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Abstract— The growing sizes of volumetric data sets pose a
great challenge for interactive visualization. In this paper, we
present a feature-preserving data reduction and focus+context
visualization method based on transfer function driven, continu-
ous voxel repositioning and resampling techniques. Rendering re-
duced data can enhance interactivity. Focus+context visualization
can show details of selected features in context on display devices
with limited resolution. Our method utilizes the input transfer
function to assign importance values to regularly partitioned
regions of the volume data. According to user interaction, it
can then magnify regions corresponding to the features of
interest while compressing the rest by deforming the 3D mesh.
The level of data reduction achieved is significant enough to
improve overall efficiency. By using continuous deformation,
our method avoids the need to smooth the transition between
low and high resolution regions as often required by multi-
resolution methods. Furthermore, it is particularly attractive for
focus+context visualization of multiple features. We demonstrate
the effectiveness and efficiency of our method with several volume
data sets from medical applications and scientific simulations.

Index Terms— Data reduction, focus+context visualization, in-
teractive visualization, mesh deformation, transfer functions,
volume rendering.

I. INTRODUCTION

IN visualization, the sizes of volume data we have been dealing
with increased dramatically over the years from 1283 − 2563

to 10243 voxels or larger. The ever-increasing data size poses a
great challenge to visual analysis in terms of both storage and
rendering costs. To reduce storage cost, data compression may be
used. However, the complication of runtime decompression could
dramatically slow down rendering. To enable interactive visual-
ization, rendering a reduced resolution of the data is commonly
done before a desirable view and transfer functions are derived.
Conventional multiresolution methods must cope with the costs
of added storage space and removing cross-resolution boundary
artifacts. In our work, we have developed a feature-preserving
approach to volume data reduction that supports focus+context
visualization. Our approach avoids runtime decompression while
offering high rendering quality.

In this paper, we present the design and evaluation of our
feature-preserving volume data reduction method. In contrast to
downsampling, which uniformly discards information oblivious
to the data content, our method more intelligently reduces data.
The volume data is partitioned into cubic regions and each region
is assigned an importance value based on the importance of the
voxels in the region, which is hinted by the user specified color
and opacity transfer functions. As illustrated in Figure 1, the
regions with higher importance values, thus containing features
of interest, are magnified and other regions are compressed to

retain the original volume boundary. As a result, the regions
corresponding to the features of interest are populated with more
samples whereas other regions are sparsely sampled.

With our approach, the original volumetric mesh is deformed
and voxels are repositioned. The varying importance values
introduce various region deformations, which could cause region
intersections and distortion of large features. We apply edge
flipping constraints to avoid region intersections, and introduce
Laplacian smoothing to minimize distorting the areas surrounding
the features of interest. All these constraints are formulated into
energy functions which are minimized using a global optimization
system. After deforming the grid space, voxels within each region
are trilinearly resampled on the GPU.

Our feature-preserving data reduction method has several ad-
vantages. First, the continuous space deformation guarantees sim-
ilar resolutions along neighboring grid boundaries. This seamless
deformation obviates the need of extra data packing or blending
[35] to avoid gaps or to handle unmatched data resolutions
among neighboring blocks, which are problems commonly found
in multiresolution methods. Second, our method outputs a very
simple data format: only a reduced data set and a deformed
grid for shape recovery. At run time, the full size volume can
be directly rendered via texture lookup on the GPU. Since
no data reconstruction is needed, significant memory saving is
achieved. This approach therefore provides a cost-effective way
for representing and rendering large volume data. Third, our
solution may reduce the original volume to various sizes in
a continuous fashion. The flexible choice of volume data size
draws a clear difference from building a multiresolution data
hierarchy which often has the 2:1 ratio for each data dimension
between two neighboring levels. Besides data reduction, our
realtime voxel reposition technique also achieves focus+context
visualization by rendering the features as the focus and the
rest as the context. Unlike many previous methods [5], [31],
[33] based on a magnifying lens which only allows a single
focus at a time, our method automatically recognizes all features
of interest for focus+context visualization. This characteristic
is particularly useful for volumetric feature specification since
features in volume data usually have complicated shapes and are
surrounded by homogenous materials. In all, our method enhances
our ability to visualize large, complex volume data.

