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A Statistical Approach to Volume Data
Quality Assessment

Chaoli Wang, Member, IEEEand Kwan-Liu Ma, Senior Member, IEEE

Abstract— Quiality assessment plays a crucial role in data it could be desirable to smooth the data or enhance a particular
analysis. In this paper, we present a reduced-reference approach aspect of the data before rendering. Finally, the data may be
to volume data quality assessment. Our algorithm extracts gistorted or corrupted during the transmission over a network.

important statistical information from the original data in the Research has been conducted to evaluate the ality of
wavelet domain. Using the extracted information as feature and u valu quality

predefined distance functions, we are able to identify and quantify rendered imagesfter the visualization process [6], [29].
the quality loss in the reduced or distorted version of data, However, few studies focus on analyzing the data quality

eliminating the need to access the original data. Our feature pheforethe visualization actually takes place. It is clear that
representation is naturally organized in the form of multiple ihe original volume data may undergo various changes due to

scales, which facilitates quality evaluation of data with different uantization. compression. sampling. filtering. and transmis-
resolutions. The feature can be effectively compressed in size. wel ! P ! pling, g,

have experimented with our algorithm on scientific and medical Sion. If we assume the original d.ata has fU_” quality, a!' these
data sets of various sizes and characteristics. Our results show changes made to the data may incur quality loss, which may
that the size of the feature does not increase in proportion to the also affect the final visualization result. In order to compare
size of original data. This ensures the scalability of our algorithm and possibly improve the quality of the reduced or distorted

and makes it very applicable for quality assessment of large-scale N . . .
data sets. Additionally, the feature could be used to repair the data, it is important for us to identify and quantify the loss

reduced or distorted data for quality improvement. Finally, our Of data quality. Unequivocally, the most widely used data
approach can be treated as a new way to evaluate the uncertainty quality metrics aranean square erro(MSE) andpeak signal-

introduced by different versions of data. to-noise ratio (PSNR). Although easy to compute, they do

Index Terms— Quality assessment, reduced reference, waveletNot correlate well with perceived quality measurement [18].
transform, statistical modeling, generalized Gaussian density, Moreover, these metrics require access to the original data

volume visualization. and arefull-referencemethods. They are not applicable to our
scenario, since the original data may be too large to acquire or

I. INTRODUCTION compare in an efficient way. Therefore, it is highly desirable to

EVERAGING the power of supercomputers, scientisidevelop a data quality assessment method that does not require
L can now simulate many things from galaxy interaction t&!ll access of the original data.
molecular dynamics in unprecedented details, leading to newn this paper, we introduce eeduced-referencapproach
scientific discoveries. The vast amounts of data generatedByvolume data quality assessment. We consider the scenario
these simulations, easily reaching tens of terabytes, howe¥nere a set of important statistical information is first extracted
present a new range of challenges to traditional data analyé@n the original data. For example, the extraction process
and visualization. A time-varying volume data set produced t§puld be performed at the supercomputer centers where the
a typical turbulent flow simulation, for example, may contailfge-scale data are produced and stored, or ideally, in situ
thousands of time steps with each time step having billio¥d1€n the simulation is still running. We then compress the
of voxels and each voxel recording dozens of variablei€ature information to minimize its size. This makes it easy
As supercomputers continue to increase in size and po\,\;é)r,transfer the feature to the user as “carry-on” information
petascale data is just around the corner. for volume data quality assessment, eliminating the need to
A variety of data reduction methods have been introducégcess the original (_jatz_i again. Our feqture representation not
to make the data movable and enable interactive visualizatiGf!y Serves as the criterion for data quality assessment, but also
offering scientists options for studying their data. For instancgQuld be used as quality improvement to repair the reduced
subsets of the data may be stored at a reduced preci%ndlstorted data. This is achieved by matching some of its
or resolution. Data reduction can also be achieved witgature components with those extracted from the original data.
transform-based compression methods. A popular approach% have tested our algorithm on scientific and medical data
that a particular level of details is selected according to ti§dfectiveness.
visualization requirements and available computing resources.

In addition, data may be altered in other fashions. Furthermore, Il. BACKGROUND AND RELATED WORK
Unlike the Fourier transform with sinusoidal basis functions,
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simultaneously in space and frequency. The particular kitagply the wavelet transform to the low-pass filtered subband,
of dual localization makes many functions and operatotisus creating a multiscale decomposition structure (a good
using wavelets “sparse” when transformed into the wavel@troduction of wavelets for computer graphics can be found in
domain. This sparseness, in turn, brings us a number of usgfid]). In our experiment, the number of decomposition levels
applications such as data compression, feature detection, endsually between three and five, depending on the size of
noise removal. original data.

Besides sparseness, wavelets have many other favorabl€here is a wealth of literature on quality assessment and
properties, such as multiscale decomposition structure, linemmparison in the field of image and video processing. De-
time and space complexity of the transformations, decorrelatiils on this are beyond the scope of this paper and we
coefficients, and a wide variety of basis functions. Studies wffer interested readers to [2] for a good survey. Here, we
the human visual systerfHVS) support a multiscale analysisspecifically review some related work in the field of graph-
approach, since researchers have found that the visual coitexand visualization. Jacobs et al. [9] proposed an image
can be modeled as a set of independent channels, each witluarying metric for searching in an image database using
particular orientation and spatial frequency tuning [4], [21R query image. Their metric makes use of multiresolution
Therefore, wavelet transforms have been extensively ussdvelet decompositions of the query and database images,
to model the processing in the early stage of biologicahd compares how many significant wavelet coefficients the
visual systems. They have also gained much popularity, agdery has in common with potential targets. In [6], Gaddipati
have become the preferred form of representation for imageal. introduced a wavelet-based perceptual metric that builds
processing and computer vision algorithms. on the subband coherent structure detection algorithm. The

In volume visualization, Muraki [15] introduced the ideametric incorporates aspects of the HVS and modulates the
of using the wavelet transform to obtain a unique shapeavelet coefficients based on the contrast sensitivity function.
description of an object, where a 2D wavelet transform Bahasrabudhe et al. [18] proposed a quantitative technique
extended to 3D and applied to eliminate wavelet coefficienthich accentuates differences in images and data sets through
of lower importance. Over the years, many wavelet-basedcollection of partial metrics. Their spatial domain metric
techniques have been developed to compress, manage, rardsures the lack of correlation between the data sets or
render three-dimensional [8], [11] and time-varying volumetriinages being compared. Recently, Wang et al. [26] introduced
data [12], [23]. They are also used to support fast acce®s image-based quality metric for interactive level-of-detail
and interactive rendering of data at runtime. In this paper, welection and rendering of large volume data. The quality
employ the wavelet transform to generate multiscale decometric design is based on an efficient way to evaluate the
position structures from the input data for feature analysis.contribution of multiresolution data blocks to the final image.

