
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Coherent Time-Varying Graph Drawing with

Multifocus+Context Interaction
Kun-Chuan Feng, Chaoli Wang, Member, IEEE, Han-Wei Shen, and Tong-Yee Lee, Senior Member, IEEE

Abstract—We present a new approach for time-varying graph
drawing that achieves both spatiotemporal coherence and multi-
focus+context visualization in a single framework. Our approach
utilizes existing graph layout algorithms to produce the initial
graph layout, and formulates the problem of generating coherent
time-varying graph visualization with the focus+context capabil-
ity as a specially-tailored deformation optimization problem. We
adopt the concept of the super graph to maintain spatiotemporal
coherence and further balance the needs for aesthetic quality
and dynamic stability when interacting with time-varying graphs
through focus+context visualization. Our method is particularly
useful for multifocus+context visualization of time-varying graphs
where we can preserve the mental map by preventing nodes in the
focus from undergoing abrupt changes in size and location in the
time sequence. Experiments demonstrate that our method strikes
a good balance between maintaining spatiotemporal coherence
and accentuating visual foci, thus providing a more engaging
viewing experience for the users.

Index Terms—Graph drawing, time-varying graphs, spatiotem-
poral coherence, focus+context visualization.

I. INTRODUCTION

G
RAPH drawing plays an increasingly important role in

data understanding for many science and engineering

disciplines such as biology, archaeology, information retrieval,

and VLSI circuit design. More recently, it has also been

applied to problems in various areas of social computing such

as visualizing online social networks and analyzing terrorist

networks and organizations. To date, existing graph drawing

algorithms are primarily focused on static graphs. The more

challenging issue of time-varying graph drawing, however, has

not received full attention.

Many graphs are dynamic in nature. Examples include event

graphs extracted from archives showing event connection and

evolution, processor communication graphs obtained from a

supercomputer run, and friendship networks inferred from

a social website. A critical consideration when designing a

time-varying graph layout is to maintain a certain level of

spatiotemporal coherence in the visualization of nodes and

edges so that their temporal evolution and correlation can

be clearly revealed. It is convenient to simply apply a static

graph layout algorithm to graphs of individual time steps,

either separately or incrementally. However, this treatment

K.-C. Feng and T.-Y. Lee are with National Cheng Kung University, Tainan,
Taiwan, ROC. Email: stevenf3@gmail.com; tonylee@mail.ncku.edu.tw.

C. Wang is with Michigan Technological University, Houghton, MI
49931. Email: chaoliw@mtu.edu.

H.-W. Shen is with The Ohio State University, Columbus, OH 43210.
Email: hwshen@cse.ohio-state.edu.

can not guarantee spatiotemporal coherence and a balanced

drawing, and hence, the resulting visualization may suffer from

undesired artifacts such as flickering or popping (i.e., abrupt

changes in the visualization of nodes or edges with respect to

size or location). These artifacts make it difficult for viewers

to track the changes and thus hinder data understanding.

Another critical consideration for handling time-varying

graphs with ever-growing size and complexity is to provide

the capability of focus+context viewing. Focus+context (F+C)

visualization stems from the need to show, within a limited

display area, both overview (context) and detailed (focus)

information simultaneously. Such a capability allows the easy

tracking of individual nodes of interest and inferring relation-

ship changes, making it particularly important for the visual

analysis of large-scale time-varying graphs through interaction.

Although there exist solutions for F+C visualization of static

graphs [13], [25] or static data such as polygons [30] or volume

data [31], coherent F+C visualization of time-varying graphs

has not been fully investigated.

We propose a novel approach for time-varying graph draw-

ing that offers a more engaging viewing experience for users

through coherent F+C visualization. Specifically, we formulate

the problem of time-varying graph layouting as a deformation

optimization problem with an initial layout generated from an

existing graph layout algorithm. To generate desired layouts

with a F+C effect, we incorporate the concept of the super

graph [6] and solve a series of spatiotemporal coherence con-

straints to preserve coherent contents. Our method allows the

users to specify multiple foci in their visualization. We produce

a smooth F+C visualization by preventing the nodes in the foci

from showing abrupt changes in size and location over time

while keeping the context information as stable as possible.

We demonstrate the efficacy of our method with three time-

varying graph data sets drawn from different applications.

II. RELATED WORK

Designing effective and efficient graph layouts is one of

the central tasks for the graph drawing community. It is also

an important topic in information visualization and has been

an active area of research for many years. Closely related to

our work are those on time-varying graph drawing and F+C

graph visualization. In addition, static graph layout algorithms

are also related since dynamic graph drawing can often be

constructed by leveraging static graph drawing algorithms with

additional temporal components.

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

A. Layout Algorithms for Static Graphs

Many previous layout algorithms for static graphs are based

on physical analogies such as force or energy. These methods

model the graph as a system of physical objects that interact

with each other. Optimization techniques are used to minimize

the total energy so that the graph converges to an equilib-

rium state that corresponds to a desired graph layout [1].

Classical examples include the force-directed layout algorithm

introduced by Eades [7], the Kamada-Kawai layout [18], and

the Fruchterman-Reingold layout [10]. More complex models

were also proposed such as LinLog (a clustering energy

model) [21] and stress majorization [15]. Researchers also

considered node sizes in graph drawing for overlap removal

by simply using increased repulsive forces [17] or leveraging

the proximity stress model [14].