II. RELATED WORK

Volume Data Reduction: Data reduction remains one of
the important themes in the field of visualization as the size
and complexity of data continue to increase at rapid rates. The
simplest way of data reduction is uniform subsampling. Another
way is to build a multiresolution data hierarchy and compress
the data associated with each node in the hierarchy. This allows



2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

Fig. 1. The overview of our system. The top left bar indicates the mapping of cube importance to color. The bottom left bar is the transfer function based on
voxel intensity. Our algorithm takes the original volume data set and the input transfer function to identify features of interest. It then deforms the volumetric
grid so that important features (corresponding to red, yellow, and green space cubes) are expended and unimportant regions (corresponding to blue space
cubes) are shrunk, thus enabling focus+context visualization. Feature-preserving data reduction is achieved by downsampling the deformed data set, followed
by a shape recovering step based on the deformed grid. Our data reduction result is able to preserve features better than direct downsampling (both have a
reduction rate of 10:1).

us to visualize data at different levels of detail and trade image
quality for interactivity. Many algorithms have been developed
to provide hierarchical data representation for volumetric data.
Examples include the Laplacian pyramid [9], multi-dimensional
trees [36], and octree-based hierarchies [2], [16]. The use of
wavelet transform and compression for volumetric data was also
introduced [24] and coupled with octree-based data compression
and rendering [11]. Besides the octree structure, other researchers
took a simpler scheme that constructs a flat block-based hierarchy
[18], [20]. In that scenario, the entire volume is first subdivided
into smaller subvolumes. Then, for each subvolume, coarser levels
of the data are created by repeatedly filtering the data. In Section
V, we will compare this flat block-based multiresolution method
with our data reduction method.

One complication with multiresolution schemes is the manage-
ment of individual data blocks. It requires extra effort to either
pack them into a single volume or render them separately in
multiple passes and then compose all partial images to generate
the final image. Another complication is rendering the transition
between two neighboring blocks with different resolutions. To
avoid seams between adjacent blocks, data along the block
boundaries need to be replicated for correct interpolation [35]. In
contrast, our deformation-based data reduction is much simpler. It
generates a reduced volume along with a grid for shape recovery.
There is no need for data block management and no special
handling of mismatched resolutions. Moreover, our solution does
not require explicit data reconstruction before rendering, which
is necessary for many multiresolution methods.

There are several research efforts in volume visualization
that incorporate transfer functions into multiresolution data com-
pression and rendering [10], [20], [30], [37]. Their common
goal was to adapt data precision and resolution according to
the visualization content so that a better tradeoff between data

compression and rendering quality can be achieved. Our work
shares similar ideas in terms of utilizing the transfer function to
determine important regions. Unlike previous work, we magnify
important regions to allocate more samples for preserving greater
details of the features. We also allow the user to reverse this
deformation process either directly or progressively at runtime.
The reversal is very fast since the interpolation of each voxel
value is independent and can be accelerated using the GPU.

Focus+Context Visualization: Focus+context techniques have
long been used in visualization for interactive data exploration.
In information visualization, researchers have introduced fisheye
view methods to magnify the focal area and either distort or
overlay the neighboring regions to highlight the region of interest.
For example, Carpendale et al. [5] presented several distortion
patterns, such as stretch orthogonal and nonlinear radial, to
demand more space for the focal region to achieve 3D viewpoint-
independent distortion. Keahey et al. [12]–[14] deformed texts or
2D images by a transformation grid which is determined by non-
linear magnification fields. In volume visualization, Viola et al.
[29] presented importance-driven volume rendering for automatic
focus+context display of objects. They used pre-determined object
importance to encode voxel visibility priority. This information
is used to guide rendering so that important regions are not
occluded by unimportant ones. They also presented a technique
for automatic focusing on features [28]. A focus is selected from
a set of predefined features and their algorithm automatically
determines the most expressive view of the features.

Researchers have also developed solutions for highlighting fea-
tures in 3D volumetric data sets through deformation. McGuffin
et al. [23] applied deformation techniques for volumetric data
browsing. Their techniques allow the user to open up, spread
apart, or peel away the outer layers to reveal hidden structures.
Correa et al. [7] used physical and optical illustration operators
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to manipulate the geometry of data objects. Wang et al. [33] pre-
sented a focus+context technique based on an energy optimization
model to magnify a region of interest for closer examination while
deforming other regions without perceivable distortion.