In [29], Zhou et al. performed a study of different im-
age comparison metrics that are categorized into spatial do-

main, spatial-frequency domain, and perceptually-based met-

3 rics. They also introduced a comparison metric based on the
2 = O second-order Fourier decomposition and demonstrated favor-
= HLLY able results against other metrics considered. In our work, we

z use the wavelet transform to partition the data into multiscale
L ] L and oriented subbands. The study on volume data quality
-~ |LHH1 HHH1 assessment is thus conducted in the spatial-frequency domain
y 7" LHL1 HHL1 rather than the spatial domain.

Fig. 1. Multiscale wavelet decomposition of a three-dimensional

volumetric data. L = low-pass filtered; H = high-pass filtered. The I11. ALGORITHM OVERVIEW

subscript indicates the level and a larger number corresponds to

a coarser scale (lower resolution). An example of three levels of From a mathematical standpoint, we can treat volume data

decomposition is shown here. as three-dimensional arrays of intensity values with locally
varying statistics that result from different combinations of
The wavelet transform on a one-dimensional signal can Bbrupt features like boundaries and contrasting homogeneous
regarded as filtering the signal with both the scaling function ¢agions. In line with this consideration, we advocate a statis-
low-pass filter) and the wavelet function (a high-pass filterlical approach for volume data quality assessment. Given a
and downsampling the resulting signals by a factor of tweolumetric data set, a first attempt may lead us to examine its
The extension of the wavelet transform to higher dimensionsgatistics in the original spatial domain. However, even first-
usually achieved using separable wavelets, operating on amder statistics such as histograms would vary significantly
dimension at a time. The three-dimensional wavelet transfofrom one portion of data to another, and from one data set to
on volume data is illustrated in Fig. 1. After the first iteraanother. This defies simple statistical modeling over the entire
tion of wavelet transform, we generate one low-pass filtereldta set, as well as the subsequent quality assessment.
wavelet subband (LLY) with one eighth of the original size, Instead of spatial domain analysis, we can transform the
and seven high-pass filtered subbands (IHULHL ., HHL1, volume data from the spatial domain to the spatial-frequency
LLH1, HLH1, LHH1, and HHH). We can then successivelydomain using the wavelet transform, and analyze its frequency
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(a) Lena image, HL subband (b) vortex data set, Hbllsubband (c) brain data set, Hilsubband

Fig. 2. (a)-(c) are three wavelet subband coefficient histograms (blue curves) fitted with a two-parameter generalized Gaussian density model
(red curves) for the Lena image, the vortex data set, and the brain data set, respectively. The estimated pargf)eiee$1.26610.6400)
(5.8881e-003,0.4181) and(7.1276e- 003,0.2709)for (a), (b), and (c), respectively. The overall fitting is good for all three examples.

statistics. Since frequency is directly related to rate of chandeature. On the other hand, the high-pass filtered subbands
it is intuitive to associate frequencies in the wavelet transerrespond to detail information that represents abrupt features
form with patterns of intensity variations in the spatial datar fine characteristics in the data. They spread across all
Furthermore, the wavelet transform allows us to analyze thdferent scales with an aggregate size nearly equal to the size
frequency statistics at different scales. This will come in hanay original data. The key issues are how to extract important
when we evaluate the quality of reduced or distorted ddf@ature information from these high-pass filtered subbands, and
with different resolutions. Compared with the statistics dfow to compress the feature.

data in the spatial domain, the local statistics of different

frequgncysu_bbandsa_re relative_ly constant gnd easily modeleqﬁh Wavelet Subband Statistics

This is realized usinggeneralized Gaussian densi{GGD) ) . o .

to model the marginal distribution of wavelet coefficients at Studies on natural image statistics reveal that the histogram
different subbands and scales (Section IV-A). We also reco‘?& V\_/avelet _coefﬁmen'_[s exhibits a marginal distribution at a
information about selective wavelet coefficients (Section \articular high-pass filtered subband. An example of the Lena

C) and treat the low-pass filtered subband (Section Iv-D) J82ge and the coefficient histogram of one of its wavelet
part of our feature representation. subbands is shown in Fig. 2 (a). Teaxis is on a log scale

Our feature thus consists of multiple parts, and each pithe histogram. As we can see, the marginal distribution
corresponds to certain essential information in the spati@f Wavelet coefficients creates a sharp peak at zero and
frequency domain. Note that this data analysis and featJpore extensive tails than the Gaussian density. The intuitive
extraction process can be performed when we have the acé@gyanation of this is that natural images usually have large
to the original data, or ideally, in situ where a simulation jgverall structures consisting of smooth areas interspersed with
running. Once we extract the feature from data, we are alQecasional abrupt transitions, such as edges and contours. The
to use it for quality assessment without the need to access §fa°0th areas lead to near-zero coefficients, and the abrupt
original data. Given a reduced or distorted version of data, W&nsitions give large-magnitude coefficients. In [14], Mallat
compare its feature components with those derived from tRBOWS that such a marginal distribution of the coefficients in
original data using predefined distance functions. This giviidividual wavelet subbands can be well-fitted with a two-
us an indication of quality loss in relation to the original dat@rameter generalized Gaussian density (GGD) model:

We can also use the feature to perform a cross-comparison of B x|
data with different reduction or distortion types to evaluate the p(x) = e eXp(—(;)B), 1)
uncertainty introduced in different versions of data. Moreover, (5)

by forcing some of its statistical properties to match those Qfherer is the Gamma function i.el(z) = [Ce itz 1dt, z>
the original data, we may repair the reduced or distorted dgja 0

for possible quality improvement. In the GGD modelg is the scaleparameter that describes

the standard deviation of the density, afidis the shape
IV. WAVELET SUBBAND ANALYSIS parameter that is inversely proportional to the decreasing rate
In the multiscale wavelet decomposition structure, the lovef the peak. As an example, the plots of the GGD distribution
pass filter subband corresponds to average information tbader varied a,3) values are illustrated in Fig. 3. The model
represents large structures or overall context in the volurparametefa, 3) can be estimated using theoment matching
data. After several iterations of wavelet transforms, the simeethod [25] or themaximum likelihoodule [16]. Numerical
of the low-pass filter subband is small compared with thexperiments in [25] show that 98% of natural images satisfy
size of original data (already less than 0.2% for a three-lewtbis property. Even for the remaining 2%, the approximation
decomposition). Thus, we can directly treat it as part of thaf the real density by a GGD is still acceptable. Note that the
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GGD model includes the Gaussian and the Laplacian distrilesefficient histograms for each data set and their respective
tions as special cases with=2 andf3 = 1, respectively. The well-fitted GGD curves. Thus, with only two GGD parameters,
GGD model provides a very efficient way for us to summarizae@e are able to capture the marginal distribution of wavelet
the coefficient histograms of an image, as only two parameteefficients in a subband that otherwise would require at
are needed for each subband. This model has been useteast hundreds of parameters using histogram. We shall see
previous work for noise reduction [22], image compressidn Section V that this GGD model works well for larger data
[3], texture image retrieval [5], and quality encoding [28]sets too. Next, we discuss the distance measure for wavelet
In this paper, we use the moment matching method whishibband statistics.

takes the mean and the variance of wavelet coefficients in a_et p(x) andq(x) denote the probability density functions
subband to compute its GGD model parameter,$3) (see the of the wavelet coefficients in the same subband of the original
Appendix for the implementation detail). In Fig. 2 (a), the rednd distorted data, respectively. Here, we assume the coef-
curve is the GGD function with parameters estimated using tfieients to be independently and identically distributed. Let
moment matching method. The result fits the original wavelgt= {x1,X2,...,Xn} be a set of randomly selected coefficients.
coefficient distribution quite well. The log-likelihoods ofx being drawn fromp(x) andq(x) are

‘ - ‘ - N N
A= | |(p)%;|ogpm> and l(q)%_;long @

—a=10
—— a=075

respectively. Based on the law of large numbers, wNeis
w0 1 large, the log-likelihoods ratio betwegr{x) andq(x) asymp-
totically approaches thi€ullback-Leibler distanc€¢KLD) (also
2] | known as theelative entropyof p with respect tog):

P(X)

d(pla) / p(x)log q(x)dx ®3)
, ‘ ‘ Although the KLD is not a true metric, i.ed(p|lq) #
e ! 08 0 05 ! 18 d(q||p), it satisfies many important mathematical properties.
(dp=05 For example, it is a convex function ob. It is always
‘ - ‘ - nonnegative, and equals zero onlyifx) = q(x). In this paper,
w2l :gig; _ we use the KLD to quantify the difference between wavelet
— 510 coefficient distributions of the original and distorted data. This
] LA | quantity is evaluated numerically as follows:

: d(plla) = 3 Pl log 2 @
2,PUloggg):

T | where P(i) and Q(i) are the normalized heights of thth
histogram bin, andM is the number of bins in the histogram.
oy i Note that the coefficient histogra® is computed directly
from the distorted data, while the coefficient histogr&nis
approximated using its GGD parametées 3) extracted from
(b)a=15 the original data.

Finally, the KLD between the distorted and original data
over all subbands is defined as:

I L I I L
15 -1 -05 0 05 1 15

Fig. 3. The GGD distribution and its model parametéss ). (a) a
varies while3 = 0.5. (b) B varies whilea = 1.5. The figure shows
the sensitivity of the shape of GGD plots with respect to the model

B S
parameters. Dy = |09(1+_Zl d(p'f|d')), ®)
i=

We extend this statistical model to three-dimensional V%hereB is the total number of subbands analyzpbland qi
ume data since many scientific and medical data share H}% the probability density functions of tite subbands in the

same intrinsic characteristics as natural images; i.e., homog%inaI and distorted data respectively ad(:t)ini) is the
neous regions mixed with abrupt transitions. Moreover, the ral€timated KLD betweep' andq '

or proportion of homogeneous regions and abrupt transitions

is also similar for image and volume: in 2D, we have area

of homogeneous regions versus the edge length of abrBptVoxel Visual Importance

transitions; and in 3D, we have volume of homogeneousAt runtime, a transfer function is applied to the input volume
regions versus the surface area of abrupt transitions. Inithere the scalar data values are mapped to optical quantities
experiments on two small data sets give very promising resuksich as color and opacity, and the volume is projected into
Fig. 2 (b) and (c) show one example of wavelet subbarD images. To capture the visualization-specific contribution
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possibly repair the distorted data. Therefore, along with the
\ ¥ global GGD parameters per wavelet subband, we also need
\ e B TN / to recordlocal information about wavelet coefficients for data
vl N guality assessment and improvement.
\// \/
/ \ I~
| \ 3 ||
— o — .

