dependent. For example, the
ratio for the brain data set is 1.361%, which is relatively high
compared with the vortex data set having the same number of
decomposition levels. Thus, it follows that we record a higher
percentage of high-pass filtered subband feature information
for the brain data set.

Next, we report results of volume data quality assessment
and improvement using the extracted feature. To compare the
quality of rendered images, we used a GPU raycaster for
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volume rendering. All tests were performed on a 2.33GHz
Intel Xeon processor with 4GB main memory, and an nVidia
GeForce 7900 GTX graphics card with 512MB video memory.

A. Quality Assessment

First of all, we experimented with our quality measure
on different data sets and observed how the quality of data
changes for the same reduction or distortion type. We used
the three smaller data sets (brain, vortex, and aneurysm) of
their original resolutions and the other three data sets (visible
woman, solar plume, and supernova) of their second highest
resolutions in the test. To calculate the overall distance, we
used Eqn. 10 with(k1,k2,k3) = (0.1,1.0,1.0). Please note that
in this paper, we assume the original data set has full quality.
Thus, any changes made to the data would involve possible
quality loss, even though the desire is to enhance the data from
a certain perspective.

Quantization is a commonly used approach for data re-
duction. Our first example studies the quality loss under
the uniform quantization scheme. Fig. 9 shows the quality
assessment result of all six data sets with six different quan-
tization levels. A larger distance indicates a greater degree of
quality degradation. More specifically, Table II lists all partial
and overall distances for the aneurysm data set. Although
different data sets have different responses of quality loss due
to quantization, the overall trend is fairly obvious: the data
quality gets increasingly worse as the number of quantization
levels decreases.

Fig. 9. Quality assessment on six test data sets with six different
quantization levels. The data quality gets increasingly worse as the
number of quantization levels decreases.

level D1 D2 D3 D

1024 0.1961 0.0071 0.0038 0.0305
512 0.5227 0.0144 0.0077 0.0744
256 0.9933 0.0277 0.0153 0.1423
128 1.5111 0.0551 0.0303 0.2365
64 1.9518 0.1065 0.0594 0.3611
32 2.2407 0.2089 0.1150 0.5480

TABLE II

PARTIAL AND OVERALL DISTANCES FOR THE ANEURYSM DATA SET WITH

SIX DIFFERENT QUANTIZATION LEVELS.

Our second example studies the quality loss under the
Gaussian smooth filtering. Fig. 10 shows how the data quality

changes with six different Gaussian smooth filters for all six
data sets. We applied a discrete Gaussian kernel of size 53

with different standard deviations. A larger standard deviation
indicates a greater degree of smoothing since neighboring
voxels carry more weight. Table III lists all partial and overall
distances for the solar plume data set. It is clear that the
data quality gets worse as the standard deviation increases.
Unlike quantization, however, the rate of quality loss decreases
gradually in the sequence.

Fig. 10. Quality assessment on six test data sets with 53 Gaussian
smooth filters of six different standard deviations. The data quality
gets worse as the standard deviation increases.

σ D1 D2 D3 D

0.5 0.2687 0.0656 0.0004 0.0929
0.6 0.3793 0.0921 0.0006 0.1306
0.8 0.6325 0.1422 0.0010 0.2065
1.0 0.9225 0.1822 0.0015 0.2760
1.25 1.2039 0.2165 0.0020 0.3389
1.5 1.3548 0.2377 0.0023 0.3755

TABLE III

PARTIAL AND OVERALL DISTANCES FOR THE SOLAR PLUME DATA SET

WITH SIX GAUSSIAN SMOOTH FILTERS OF DIFFERENT STANDARD

DEVIATIONS.

Besides quality assessment of data with the same type of
reduction or distortion, the feature also avails us to perform
cross-type data quality comparison. For example, Fig. 11 gives
quality assessment results on the solar plume and the visible
woman data sets under four different distortion types: mean
shift (of the data range over 256), voxel misplacement (with
two slices of voxels misplaced), averaging filter (using a
kernel of size 33), and salt-and-pepper noise (with an equal
probability of 1/1024 for the bipolar impulse). Table IV lists
all partial and overall distances, MSE, and PSNR for these
four distortion types. For both data sets, we can see that the
mean shift introduces the minimum quality loss here, followed
by the voxel misplacement. The salt-and-pepper noise incurs
the most quality degradation. This result is consistent with
perceived quality in rendered images. However, the MSE and
the PSNR incorrectly recognize the mean shift as having a
larger distortion than the voxel misplacement for both data
sets. Note that they also give the opposite results on the
averaging filter for the two data sets. This is due to the reason
that the MSE and the PSNR metrics are only voxel-based and
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(a) mean shift (b) voxel misplacement (c) averaging filter (d) salt-and-pepper noise