Other researchers attempted volume deformation through the
manipulation of optical attributes with a magnifying lens. For
instance, LaMar et al. [17] deformed rendered 2D images or 3D
volumes using hardware acceleration. Their approach dynamically
computes texture coordinates for grid vertices and renders the
texture with coordinates projected onto a homogeneous space to
ensure desirable results. Wang et al. [31] presented an interactive
focus+context technique for rendering volumetric models accord-
ing to the optical lens theory. Their approach simulates the ray
direction that is determined by the position of the focal point.
The expanded image is displayed within the magnification lens.
Although both [17] and [31] provide different shapes of bounded
lenses for the user to magnify regions of interest, there is no
guarantee of a nice fit into local feature shapes. In particular, the
specification could be very inconvenient for interior features. This
is not an issue for our approach with the assumption that features
of interest are already well defined by the given transfer function.

III. VOXEL REPOSITION

We deform the volume space to reposition the voxels. Important
regions are magnified while unimportant regions are shrunk to
maintain the original volume size. This idea is inspired by
the resizing technique proposed by Wang et al. [32]–[34] and
we revise it to meet our application needs. Specifically, the
given volumetric data set is partitioned using a uniform grid
G = {V,E,C}, where V = {vT

0 ,v
T
1 ,v

T
2 , . . .v

T
n } denotes

the vertex positions, and E and C are the set of edges and
space cubes, respectively. We attempt to analyze the content of
each local region and assign importance values to space cubes.
While deforming the volume space, cubes with higher importance
values deserve more samples to keep more information when
the whole data set is downsampled or is rendered within a low
resolution display. In other words, cubes are resized according
to their importance values. Unfortunately, the variation of cube
deformations leads to some problems such as space intersection
and shape variation between neighboring cubes. In contrast, the
method presented in [33] does not have this problem since it
handles polygonal models and cubes are partitioned into only
two categories, making cube deformation relatively simple. In
this paper, we smooth the deformation of neighboring cubes by
reducing the change of the Laplacian coordinate of their shared
grid vertex. We also introduce inequality constraints to prevent
edges from flipping to avoid space intersection. These constraints
are formulated into energy terms to serve the requirements and we
strive to search for a deformed grid that minimizes our objective
function. Finally, the voxels within the space cubes are trilinearly
resampled based on space deformation [3].

A. Feature Specification

In volume visualization, the most common way to present
features for a data set is through specification of the transfer
function. For example, the user can specify color and opacity to
highlight voxels of interest with distinct colors and high opacity
values. As such, we use the following equation to compute the
importance of a voxel p

w(p) = α(p) · ||∇g(p)||F , (1)

Fig. 2. Feature magnification without (left) and with (right) the use of rotation
R′

c. We can see that the feature cubes (especially red cubes) become larger
and more regular (i.e., less distorted) if rotation is allowed.

where α(p) is the opacity and ||∇g(p)||F is the Frobenius
norm (magnitude) of the color gradient. To make this closer to
human perception, we adopt the perceptually-adapted CIELab
color model for importance evaluation. We notice that certain
saliency measures such as [15] can better identify features from
the volume data set. However, our interactive system requires
efficient computation and we found this simple method works
well in most situations. Finally, each cube importance value is
determined by averaging the interior voxel importance values and
then normalized to [0, 1] as a weighting factor used in Equation
2.

B. Grid Space Deformation

Weighted Space Cube Expansion: We magnify the cubes ck
to emphasize the content within. Namely, c′k = sck, where s is a
scaling factor specified by the user and c′k is the deformed version
of ck. To better utilize less important space and to minimize the
distortion of important regions (see Figure 2), we allow cube
rotation by embedding the rotation matrix R′c into the energy
term

Df =
∑
ck∈C

(λ+ wk)Df (ck), where Df (c) =
∥∥c′ − sR′cc∥∥2,

(2)
where wk is a weighting factor representing the cube importance,
λ is a small constant to avoid instability when wk is very close
to zero. With the fixed volume space, cubes with larger wk are
expanded due to the larger forces of magnification. Similar to the
method presented in [33], we represent each local space cube with
a set of vertices and edges. We then solve for each vertex position
to fit the deformations of the cubes which share it. Specifically,
we transform Equation 2 into the following form

Df (c) =
∑

{i,j}∈Ec

∣∣e′ij − sR′ceij∣∣2, (3)

where Ec denotes the edges of cube c, e′ij = v′i − v′j and eij =

vi − vj denote the deformed and original edges, respectively.
Laplacian Smoothing: As importance values of space cubes

vary, the deformation of neighboring space cubes may differ
dramatically. This would distort features that span across mul-
tiple space cubes. Thus, we preserve the deformed Laplacian
coordinate [26] L(v′) of each grid vertex as similar as possible
to its original version L(v). Let us denote E(i) and C(i) as
the neighboring edges and cubes that share vi, respectively. We