\ voxel i /

N low resolution P
7 volume/\/\
Fig. 4. A voxel's visual importance in the low resolution volume is_.

the multiplication of its opacity and average visibility. The averag '.?f' S tThgbpaéentl-cmlld ggpendenlcles of ‘]ﬁfv.a\.’ek?t. coefficients ml
visibility is calculated using a list of evenly-sampled views along th frerent subbands. In this examp’e, a Coetlicient In a coarse scale

\ : as four child coefficients in the next finer scale of similar orientation.
volume's bounding sphere. The arrow points from the subband of the parents to the subband of
the children.

sample views

for each voxel, we define a voxel's visual importanoeas

An important observation is that, although the coefficients of
follows:

wavelet subbands are approximately decorrelated, they are not

) _ _. statistically independent. For example, Fig. 5 shows a three-
w(i)=afi) - v(i) (6)  level decomposition of the Lena image. It can be seen that
where a(i) is the opacity of voxeli, v(i) is its average cogﬁicier)ts of Iarge magnitude (bright pixels) tend to occur at

visibility. As sketched in Fig. 4, given an original largeh€ighboring spatial-frequency locations, and also at the same

volume data, we use its low resolution form (for practical ari@lative spatial locations of subbands at adjacent scales and

performance concern) to calculate visual importance values®entations. Actually, in 2D, a coefficientin a coarse scale
e  has four child coefficients in the next finer scale. Each of the

all voxels within the volume. In Eqgn. & (i) andv(i) accoun ' ot i = ]
four child coefficients also has four child coefficients in the

for the emission and attenuation of voxglespectively. ’ D )
To calculate the average visibility, we consider a list drext finer scale. Furthermore, dfis insignificant with respect

evenly-sampled views along the bounding sphere that encloi:S0me threshola, then it is likely that all of its descendant
the volume and take the average of the visibility from thoLefficients are insignificant too. This coefficient dependency

sample views. Given a view along the bounding sphere, th@s been exploited in several image compression algorithms,
visibility for each voxel in the low resolution data is acquireUch as the embedded zerotree wavelet (EZW) encoding

in this way: we render the low resolution data by drawinff0] @nd a following image codec based on set partitioning

front-to-back view-aligned slices and evaluate the visibility Jf Nhierarchical trees (SPIHT) [19]. These algorithms have
all the voxels during the slice drawing. The visibility of g2lso been extended to three-dimensional volumetric image

compression in medical application [13]. In this paper, we

voxel is computed as (@) right before the slice containing >~ o |
utilize the coefficient dependency to store selective wavelet

the voxel is to be drawn, whem is the accumulated opacity ~ ) -
at the voxel’s screen projection. This process repeats for e&gficients in an efficient manner. N

sample view. Finally, for each voxel in the volume, we use the There are two categories of wavelet coefficients that are
average of its visibility from all sample views to calculate it®f importance for the purpose of quality assessment and
visual importance. Essentially, the visual importance indicatd8Provement. One category is the coefficients of large mag-
the average contribution of a voxel in association with Bitude which correspond to abrupt features like edges or
given input transfer function. This visualization-specific terfROuUndaries. As we can see in Fig. 2, they are along the tails

is then normalized and incorporated into the following wavel&f the marginal coefficient distribution where the perceptually-
coefficient selection. significant coefficients generally reside. The other category is

neighboring near-zero coefficients which correspond to homo-
o ) geneous regions. They are close to the zero peak of the distri-
C. Wavelet Coefficient Selection bution and are important indications of data regularity. Taking
The GGD model captures the marginal distribution ahto account the visualization-related factor, we modulate the
wavelet coefficients at each individual subband. Using theavelet coefficients with the voxel visual importance values
distance defined in Eqn. 5, we are able to know how clog¢8ection IV-B) at their nearest spatial-frequency locations. In
the coefficient distributions of distorted data are in relatiotnis case, a wavelet coefficient is large only if it has both
to the original data. Nevertheless, the histogram itself dolsge magnitude and high voxel visual importance; a wavelet
not tell the spatial-frequency positions of wavelet coefficientsoefficient is near zero if it has either near-zero magnitude or
This limits our ability to compare the data in finer detail andear-zero voxel visual importance.
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of the feature. Let; andb; be the low-pass filter subbands
2 T 2 e LT of the original and distorted data, respectively. The similarity
betweenb; andb; is defined as:

fx et ;""l_if = el el s g Oi | 2HM 200] 40 WK (®)
=t : 6oy ptpf  of+of  (of+of)(u+pf)

raster scan Morton scan where gjj is the covariance betweeln and bj, pi and p;
are the mean values &f andb; respectively, ands; and o
Fig. 6. Scan of wavelet coefficients in the raster order and the Mortefte their standard deviations. Eqn. 8 consists of three parts;

order. The blue dashed line segments indicate discontinuities in mely,loss of correlationjuminance distortion, andontrast
scan. Compared with the raster order, the Morton order preserves the

spatial-frequency locality better. ?stort?on. Collectively, these_ three parts captyre the s_tructure
distortion of the low-pass filtered subband in the distorted
data. This similarity measure comes from the image quality

Starting from the coarsest scale, we scan each wavelégessment literature [27], and has been shown to be consistent

subband and encode coefficients of interest. As illustrated wifth the luminance masking and contrast masking features in

a 2D example in Fig. 6, we follow th&lorton order (z- the HVS, respectively. The dynamic rangeSis [-1,1]. The

curve order) as opposed to the ordinary raster order to befdgst value of 1 is achieved whdn = b;. Hence, We define

utilize the spatial-frequency locality. For neighboring near-zefhe distance betweeln andb; as follows:

coefficients (at least eight consecutive coefficients in 3D), we

run-length encode their positions (i.e., the scan orders). For D3 = /10— (S+1.0)/20. )
large-magnitude coefficients, we encode their positions and
values as well. In general, most scientific and medical de*~ —
subband coefficient GGD
have a low-pass spectrum. When the data are transforn coefficients (coefficient] histogram | GGD | parameters

parameter

statistics ——
estimation

into a multiscale wavelet decomposition structure, the ener

in the subbands decreases from a fine scale (high resoluticignal | [ yayelet

to a coarse scale (low resolution). Therefore, the wave data | (s
coefficients are, on average, smaller in the finer scales tt
in the coarser scales. Accordingly, we vary the threshol cSuboand N
of near-zero coefficientss] and large-magnitude coefficients L coefficients