Fig. 11. Cross-type quality assessment on low resolution solar plume (2562×1024) and visible woman (2562×864) data sets. The data
quality degrades as the overall distance (listed in Table IV) increases from (a) to (d). The rendered images are cropped for a closer comparison.

data set type D1 D2 D3 D rank MSE PSNR rank
solar plume mean shift 2.0556e−4 4.5864e−7 5.8988e−2 0.0590 4 5.5252e−2 48.1648 2

misplacement 1.3126e−1 9.4561e−2 5.5746e−3 0.1133 3 2.4239e−2 51.7431 3
averaging 5.2393e−1 1.2551e−1 8.1216e−4 0.1787 2 5.2299e−3 58.4033 4

noise 3.1198e+0 1.8137e+0 2.8900e−2 2.1546 1 6.7305e+0 27.3078 1
visible woman mean shift 8.8428e−5 6.9770e−7 2.3914e−2 0.0239 4 1.8691e+3 48.1648 3

misplacement 1.5366e−2 1.1612e−1 4.6497e−3 0.1223 3 1.5397e+3 49.0066 4
averaging 1.6449e+0 5.4139e−1 1.4596e−3 0.7073 2 1.9289e+5 28.0279 1

noise 1.7343e+0 7.8530e−1 9.7468e−3 0.9685 1 1.2152e+4 40.0347 2

TABLE IV

PARTIAL AND OVERALL DISTANCES , MSE, AND PSNRFOR THE SOLAR PLUME AND THE VISIBLE WOMAN DATA SETS WITH FOUR DIFFERENT

DISTORTION TYPES.

do not consider the overall structure distortion of the data.

B. Quality Improvement

Since the feature captures essential information from the
original data, it can be utilized to improve the quality of
distorted or corrupted data. In this paper, we do not show
examples where the feature is used to construct a higher
resolution data from a low resolution data, as it is the most
common way of using the wavelet transform and compression.

Our first example deals with missing data. Fig. 12 (a) shows
the rendering of a low resolution supernova data set with one-
eight (i.e., an octant) of data missing. The missing of data
could result from incomplete data transmission, or even a bug
in the data reduction source code. Recall that we keep each
partial distance separate (and actually at the subband level).
This helps us identify which parts introduce the dramatic
change (in this case, the subband at the same orientation as the

missing portion), and then repair accordingly using the feature
information.

The repairing scheme works as follows: First, a multiscale
wavelet decomposition structure is built from the corrupted
data, where the size of low-pass filtered subband at the coarsest
scale equals the size of low-pass filtered subband recorded in
the feature (Section IV-D). Note that for the repairing purpose,
we keep the low-pass filtered subbands in all scales. Then,
we improve the high-pass filtered subbands across all scales
by replacing the wavelet coefficients with their corresponding
coefficients in the feature; that is, those large-magnitude and
near-zero wavelet coefficients selected (Section IV-C). Next,
starting from the coarsest scale (the lowest resolution), we
reconstruct the low-pass filtered subband at the next finer scale,
using the low-pass filtered subband recorded in the feature
and improved high-pass filtered subbands. The reconstructed
low-pass filtered subband is used to correct the missing part in
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(a) before,D = 1.3346 (b) after,D = 0.5536 (c) comparison (d) transfer function

Fig. 12. Quality improvement on a low resolution supernova data set (4323) with one-eight of data missing, as shown in (a). (b) is the result
after an automatic repairing process using the feature information. In (c), a portion of (b) is zoomed in for comparison with the reference
image displayed on the top. (d) shows the transfer function used.

(a) before,D = 2.3094 (b) after,D = 0.7188 (c) comparison (d) transfer function

Fig. 13. Quality improvement on the aneurysm data set (5123) distorted by random noise, as shown in (a). (b) is the result after an automatic
repairing process using the feature information. In (c), a portion of (b) is zoomed in for comparison with the reference image displayed on
the bottom. (d) shows the transfer function used.

the same-scale low-pass filtered subband decomposed from the
corrupted data. The corrected low-pass filtered subband is then
used to reconstruct the next finer scale in an iterative manner.
In this way, we are able to automatically repair the missing
portion in the corrupted data scale by scale. Finally, an optional
median filter is applied to the corrected portion of data at the
finest scale in order to suppress potential noise and produce a
better match with the original GGD model parameters. Fig. 12
(b) shows the result after this automatic repairing process. It
is clear that the data quality improves as the overall distance
decreases.