4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

achieve this constraint by the following energy term

D` =
∑
vi∈V

∣∣L(v′i)− s
′
iR
′
iL(vi)

∣∣2,
L(vi) =

1

|E(i)|
∑

{i,j}∈E(i)

vi − vj ,

s′i =
1

|C(i)|
∑

c∈C(i)

s′c, R′i =
1

|C(i)|
∑

c∈C(i)

R′c. (4)

where s′i is the average of scaling factors, R′i is the rotation
matrices averaged from the deformed cubes that share vi. Note
that the Laplacian coordinate L(vi) is rotation variant. The
deformed cube sizes vary due to different weighting factors, even
though cubes are scaled using the same transformation.

We constrain the boundary vertices moving along their respec-
tive planes in order to retain the size and shape of bounding space.
Let ∂Vx, ∂Vy, and ∂Vz be the boundary vertices in the yz, xz,
and xy planes, respectively, we solve for the deformed vertex
positions by minimizing the energy terms Df +D` subject to the
volume boundary constraints

v′i,x = vi,x if vi ∈ ∂Vx,

v′i,y = vi,y if vi ∈ ∂Vy,

v′i,z = vi,z if vi ∈ ∂Vz .

(5)

We also preserve neighboring cubes from intersecting each other
using the edge flipping constraints. The deformed edge e′ij is
required to have a similar direction to the original edge eij .
Written in equation, each edge {i, j} should satisfy

e′ij · eij > 0. (6)

Since Equations 3, 4, and 5 can be written as the linear combina-
tion of unknown vertex positions V′, we transform the objective
function into a linear system AV′ = b(V′), where A represents
the coefficients of unknown vertex positions, V′ and b(V′) are the
vectors in the right-hand side of simultaneous equations. We solve
for the unknown vertex positions in a least square sense because
the number of equations is much larger than that of the unknown
vertex positions. Since the scaling factor s′i and the cube rotations
R′c are unknown, we apply the Gaussian-Newton method [21],
[22] to minimize this constrained non-linear objective function
in an iterative way. We solve for three coordinates of the vertex
positions separately since the boundary constraints applied to the
x, y, and z coordinates are different.

Specifically, we consider the deformed scaling factor s′i and the
rotation matrix R′c as additional unknown variables and update
V′, s′i and R′c alternatively. The system starts from considering
s′i = 1.0 and R′c as an identity matrix and solves for vertex
positions only. It then keeps updating R′c, S′i, and V′ until the
system converges. To determine the unknown scaling factor s′c and
the rotation matrix R′c, we place the original and deformed cubes
at the origin and compute a matrix that approximately transforms
vertices of the original cube to those of the deformed cube [1].
The resulting transformation matrix is then decomposed into a
rotation matrixR and a shear matrix S using polar decomposition.
We set Rc to R and sc to the average of diagonal elements in S.

The edge flipping constraints are inequalities which make it
impossible to solve using a linear system. Therefore, we detect
if there are edges conflicting with Equation 6 once the vertex
positions V′ are updated. The flipped edges are enforced to be in

A

B’

A’

B

original grid deformed grid
Fig. 3. The deformed grid records how the reduced data set is deformed.
Specifically, in this example, the voxels A and B are stored in the positions
of A’ and B’, respectively. The only additional computation of rendering is a
texture lookup to figure out where the voxel is stored.

the directions of their original versions. Specifically, we add the
constraint

De(i, j) = γ
∣∣e′ij − δeij∣∣2 (7)

if the edge {i, j} is flipped. Here, δ ≥ 0 is a parameter for
preserving the space cube from being shrunk to zero size or
even being negatively scaled. We set δ = 0.1 and γ = 10 in
our implementation. For those legal edges (i.e., e′ij ·eij > 0), the
edge flipping constraints are not necessary.

Equation 7 enforces the flipped edges to lie in their original
directions. However, it is not always appropriate to hold these
constraints since flipped edges may become legal if the user
decreases the scaling factor or changes the transfer function.
Constraining these edges to have nearly zero lengths would
abnormally deform the cube, thus resulting in more distortion
to the data set. To avoid this, we check the edge length of e′ij
and remove its flipping constraint when |e′ij | > δ|eij |. This is
because we solve for the vertex positions using soft constraints,
which means that we can only obtain the deformed edge e′ij with
0 ≤ |e′ij − δeij | ≤ µ, where µ > 0 is a very small number.
|e′ij | < δ|eij | indicates that other energy terms are squeezing the
edge while |e′ij | > δ|eij | indicates that they are stretching it.
Since only squeezing may flip the edge, the flipping constraint is
not needed in the stretching case.