(1) for different scales. Finally, information of the selective

coefficients is further compressed using the open satlilge  Fig. 7. Our feature representation of the original data in the wavelet

features

low-pass filter subband

run-length
and z1ib
encoding |compressed

coefficients

positions for near-
zero coefficients

compressor. domain.
We define the distance for the selective wavelet coefficients
as follows:
E. Summary

. G- ) In summary, as shown in Fig. 7, our feature representation
D = log(1+ 2, 1(cmax) +2 (cmax) @) of the original data in the wavelet domain includes three parts.

i; Li+2Z ’ the GGD model parameters from wavelet subband statistics,

selective wavelet coefficients, and the low-pass filtered sub-

whereB is the number of subbands over all the scalesind pand. Given a reduced or distorted version of data, we analyze
Z; are the numbers of large-magnitude coefficients selected 3R quality loss by calculating its distances to the original
near-zero coefficients selected in itiesubband, respectively. qata for each of the feature components (Egn. 5, 7, and 9).
cj and ¢; are the jth large coefficients selected from thegach partial distance indicates some quality degradation with

original and distorted data respectively, amdax is the largest reference to the original data and the summation of all these

magnitude (modulated by visual importance) of all coefficienjsartial distances gives the overall degradation. Thus, an overall

at theith subband. For near-zero coefficients, we assume #@tance could be computed heuristically as the weighted sum
original coefficientscy = 0 and only consider coefficients ingf the three individual distances:

the distorted data WI'[|TCk| > ¢ for the calculation.

D = kiD1 + koD + k3D3, (10)

D. Low-Pass Filtered Subband wherek >0, i = 1, 2, and 3. Note that there is no need
The low-pass filter subband in the multiscale wavelet désr normalizing this overall distance. For the purpose of data
composition structure corresponds to average information tlyatality improvement, it is advantageous to keep each distance
represents large structures or overall context in the volureeparate (or further at the subband level) so that we know
data. Compared with the size of original data, the size of thighich parts cause significant quality degradation. We can then
subband is usually small after several iterations of waveletpair accordingly using the feature extracted from the original

decomposition. Therefore, we directly incorporate it as padtta.
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| data set | dimension | data size| DL [ LP dimension [ LP size | HP size | feature size| ratio ]
turbulent vortex flow 128 8.0MB 3 16 16.0KB | 42.2KB 58.2KB | 0.710%

solar plume velocity magnitudg 512> x 2048 | 2.0GB 5 16° x 64 64.0KB | 376.0KB 440.0KB 0.021%
supernova angular momentur 864 2.40GB 5 27 76.9KB | 852.6KB 929.5KB 0.037%
UNC brain 12 x 72 4.5MB 3 16 x 9 9.0KB 53.7KB 62.7KB 1.361%

head aneurysm 5125 512MB 4 32 128.0KB | 198.0KB | 326.0KB | 0.062%

visible woman 512 x 1728 | 1.69GB | 5 167 x 54 54.0KB | 753.4KB| 807.4KB | 0.046%

DL = decomposition levels
LP dimension (size)= low-pass filtered subband’s dimension (sizdP size = all high-pass filtered subbands’ feature size

TABLE |
THE SIX FLOATING-POINT DATA SETS AND THEIR FEATURE SIZES

-2 -1500  -1000 -500 1] 500 1000 1500 200 - ‘ -3 -2 -1 0 1 2 3 4
(a) visible woman data set, HlHsubband (b) solar plume data set, Ll Bubband

Fig. 8. (a) and (b) are two wavelet subband coefficient histograms (blue curves) fitted with the GGD model (red curves) for the visible

woman and the solar plume data sets, respectively. The estimated pargmefrare (1.6786e-002,0.2425)and (1.4922e-009,0.1405)
respectively. In general, the fitting works well for these two data sets.

V. RESULTS n levels of decomposition. The feature size of all high-pass
{iltered subbands includes their respective GGD parameters

We experimented with our algorithm on six floating-poin : . .
) . . and selective wavelet coefficients in the compressed form.
data sets, as listed in Table I. Among the six data sets, three

of them are from scientific simulation, and the remaining From the last column in Table I, we can see that for all
three are from medical application. These six data sets v data sets, the size of feature is small compared with the
greatly in size, and exhibit quite different characteristics. F&¥iginal data. Note that the size of feature does not increase in
multiscale wavelet decomposition, we specifically restrictgfoportion to the size of original data. This is mainly due to
our attention to the Daubechies family of orthogonal wavelet§ie increase of decomposition levels for larger data sets, as we
as evaluation of all possible wavelet transforms is out of tif&n afford to have more levels of wavelet decomposition while
scope of our experiments. The decision for levels of wavel@lll keeping the GGD parameters robust. Our experiment
decomposition is based on the size of input data, as well @firms that the GGD model generally performs well when
the tradeoff between the size of feature and the robustnesdht size of the input data becomes larger. For instance, Fig. 8
GGD model parameters. shows one of the wavelet subband coefficient histograms for

In our test, the threshold for near-zero wavelet coefficientsthe Visible woman and the solar plume data sets, and their
at theith subband was chosen amax/(2-+3), wherecmax ~respective GGD curves. On the other hand, the feature size

is the largest magnitude (modulated by visual importanc@)"’“so data and transfer function dependent. For example, the
of all coefficients at theith subband, and. is the total ratio for the brain data set is 1.361%, which is relatively high

number of decomposition levels we have. The threshold féPmpared with the vortex data set having the same number of
large-magnitude wavelet coefficients at the ith subband decomposition levels. Thus, it follows that we record a higher

was chosen asmax/(2572), wheres is the scale in which Percentage of high-pass filtered subband feature information
the ith subband locates. We variesl according to the scale for the brain data set.