We can also apply a similar repairing process for noise
reduction. For example, Fig. 13 (a) shows the rendering of
the aneurysm data set distorted by random noise. This kind
of distortion can be detected through the observation of a
sequence of sudden spikes appearing in the wavelet coefficient
subband histograms. The denoising process also follows a
coarse-to-fine manner as usual, but there is no need to keep
the low-pass filtered subband at every scale in the wavelet de-

composition structure. Another difference is that for each high-
pass filtered subbandi, we first set large-magnitude wavelet
coefficients to zero (if they are larger than the thresholdτi)
before improving them with their corresponding coefficients
in the feature. Fig. 13 (b) shows the result after this repairing
process. As we can see, the noise is eliminated, while the fine
structure of the blood vessels is preserved.

VI. D ISCUSSION

A. Choice of Wavelets

To extract essential information from the original data,
we decomposed the data into multiple scales using wavelet
basis functions localized in spatial position, orientation, and
spatial frequency. We used the Daubechies family of or-
thogonal wavelets in our experiment because they provide a
good tradeoff between performance and complexity [5], [6].
Moreover, we found that the choice for the number of scaling
and wavelet function coefficients has little effect on assessment
accuracy. Therefore, we specifically used the Daubechies D4
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transform for efficiency. Other separable wavelets (such as the
Gabor wavelets) or redundant transforms (such as the steerable
pyramid transform) could also be used in our algorithm. For
example, the steerable pyramid transform decomposes the data
into several spatial-frequency bands, and further divides each
frequency band into a set of orientation bands. It can thus
help to minimize the amount of aliasing within each subband.
However, they are more expensive to compute and require
more storage space.

B. Timing Performance

The timing of wavelet analysis on the original data includes
the time for multiscale wavelet decomposition, GGD param-
eters estimation, and subband wavelet coefficients selection.
This one-time preprocess may take anywhere from seconds to
a total of several minutes on a single PC, depending on the
size of input data. For data sets that could not be loaded into
memory simultaneously, we employed a block-wise wavelet
transform process and handled boundaries of neighboring
blocks to guarantee seamless results. The timing of quality
assessment on different versions of data includes the time for
wavelet decomposition and distance calculation. At runtime, it
usually takes less than one minute on a single PC to evaluate
data with the size up to 512MB. For larger gigabytes data, the
time to perform wavelet transforms becomes dominant in the
quality assessment process. In the worst case, the assessment
time would be similar to the preprocess time if the data we
evaluate has the same size as the original data.

C. GGD Model

We note that as an approximation, the GGD model in-
troduces a prediction error at each wavelet subband with
respect to the corresponding wavelet coefficient distribution.
For example, the fit near the center of the histogram in Fig. 8
(b) is not good. This error can be calculated as the KLD
between the model histogram and the histogram of wavelet
subband coefficients from the original data. Letd(pi

m||pi)
denote the prediction error at theith subband. Accordingly, we
used(pi ||qi) = |d(pi

m||qi)−d(pi
m||pi)| to calculate the overall

KLD (Eqn. 5). That is, we actually subtract the prediction
error from the KLD between the model histogram and the
histogram of wavelet subbband coefficients from the reduced
or distorted data (denoted asd(pi

m||qi)), and use the absolute
value in the calculation.

On the other hand, our experiment shows that the GGD
model generally works well on scientific and medical data
sets with different sizes. However, there are cases where this
model fails to give good results. Such an example is shown in
Fig. 14. For these failed cases, we can store the actual wavelet
subband coefficient histograms (per scale) at the expense of
increasing the storage, or fit each coefficient histogram with
splines to smooth out the irregularities. Although there is a
need of further research on why these cases fail, the apparent
reason is that those data sets do not fall into the category of
natural statistics. For this same reason, we can not partition the
original data into blocks in an octree fashion, and analyze the
individual blocks using the GGD model (each block does not

necessarily exhibit the marginal coefficient distribution even
though the whole data set does). Therefore, our solution is a
multiscale, not a true multiresolution approach.

Fig. 14. The “milk crown” physical simulation data set (512×256×
512) and its LHL3 subband coefficient histogram, which does not
exhibit the marginal distribution.

D. Transfer Function

In this work, different versions of a data set were rendered
using the same transfer function for the purpose of subjective
data quality comparison. Since our focus was on data quality
assessment, we chose to fix rendering parameters so that the
possible difference or uncertainty introduced by the visual-
ization process could be minimized. Our current algorithm
explicitly takes the input transfer function into consideration
by modulating wavelet coefficients with voxel visual impor-
tance values at their nearest spatial-frequency positions. The
voxel visual importance values were precomputed offline with
a given transfer function. If the transfer function changes at
runtime, the calculation can be performed online (in this case,
we need to keep the low resolution data).