IV. APPLICATIONS

The voxel reposition technique brings us several applications
in data reduction and rendering.

A. Data Reduction

We achieve data reduction through downsampling the deformed
volume data set. The extracted voxels are trilinearly interpolated.
Since features are magnified, more samples from those important
regions would be picked up and then stored in the reduced data
set. During rendering, the corresponding deformed grid is used
to locate the queried voxel in the reduced data set. We show a
2D illustration to explain how our 3D recovering grid works in
Figure 3.

Compared to the direct downsampling method, our algorithm
preserves features better since it does not simply uniformly
discard voxels. Homogeneous regions are reduced more to leave
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Fig. 5. The comparison between direct downsampling and our method. The left shows the original and deformed data sets. The middle left shows the
downsampling result and our shape recovered result. We also compare pixel color difference between the images rendered from the original and reduced data
sets. The error distributions are displayed in the middle right. The right shows the zoomed-in results. We can see that the detail of the hurricane’s eye is better
preserved in our result. Here, both methods have a reduction rate of 10:1.

Fig. 4. A 2D illustration of our 3D resampling technique. As the low
and high resolution regions share the same edge (the same face in 3D), the
sampling rates along both sides of the grid boundary are similar. Therefore,
no smoothing between low and high resolution regions is necessary.

more samples for features. Compared to multiresolution tech-
niques, our system provides a much simpler data format for
rendering. Rather than packing a sequence of downsampled
textures, rendering our reduced data set requires only an additional
texture lookup for obtaining the corresponding voxels. This fits
nicely into the rendering pipeline since only the regular 3D
data format is used. Furthermore, with continuous deformation
between neighboring cubes, there is no need to smooth between
low and high resolution regions. The above two advantages enable
us to render the reduced data set efficiently. The computational
cost is only slightly higher than that of rendering downsampled
data sets. As illustrated in Figure 4, the sampling resolutions along
the boundary of more and less important space cubes are similar
due to the shared boundary constraint.

B. Focus+Context Visualization

Our interactive deformation technique enables focus+context
visualization. When visualizing a high resolution data set on a
low resolution display, this interactive deformation system allows
the user to take a closer look of selected features in context. Given
the user-specified transfer function, our system magnifies regions
with higher color gradient magnitudes and shrinks the rest so that
the whole data set can be rendered within its original volume
boundary. Our system also minimizes distortions of features,
similar to the work in [33]. A significant limitation of [33] is that
their discrimination of the focus and context regions is binary
and thus is not sufficient to magnify features to different extents.
Another major advantage of our system is that it magnifies
the whole features without explicit feature specification. This is
because transfer functions usually provide sharp color boundaries
around features for effective visualization. Our system thus sets
high importance values to space cubes covering the features.
This distinction makes our feature specification easy and intuitive,
especially for the interior and non-regular features (e.g., vessels)
that are surrounded by homogeneous materials.

Our system is flexible with different kinds of transfer functions.
For example, the applied transfer functions may consider voxel
intensity, size [6], shape [25] etc. In addition, the system can take
the combined multidimensional transfer function for better feature
specification since the mapping to color and opacity from only
a scalar value (usually intensity) may fail to capture features of
interest. For focus+context visualization, since feature recognition
is based on the perceptual color difference, our system responds
to other types of criteria, such as color, opacity, and frequency,
that highlight the focal regions. By employing these criteria, we
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TABLE I
THE ROOT MEAN SQUARE DISTORTIONS OF DOWNSAMPLING,

MULTIRESOLUTION, AND OUR REDUCED DATA SETS. THE ERROR IS

MEASURED IN THE RGB COLOR SPACE.

down multi- our
data set sampling resolution method

aneurism (Fig. 1) 0.0222 0.0111 0.0151
aneurism (Fig. 6) 0.0201 0.0088 0.0142
hurricane (Fig. 5) 0.0009 0.0002 0.0012

viswoman (Fig. 8) 0.0348 0.0224 0.0279
plume (Fig. 9) 0.0186 0.0083 0.0118

emphasize the matched focal regions to attract attention.