because the wavelet coefficients in a subband become mor8lext, we report results of volume data quality assessment
important as the scale increases. In Table I, the size of loand improvement using the extracted feature. To compare the
pass filtered subband is the uncompressed size of,Lafter quality of rendered images, we used a GPU raycaster for
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volume rendering. All tests were performed on a 2.33GHzhanges with six different Gaussian smooth filters for all six
Intel Xeon processor with 4GB main memory, and an nVididata sets. We applied a discrete Gaussian kernel of Size 5
GeForce 7900 GTX graphics card with 512MB video memorwith different standard deviations. A larger standard deviation
indicates a greater degree of smoothing since neighboring
A. Quality Assessment voxels carry more weight. Table Il lists all partial and overall

First of all, we experimented with our quality measurgistances'for the solar plume data set. It is' c'Iear.that the
on different data sets and observed how the quality of ddt@ta quality gets worse as the standard deviation increases.
changes for the same reduction or distortion type. We uselglike qua_mtlzatlon, however, the rate of quality loss decreases
the three smaller data sets (brain, vortex, and aneurysm)3gdually in the sequence.
their original resolutions and the other three data sets (visihle
woman, solar plume, and supernova) of their second high :Sﬂgx avstk none iiﬂi;ﬁﬁi;
resolutions in the test. To calculate the overall distance, \
used Eqn. 10 wittiks, ko, k3) = (0.1,1.0,1.0). Please note that
in this paper, we assume the original data set has full quali
Thus, any changes made to the data would involve possil
quality loss, even though the desire is to enhance the data fr
a certain perspective.

Quantization is a commonly used approach for data r
duction. Our first example studies the quality loss undi| ‘us 06
the uniform quantization scheme. Fig. 9 shows the quali;

e_lsse_ssment result of all gix data_ sgts with six different quan- ;o Quality assessment on six test data sets witfGBussian
tization levels. A larger distance indicates a greater degreesg{ooth filters of six different standard deviations. The data quality
quality degradation. More specifically, Table Il lists all partiagets worse as the standard deviation increases.

and overall distances for the aneurysm data set. Although

different data sets have different responses of quality loss due

125 15

08 1
standard deviation

to quantization, the overall trend is fairly obvious: the data Lo [ bi | Dp [ D3 | D |
quality gets increasingly worse as the number of quantization 0.5 || 0.2687| 0.0656 | 0.0004 | 0.0929
levels decreases. 0.6 || 0.3793| 0.0921 | 0.0006| 0.1306

0.8 || 0.6325| 0.1422| 0.0010| 0.2065
1.0 || 0.9225]| 0.1822| 0.0015| 0.2760

——brain ——visible woman G—aneurysm
——vortex —@—soloar plume —&—supernova 1.25 1.2039| 0.2165| 0.0020 | 0.3389
12 1.5 || 1.3548| 0.2377| 0.0023 | 0.3755
1
s TABLE Il
g 06 PARTIAL AND OVERALL DISTANCES FOR THE SOLAR PLUME DATA SET
% 0a WITH SIX GAUSSIAN SMOOTH FILTERS OF DIFFERENT STANDARD
p DEVIATIONS.
0.2
4
0 .
1024 512 256 128 64 a2 . . .
HHantization level Besides quality assessment of data with the same type of

. ) ] o reduction or distortion, the feature also avails us to perform
Fig. 9. Quality assessment on six test data sets with six d'ﬁeregoss-type data quality comparison. For example, Fig. 11 gives
quantization levels. The data quality gets increasingly worse as the " .-
number of quantization levels decreases. guality assessment results on the solar plume and the visible

woman data sets under four different distortion types: mean

shift (of the data range over 256), voxel misplacement (with

[level | Dy [ Do | D3 | D | two slices of voxels misplaced), averaging filter (using a
1024 ] 0.1961] 0.0071[ 0.0038] 0.0305 kernel of size 8), and salt-and-pepper noise (with an equal
512 ]| 0.5227 0.0144| 0.0077] 0.0744 probability of 1/1024 for the bipolar impulse). Table IV lists

256 || 0.9933| 0.0277| 0.0153| 0.1423
128 || 1.5111| 0.0551| 0.0303| 0.2365
64 1.9518| 0.1065| 0.0594| 0.3611

all partial and overall distances, MSE, and PSNR for these
four distortion types. For both data sets, we can see that the

35 11 22407 02089 0.1150 | 0.5480 mean shift introduces the minimum quality loss here, followed
by the voxel misplacement. The salt-and-pepper noise incurs

TABLE Il the most quality degradation. This result is consistent with

PARTIAL AND OVERALL DISTANCES FOR THE ANEURYSM DATA SETWITH  perceived quality in rendered images. However, the MSE and
SIX DIFFERENT QUANTIZATION LEVELS. the PSNR incorrectly recognize the mean shift as having a

larger distortion than the voxel misplacement for both data

sets. Note that they also give the opposite results on the

Our second example studies the quality loss under theeraging filter for the two data sets. This is due to the reason
Gaussian smooth filtering. Fig. 10 shows how the data qualityat the MSE and the PSNR metrics are only voxel-based and
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: 4 B\ i ; '\ i ! 3 4
(b) voxel misplacement (c) averaging filter (d) salt-and-pepper noise

(a) mean shift

Fig. 11. Cross-type quality assessment on low resolution solar plume?(28624) and visible woman (256< 864) data sets. The data
quality degrades as the overall distance (listed in Table 1V) increases from (a) to (d). The rendered images are cropped for a closer comparison.