Our solution is a coarse approximation of voxel contribution
to the visualization. The accuracy of voxel visual importance
values depends on the resolution of data used and the number
of sample views taken for average visibility calculation. There
is a tradeoff between the update speed and the accuracy of
visual importance values. In practice, we can update visual
importance values within seconds for a low resolution volume
of size around 643 with 16 sample views. In our solution,
voxel visual importance values are only used to modulate and
select wavelet coefficients (Section IV-C). An improvement of
our implementation is to store selective wavelet coefficients
offline by only considering their magnitudes. At runtime when
the transfer function changes, the visual importance values
are calculated and used to further pick visually important
coefficients from stored coefficients.

Besides our current algorithm, another way to possibly
improve wavelet subband analysis is to apply the idea pre-
sented in [1] that classifies the voxels into core, gradient, and
unimportant voxels and assigns weight functions for wavelet
coefficients accordingly. Alternatively, the users can also pro-
vide their own voxel visual importance volume, derived from
volume classification or segmentation, for example, to modu-
late wavelet coefficients. Nevertheless, we understand that this
voxel-based approach is not an optimal solution for large data
analysis in terms of both efficiency and effectiveness. A better
solution could be using some shape functions to approximate
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the volume data and capture the visual importance aspect.
Another direction is to perform a more rigorous study on data
quality comparison in association with direct volume rendering
algorithm specifications [10].

VII. C ONCLUSION AND FUTURE WORK

We introduce a reduced-reference approach to volume data
quality assessment. A multiscale wavelet representation is
first built from the original data which is well-suited for
the subsequent statistical modeling and feature extraction. As
shown in Section V, we extract minimum feature information
in the wavelet domain. Using the feature and predefined
distance measures, we are able to identify and quantify the
quality loss in the reduced or distorted version of data. Quality
improvement on distorted or corrupted data is achieved by
forcing some of their feature components to match those from
the original data. Finally, our approach can be treated as a
new way to evaluate the uncertainty introduced by reduced or
distorted data.

Our algorithm is flexible with data sets of different sizes,
ranging from megabytes to gigabytes in the experiment. We
believe that the general approach presented in this paper can
be applied to quality assessment and improvement on larger
scale data. As we move into the era of petascale computing,
our work can help scientists perform in-situ processing so
that low resolution data together with a set of features are
saved to disk, which greatly reduces storage requirement and
facilitates subsequent data analysis, quality assessment, and
visualization.

Our current scheme is based on the GGD model which
generally works well on data sets that exhibit natural statistics.
We will investigate where and how well the GGD model works
for different volume data. Furthermore, we can improve this
model by augmenting it with a set of hidden random variables
that govern the GGD parameters [17]. Such hidden Markov
models may encompass a wider variety of data sets and yield
better quality assessment results. On the other hand, we need
to conduct a user study to suggest that the visual quality
perceived by the users conforms to the quality assessment
results obtained from our algorithm. In the future, we also
would like to extend this reduced-reference approach to quality
assessment of time-varying, multivariate data.

APPENDIX

THE CALCULATION OF GGD PARAMETERS

The key MATLABfunctions for calculating the GGD pa-
rameters(α,β ) and for returning the GGD function values
are provided as follows:

function f = fbeta(x)
% FBETA: an auxiliary function that computes beta

f = exp(2 * gammaln(2 ./ x) - gammaln(3 ./ x)
- gammaln(1 ./ x));

% GAMMALN: logarithm of Gamma function

function [alpha, beta, K] = sbpdf(mean, variance)
% SBPDF: estimate generalized Gaussian probability
% density function of an wavelet subband using the
% moment matching method

F = sprintf(’fbeta(x) - %g’, meanˆ2 / variance);

try
beta = fzero(F, [0.01, 5]);
% FZERO: find zero of a function of one variable

catch
warning(’(meanˆ2 / variance) is out of the range’);
if (meanˆ2 / variance) > fbeta(5)

beta = 5;
else

beta = 0.01;
end

end

alpha = mean * exp(gammaln(1/beta) - gammaln(2/beta));

if (nargout > 2)
K = beta / (2 * alpha * gamma(1/beta));
% GAMMA: Gamma function

end

function y = ggpdf(x, alpha, beta, K)
% GGPDF: return generalized Gaussian probability
% density function with parameters alpha and beta
% at the values in x

if (alpha <= 0 | beta <= 0)
tmp = NaN;
y = tmp(ones(size(x)));
% ONES: create an array of all ones

else
y = K * exp(-abs(x).ˆbeta ./ (alphaˆbeta));
y = y ./ sum(y);

end
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