C. Direct/Progressive Recovering

In addition to recovering a deformed data set back to its original
shape in one step, we give the user an option to observe how the
deformation is applied to the reduced data set. Let G0 and Gt be
data sets with the original and deformed shapes, respectively. The
recovering grid Tt7→0 transforms the deformed data set Gt back to
its original shape G0 (G0 = Tt7→0G

t). By providing a list of grids
Tt7→k, where 0 ≤ k ≤ t, we are able to show snapshots of the
deformation process in a progressive manner. In this way, the user
can intuitively understand how the deformation progresses. These
grids also allow the user to achieve focus+context visualization
with the specified transfer function.

V. RESULTS

We have implemented our algorithm and show some of the test
results in Figures 1, 5, 6, 8, and 9 to demonstrate the effectiveness
of our approach. The magnification results show focus+context
visualization. They also show our method can better preserve
features, and confirm the sampling between neighboring blocks is
continuous. The features of interest are magnified so it is possible
to visualize them clearly on a small display.

Data Reduction: We downsampled the deformed data set to
preserve features. In Figures 1, 5, and 8, we can observe that the
data sets reduced using pure downsampling suffer from aliasing
artifacts due to uniform loss of data content. In contrast, our
method produced smoother results and preserved feature details
better. We further compare our method with the Daubechies D4
wavelet transformation (Figure 8) and multiresolution method
[18], [20] (Figure 9) for reducing large data sets to demonstrate
the effectiveness of our method. To make a fair comparison,
all methods reduce the data set to 1/64 of the original size.
In addition, we determine the sampling rate of each cube in
the multiresolution method according to its importance values.
Clearly, wavelet reduction overly smoothes the features (see
Figure 8) while the multiresolution method produces discontinuity
artifacts (see Figure 9). Therefore, our method achieves the best
results.

In this paper, we do not compare our method with widely-
used multiresolution methods since many of them have the same
discontinuity problem due to their discrete nature. While in-
terblock interpolation [19] can interpolate between sample values
within and between blocks of arbitrary resolution levels to avoid
discontinuity, its implementation is not trivial. If an additional
smoothing process is applied as usual, it requires a large amount

of additional space [8], [35]. Based on the formula given in
[8], smoothing the boundaries for a 21 × 21 × 64 resolution
block requires nearly 11% of the original data set. In contrast,
rendering our reduced data sets requires only the 3D positions of
22×22×65 = 30976 grid vertices for shape recovery. Specifically,
in Figure 9, additional 217MB of data are required to fix the
boundary discontinuity while our coarse deformed grid needs only
368KB.

To measure data loss using different algorithms, we upsam-
pled the reduced data sets to their original sizes by trilinear
interpolation, followed by the comparison of color difference
between corresponding voxels. Namely, the distortion at voxel
p is computed using the following equation

α(p)|Co(p)− Cr(p)|2, (8)

where α(p) denotes the opacity of p, Co(p) and Cr(p) are the
colors of p obtained from the original and reduced data sets, re-
spectively. In the above equation, we multiply the color difference
by the voxel opacity since visual distortion of a transparent voxel
is unnoticeable. As shown in Table I, with respect to the measured
root mean square distortions, the multiresolution method has the
minimum data loss. This is because the multiresolution method
optimizes the available space to store important content. On
the other hand, our method wastes some homogeneous regions
to satisfy the space continuity. Although the distortions of the
reduced multiresolution data sets are the minimum, they are
gathered around block boundaries, which are sensitive to human
perception. The artifacts can be smoothed but it requires extra
effort to fix the boundary problem.

It can be observed that the overall distortion in our reduced
hurricane data set is high due to continuous resampling on highly
squeezed regions, although the hurricane’s eye is well preserved.
In Figure 5, we show that the distortions of our reduced data
set are mostly distributed further away from the hurricane’s eye,
which is not important, and thus less noticeable. We do not
measure the distortion of wavelet transformed data using root
mean square since scalar data values are transformed to frequency
values.

Focus+Context Visualization: Our voxel reposition system
magnifies the focal region based on transfer functions. In Figure
6, we adopt the size evaluation method presented by Correa
and Ma [6] to magnify different parts of vessels using a 2D
transfer function. By changing the vessel opacity according to
the evaluated size, our system recomputes cube importances on
the fly and magnifies specified features. From our accompanying
video, it should become clear that our transfer function based
feature recognition approach is effective and much easier to use
than techniques based on magnifying lenses.