[ dataset | type [ D; | D, | D3 | D Jrank | MSE | PSNR | rank |
solar plume mean shift || 2.0556e-4 | 4.5864e-7 | 5.8988e-2 | 0.0590 5.5252e-2 | 48.1648| 2

4
misplacement|| 1.3126e-1 | 9.4561e-2 | 5.5746e-3 | 0.1133 3 2.4239%e-2 | 51.7431] 3
averaging 5.2393e-1 | 1.2551e-1 | 8.1216e-4 | 0.1787 2 5.2299e-3 | 58.4033| 4
noise 3.1198e+0 | 1.8137e+0 | 2.8900e-2 | 2.1546 1 6.7305e+0 | 27.3078]| 1
visible woman| mean shift 8.8428e-5 | 6.9770e-7 | 2.3914e-2 | 0.0239 4 1.8691e+3 | 48.1648 3
misplacement|| 1.5366e-2 | 1.1612e-1 | 4.6497e-3 | 0.1223 3 1.5397e+3 | 49.0066| 4
averaging 1.6449e+0 | 5.4139e-1 | 1.4596e-3 | 0.7073 2 1.9289%e+5 | 28.0279 1
noise 1.7343e+0 | 7.8530e-1 | 9.7468e-3 | 0.9685 1 1.2152e+4 | 40.0347| 2
TABLE IV

PARTIAL AND OVERALL DISTANCES, MSE,AND PSNRFOR THE SOLAR PLUME AND THE VISIBLE WOMAN DATA SETS WITH FOUR DIFFERENT
DISTORTION TYPES

do not consider the overall structure distortion of the data. missing portion), and then repair accordingly using the feature
information.

B. Quality Improvement The repairing scheme works as follows: First, a multiscale

Since the feature captures essential information from theavelet decomposition structure is built from the corrupted
original data, it can be utilized to improve the quality oflata, where the size of low-pass filtered subband at the coarsest
distorted or corrupted data. In this paper, we do not shaeale equals the size of low-pass filtered subband recorded in
examples where the feature is used to construct a higliee feature (Section IV-D). Note that for the repairing purpose,
resolution data from a low resolution data, as it is the moate keep the low-pass filtered subbands in all scales. Then,
common way of using the wavelet transform and compressiame improve the high-pass filtered subbands across all scales

Our first example deals with missing data. Fig. 12 (a) shovay replacing the wavelet coefficients with their corresponding
the rendering of a low resolution supernova data set with oresefficients in the feature; that is, those large-magnitude and
eight (i.e., an octant) of data missing. The missing of datear-zero wavelet coefficients selected (Section IV-C). Next,
could result from incomplete data transmission, or even a bstarting from the coarsest scale (the lowest resolution), we
in the data reduction source code. Recall that we keep eaehonstruct the low-pass filtered subband at the next finer scale,
partial distance separate (and actually at the subband levaging the low-pass filtered subband recorded in the feature
This helps us identify which parts introduce the dramat&nd improved high-pass filtered subbands. The reconstructed
change (in this case, the subband at the same orientation addhepass filtered subband is used to correct the missing part in
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(a) before,D =1.3346 (b) afterD = 0.5536 (c) comparison (d) transfer function

Fig. 12. Quality improvement on a low resolution supernova data set3{48h one-eight of data missing, as shown in (a). (b) is the result
after an automatic repairing process using the feature information. In (c), a portion of (b) is zoomed in for comparison with the reference
image displayed on the top. (d) shows the transfer function used.

(S

(a) before,D = 2.3094 (b) afterD =0.7188 (c) comparison (d) transfer function

Fig. 13. Quality improvement on the aneurysm data set #jHéstorted by random noise, as shown in (a). (b) is the result after an automatic
repairing process using the feature information. In (c), a portion of (b) is zoomed in for comparison with the reference image displayed on
the bottom. (d) shows the transfer function used.

the same-scale low-pass filtered subband decomposed fromdbeaposition structure. Another difference is that for each high-
corrupted data. The corrected low-pass filtered subband is tlpass filtered subbanid we first set large-magnitude wavelet
used to reconstruct the next finer scale in an iterative mannewefficients to zero (if they are larger than the threshp)d
In this way, we are able to automatically repair the missingefore improving them with their corresponding coefficients
portion in the corrupted data scale by scale. Finally, an optionalthe feature. Fig. 13 (b) shows the result after this repairing
median filter is applied to the corrected portion of data at thEocess. As we can see, the noise is eliminated, while the fine
finest scale in order to suppress potential noise and producstraicture of the blood vessels is preserved.
better match with the original GGD model parameters. Fig. 12
(b) shows the result after this automatic repairing process. It VI. DISCUSSION
is clear that the data quality improves as the overall distance i
decreases. A. Choice of Wavelets
To extract essential information from the original data,

We can also apply a similar repairing process for noisee decomposed the data into multiple scales using wavelet
reduction. For example, Fig. 13 (a) shows the rendering bésis functions localized in spatial position, orientation, and
the aneurysm data set distorted by random noise. This kigiatial frequency. We used the Daubechies family of or-
of distortion can be detected through the observation oftlaogonal wavelets in our experiment because they provide a
sequence of sudden spikes appearing in the wavelet coefficigood tradeoff between performance and complexity [5], [6].
subband histograms. The denoising process also followdMareover, we found that the choice for the number of scaling
coarse-to-fine manner as usual, but there is no need to keep wavelet function coefficients has little effect on assessment
the low-pass filtered subband at every scale in the wavelet decuracy. Therefore, we specifically used the Daubechies D4
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transform for efficiency. Other separable wavelets (such as thecessarily exhibit the marginal coefficient distribution even
Gabor wavelets) or redundant transforms (such as the steerabérigh the whole data set does). Therefore, our solution is a
pyramid transform) could also be used in our algorithm. Faenultiscale, not a true multiresolution approach.

example, the steerable pyramid transform decomposes the data

into several spatial-frequency bands, and further divides ec
frequency band into a set of orientation bands. It can th
help to minimize the amount of aliasing within each subban
However, they are more expensive to compute and requ
more storage space.

B. Timing Performance

10* JM W\]‘W
"o . I L 7Y
The timing of wavelet analysis on the original data include N
the time for multiscale wavelet decomposition, GGD param-

eters estimation. and subband wavelet coefficients Select'Fllﬁ' 14. The “milk crown” physical simulation data set (5%¥256x
! lon, u wav Ici 8 2) and its LHI3 subband coefficient histogram, which does not

This one-time preprocess may take anywhere from seconds#8ibit the marginal distribution.
a total of several minutes on a single PC, depending on the

size of input data. For data sets that could not be loaded into

memory simultaneously, we employed a block-wise wavelgt Transfer Function

transform process and handled boundaries of neighbonnqn this work, different versions of a data set were rendered

blocks to guarantee seamless results. The timing of qualitg. . S
. . . ime $5ing the same transfer function for the purpose of subjective
assessment on different versions of data includes the time dor

wavelet decomposition and distance calculation. At runtime, |?ta quality comparison. Since our focus was on data quality

. . assessment, we chose to fix rendering parameters so that the
usually takes less than one minute on a single PC to evalualé " ; ) : .
. . ; ossible difference or uncertainty introduced by the visual-
data with the size up to 512MB. For larger gigabytes data, the A .
. . . _lzation process could be minimized. Our current algorithm
time to perform wavelet transforms becomes dominant in the .. . o : .
e@Aptly takes the input transfer function into consideration

quality assessment process. In the worst case, the assessg; . . X : .
k - . ; Y modulating wavelet coefficients with voxel visual impor-
time would be similar to the preprocess time if the data V\%

. - ance values at their nearest spatial-frequency positions. The
evaluate has the same size as the original data. . . . .
voxel visual importance values were precomputed offline with
a given transfer function. If the transfer function changes at
C. GGD Model runtime, the calculation can be performed online (in this case,
We note that as an approximation, the GGD model inve need to keep the low resolution data).
troduces a prediction error at each wavelet subband withOur solution is a coarse approximation of voxel contribution
respect to the corresponding wavelet coefficient distributiotn the visualization. The accuracy of voxel visual importance
For example, the fit near the center of the histogram in Fig\@lues depends on the resolution of data used and the number
(b) is not good. This error can be calculated as the KLBf sample views taken for average visibility calculation. There
between the model histogram and the histogram of wavelsta tradeoff between the update speed and the accuracy of
subband coefficients from the original data. Laftpl,||p') visual importance values. In practice, we can update visual
denote the prediction error at tith subband. Accordingly, we importance values within seconds for a low resolution volume
used(p'||q) = |d(pl|d) — d(pkl|p'")| to calculate the overall of size around 6% with 16 sample views. In our solution,
KLD (Eqgn. 5). That is, we actually subtract the predictiomoxel visual importance values are only used to modulate and
error from the KLD between the model histogram and the&elect wavelet coefficients (Section IV-C). An improvement of
histogram of wavelet subbband coefficients from the reducedr implementation is to store selective wavelet coefficients
or distorted data (denoted d$p}||q)), and use the absoluteoffline by only considering their magnitudes. At runtime when
value in the calculation. the transfer function changes, the visual importance values
On the other hand, our experiment shows that the GGide calculated and used to further pick visually important
model generally works well on scientific and medical dateoefficients from stored coefficients.
sets with different sizes. However, there are cases where thi8esides our current algorithm, another way to possibly
model fails to give good results. Such an example is shownimprove wavelet subband analysis is to apply the idea pre-
Fig. 14. For these failed cases, we can store the actual wavskented in [1] that classifies the voxels into core, gradient, and
subband coefficient histograms (per scale) at the expenseunimportant voxels and assigns weight functions for wavelet
increasing the storage, or fit each coefficient histogram witloefficients accordingly. Alternatively, the users can also pro-
splines to smooth out the irregularities. Although there is\ade their own voxel visual importance volume, derived from
need of further research on why these cases falil, the appammitime classification or segmentation, for example, to modu-
reason is that those data sets do not fall into the categorylate wavelet coefficients. Nevertheless, we understand that this
natural statistics. For this same reason, we can not partition thexel-based approach is not an optimal solution for large data
original data into blocks in an octree fashion, and analyze thealysis in terms of both efficiency and effectiveness. A better
individual blocks using the GGD model (each block does neblution could be using some shape functions to approximate
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the volume data and capture the visual importance aspect. F = sprintf(fbeta(x) - %g’, mean™2 / variance);
Another direction is to perform a more rigorous study on data ry
guality comparison in association with direct volume rendering beta = fzero(F, [0.01, 5]);

algorithm specifications [10]. catofh FZERO: find zero of a function of one variable

warning('(mean"2 / variance) is out of the range’);

if (mean"2 / variance) > fbeta(5)
VII. CONCLUSION AND FUTURE WORK beta = 5:

; else
We introduce a reduced-reference approach to volume data ™., - .01

quality assessment. A multiscale wavelet representation is end
first built from the original data which is well-suited for "
the subsequent statistical modeling and feature extraction. As alpha = mean * exp(gammaln(/beta) - gammalin(2/beta));
shown in Section V, we extract minimum feature information i (04 > 2)
in the wavelet domain. Using the feature and predefined K = beta / (2 * alpha * gamma(l/beta));
distance measures, we are able to identify and quantify the _ 2° GAMWA: Gamma function
quality loss in the reduced or distorted version of data. Quality
improvement on distorted or corrupted data is achieved by cion y = ggpdf(x, alpha, beta, K)
forcing some of their feature components to match those front GGPDF: return generalized Gaussian probability
the original data. Finally, our approach can be treated as g oo function with parameters alpha and beta
new way to evaluate the uncertainty introduced by reduced or
distorted data. e | a0

Our algorithm is flexible with data sets of different sizes, y = tmp(ones(size(x)));
ranging from megabytes to gigabytes in the experiment. We 2 ONES: create an amay of al ones
believe that the general approach presented in this paper can vy
be applied to quality assessment and improvement on larger em{
scale data. As we move into the era of petascale computing,
our work can help scientists perform in-situ processing so
that low resolution data together with a set of features are ACKNOWLEDGEMENTS
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K * exp(-abs(x)."beta ./ (alphabeta));
y . sum(y);
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