Performance: We run our system on a PC with a dual core
3.0GHz CPU, 4GB RAM and an nVidia GTX 295 video card.
Although the objective function is nonlinear and there are lots
of unknown variables to be solved, our unoptimized code still
achieves interactive performance. The timing result is reported
in Table II. As we can see, the computational cost of space
deformation depends on grid complexity, where the slowest part
is the minimization of the objective function. To trade quality for
interactivity, we apply coarse grids for volume deformation. The
grid resolutions we use are good enough for generating desirable
results. On the other hand, the determination of cube importance
depends on the data set itself. We can apply a downsampled data
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Fig. 6. From left to right are the original data set, the focus+context results with the magnification on the thinner and thicker vessels, respectively. The
deformed grids are displayed at the top row. The transfer functions used are shown at the bottom-right side of each result. The voxel’s color (lower bar)
and opacity (upper bar) are mapped from the intensity and the evaluated size [6], respectively. Our system conforms to the specified transfer function and
magnifies the vessels with different sizes.

TABLE II
THE COMPUTATION TIME (IN SECOND) OF SPACE DEFORMATION FOR EACH ITERATION.

cube importance
data set volume resolution grid resolution grid size deformation time estimation time

aneurysm (Fig. 1) 250× 250× 125 25× 25× 13 111KB 0.109 0.062
aneurysm (Fig. 6) 256× 256× 256 20× 20× 20 109KB 0.113 0.140
hurricane (Fig. 5) 500× 500× 100 20× 20× 5 31KB 0.125 0.211

viswoman (Fig. 8) 512× 512× 1728 16× 16× 48 166KB 0.659 19.656
plume (Fig. 9) 504× 504× 2048 21× 21× 64 368KB 0.502 18.494

set to reduce the computation cost since only a scalar value from
each cube is needed. This simplification brings little side effects
to the results. Here, we render the volume data sets on an image
of 640 × 480 with 500 samples along each pixel. Although the
actual speed also depends on the viewing direction, we found that
the rendering achieves 14 frames per second on average.

In Table II, we list the computation time of space deformation
for each iteration. In our experiment, the iteration number of
minimizing the nonlinear objective function is usually less than
five. It will get larger when more edges are flipped. However,
we seldom give such a high scaling factor to the system since
edge flipping implies that less important regions are squeezed
dramatically. Increasing the scaling factor further would not lead
to a much different result. To improve interactivity, our system
renders the deformed data set whenever the vertex positions are
updated at each iteration. This also produces an animation effect.

In this paper, we utilize a GPU implementation of the con-
current number cruncher (CNC) sparse solver [4] to solve the

linear system. Given that the cube importance would be changed
whenever the transfer function is adjusted, as well as new
constraints would be added in when the edges are flipped, the
coefficient matrix A may change frequently. The commonly-used
Cholesky direct solver is not sufficient in such a scenario. This is
because the factorization step is very expensive and is necessary
whenever the matrix A has been changed. Although the CNC
solver is implemented with the conjugate gradient method, the
computation is still efficient with the GPU speedup. Hence, the
grid space deformation can be performed in real time, which is
critical for interactive focus+context visualization.

VI. DISCUSSION

Our system allows the user to adjust the scaling factor s to
magnify interesting regions to different degrees. This interactive
operator helps the user balance the importance of the focus and
context regions. The scaling factor is usually larger than 1.0 since
our goal is to magnify the features.
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Fig. 7. The relations between the distortion Ψ and the scaling factor s (left), and the partial derivative ∂Ψ/∂s and the scaling factor s (right). Notice that
the rapid increase of distortion is due to the fact that most of the less important regions are already well squeezed. Increasing the scaling factor cannot bring
more space to features. When this happens, we stop the magnification.

Fig. 8. The original data set (middle left), the deformed data set (left) as well as the comparisons of direct downsampling, the Daubechies D4 wavelet
transform, and our result. In this example, all reduced data sets are only 1/64 of the original size. Clearly, the direct downsampling produces jaggy artifacts
while the wavelet transform overly smoothes the features. Only our method preserves the gaps between kneecaps well.

The cube importance is determined based on the color gradients
of interior voxels, which highly depends on the input transfer
function. That is, features with smooth boundaries may not be
considered as important. Fortunately, in this scenario, blurred
features are usually less important. Thus, reducing or distorting
them is acceptable. On the other hand, if the data contain noise,
the importance values of data cubes would increase since they
have high color contrasts. To handle this, an easy and intuitive
way is to apply denoising methods such as bilateral filtering
[27] before computing the cube importance. This strategy also
improves the quality of rendering.

For feature-preserving data reduction, it is clear that a larger

scaling factor would better preserve features. However, applying a
very large scaling factor could be meaningless since the bounding
space is fixed. On the other hand, we also want to avoid squeezing
all unimportant regions into zero size because totally missing that
information is also unacceptable. To balance the quality between
feature and non-feature regions, we apply the following term to
measure the cube distortion

1

n

∑
ck∈C

wk

∥∥ck − (s′kR
′
k)−1c′k

∥∥2, (9)

where n is the number of cubes and wk denotes the cube’s
importance value. We transform the deformed cube c′k to have
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Fig. 9. The original data set (bottom) and the comparisons between the multiresolution and our method (top). Both reduced data sets are only 1/64 of the
original size. Although the discontinuity artifacts produced by the multiresolution method can be smoothed out through an additional process, our method
does not need this process thanks to continuous deformation.

the same size and orientation as the original cube ck and compare
their differences to measure the cube distortion. Namely, the
distance of corresponding vertices is accumulated. We measure
the distortion whenever the volume data set is further magnified
and stop the magnification when the distortion increases rapidly.
Instead of transforming the original cube to its deformed version,
this strategy ensures that the measurement is determined with
the same size. Due to the embedded weighting factor wk, the
measured distortion would rapidly increase when the important
cubes are distorted. This means most of the less important regions
are already squeezed and we should stop the magnification. The
diagrams in Figure 7 show the relations between the distortion
and the scaling factor for different data sets. The distortion Ψ

always increases as the scaling factor s increases, while the partial
derivative ∂Ψ/∂s may decrease because the deformation is nearly
terminated.

The price of preserving space continuity is not to squeeze all
unimportant regions. This situation usually occurs between the
focus and context regions. Although our system does not opti-
mize the available space to preserve interesting features in data
reduction, it obviates the need to handle boundary discontinuity.
We admit that multiresolution methods can best preserve feature
information with the space constraint, but boundary smoothing
usually incurs additional space and/or processing overhead.

We implemented our algorithm using the GPU to leverage its
inherent parallelism. The tasks include the determination of cube
importance, minimization of objective function, and raycasting
of volumetric data sets. Even though the current generation of
the GPU is already very powerful, handling all of the tasks still
entails a heavy workload. With our current implementation, the
CPU idles during the deformation process. In the future, we would
like to balance the workload between the CPU and GPU so that
better overall efficiency can be achieved.

A. Limitation

Our deformation technique magnifies each local region based
on its importance value. This implies that the deformation fails to
magnify the features if they are everywhere. In this scenario, our
data reduction method would degenerate to pure downsampling
and focus+context visualization becomes invalid. In addition, to
preserve space continuity and uniform feature expansion, some
homogeneous cubes would not be shrunk, which means that our
system may not be able to fully utilize available regions for feature
preservation (see Figure 8 left). We will investigate how to fill
out the unimportant regions with features as much as possible.

Our system deforms the input data set according to local
information, i.e., the importance of space cube and the smooth-
ness between neighboring cubes. Therefore, the system does not
guarantee to preserve the global structure such as straight lines
or symmetry. Although this issue does not affect data reduction,
visualization of focus+context information may require this global
structure to be retained. Fortunately, this is not a critical issue
since our interactive system allows the user to see the change
on the fly. The user can go back and forth to observe spatial
structures and relationships. We will develop an automatic method
to detect global structures and enforce space cubes covering the
corresponding features to have similar deformations.

VII. CONCLUSION

We have introduced the concept of feature-directed voxel
repositioning for interactive focus+context volume visualization.
Our design not only enables better utilization of both screen and
storage spaces but also offers rendering quality higher than that
of previous methods. Features of interest are suggested by a user-
defined transfer function. No additional operations by the user are
required. To examine different aspects of the data, the user may
change feature specification any time by interactively modifying
transfer functions. No expensive data preprocessing and waiting
are needed. According to the feature specification, our system
can automatically magnify the feature to show greater details in
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context, which is convenient and intuitive to the user. We achieve
high interactivity with GPU acceleration of compute-intensive
steps, and high quality with continuous sampling a deformation
grid of the original volume. Our test results clearly verify our
design.

We have shown a prototype system of our design to a group
of surgeons, and they confirmed the value of the quality and
interactivity of focus-context visualization offered by our system.
We therefore plan to continue our work and involve these surgeons
in the development and evaluation of a production-level system.
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P. Seidel. Laplacian surface editing. In Symposium on Geometry
Processing, pages 179–188, 2004.

[27] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images.
In Proceedings of International Conference on Computer Vision, pages
839–846, 1998.

[28] I. Viola, M. Feixas, M. Sbert, and M. E. Gröller. Importance-driven
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