B. Layout Algorithms for Dynamic Graphs

Dynamic graph drawing deals with graphs that evolve over

time. To display dynamic graphs, a good layout should strike

a good balance among several goals such as preserving the

mental map, reusing layouts from previous time steps, and

achieving good aesthetic quality [3], [5], [6]. The term mental

map refers to the abstract structural information a user forms

by looking at the graph layout. Misue et al. [20] described

three mental map models, i.e., the orthogonal order, proxim-

ity, and topology models, that measure the extent by which

the graphical attributes have been changed due to a layout

adjustment. While two empirical analyses on the mental map

by Purchase et al. [23], [24] lead to somewhat contradictory

suggestions, we consider that maintaining the mental map

and allowing the user to fine tune the degree of mental map

preservation are essential. Naı̈vely applying a static graph

layout algorithm to graphs of individual time steps often fails

to preserve the mental map well, which makes it difficult for

the viewers to track the evolution of graphs.

Generally speaking, dynamic graph layout algorithms can

be either offline where the full sequence of graphs is known

beforehand, or online where the full graph sequence is not

known in advance. For the offline version, it is common

to build a global layout for the whole sequence and then

derive the layout of each graph from the global layout. For

example, Diehl et al. [5], [6] built a super graph as a rough

abstraction of the whole graph sequence. Every graph in

the sequence is a subset of the super graph. For the online

version, it is typical to use the layout of one time slice as

a starting point to create a new layout for the next time

slice, and then further improve the new layout for better

aesthetic quality. Solutions have been proposed for drawing

online directed acyclic graphs [22], dynamic clustered graphs

[8], and orthogonal and hierarchical graphs [16]. Brandes and

Wagner [2] introduced a Bayesian approach, in conjunction

with force-directed techniques, to generate online dynamic

graphs. Fisherman and Tal [9] presented an efficient GPU-

based solution to compute stable and aesthetic layouts for

online dynamic graphs. To maintain the mental map, they

assigned a movement flexibility degree to each node so that

nodes with large displacement are focused.

C. Focus+Context Techniques for Graph Drawing

F+C techniques have been used for various types of visu-

alization including trees and graphs. This approach displays

the foci together with the context which consists of all visual

elements or a selected subset of elements. F+C techniques deal

with what elements should be selected to constitute the context

and how the elements should be presented [12]. It is desired

to show places near the focal nodes in greater detail while

displaying remote regions in successively less detail [11].

Geometric distortion is a typical means to handle the layout in

F+C visualization. Based on the visual metaphor of a rubber

sheet, these techniques distort the information space using a

geometric mapping. As a result, more space is allocated to the

foci and nodes nearby, while nodes further away are squeezed.

These techniques are exemplified by Sarkar’s graphical fisheye

[25] and “stretching the rubber sheet” [26], and Gansner et al.’s

topological fisheye [13].

D. Our Contribution

To achieve F+C visualization, current techniques make use

of distortion either in the geometry space by stretching some

edges and shortening others, or in the image space by fisheye

transformations and the like. Yet, both have disadvantages: the

geometric distortion cannot push apart unconnected nodes, and

the image distortion cannot guarantee to preserve edge drawing

styles, such as orthogonal drawings. We present a new way to

achieve both by distorting not the graph layout itself, but a

triangulated, meshed version of it in the geometry space.

In our approach, the user interactively determines one or

multiple foci in the graph for dynamic F+C visualization via

optimized deformation. We maintain the mental map of time-

varying graphs while providing the flexibility to fine tune the

degree of mental map preservation so that different viewers can

adjust according to their preferences for effective observation.

Unlike typical fisheye techniques, by performing a globally

optimized deformation of the entire graph, our F+C technique

can effectively expand the graph to occupy the available

drawing region. Another distinction is that our approach can

well preserve the overall graph structure by maintaining rel-

ative relationships among important nodes regardless whether

they are in the focus or not while squeezing regions of low

importance as much as possible. To the best of our knowledge,

our work is the first that addresses the issue of multiple F+C

visualization in offline, dynamic graph drawing. We point out

that due to the use of a time window for the super graph

generation, our approach is also suitable for online dynamic

graph drawing, provided that the time steps within the sliding

time window can be cached during the online processing.

III. OUR APPROACH

A. Overview

We sketch an overview of our approach in Figure 1. Our

method takes the input graph and applies an existing graph

layout algorithm to generate the initial layout. To account

for temporal coherence, we leverage the idea of the super

graph [6] to build a sequence of graphs for each time window,

FENG et al.: COHERENT TIME-VARYING GRAPH DRAWING WITH MULTIFOCUS+CONTEXT INTERACTION 3

Input graph

Generate super graph for each time window

Super graph

Adaptive

force-directed

layout

Initia
l la

yout

extra
ctio

n

G1 G2 G3

Triangulation
Significance

analysis

F+C adjustment

G1 G2 G3

G1 G2 G3

G1 G2 G3

Fig. 1. An overview of our approach to F+C visualization of time-varying graphs. Our approach leverages an existing force-directed graph layout algorithm
to produce initial layouts and performs significance analysis on nodes, faces, and edges of the triangulated version of initial layouts. F+C visualization is
achieved through optimization by minimizing an energy function.

from which we extract an initial graph layout for every time

step. Inspired by Wang et al. [30], [31], we formulate F+C

visualization as a deformation optimization problem, thus

allowing the user to magnify details in regions of interest

while shrinking the rest to keep the entire graph displayed

on the screen. There is an issue when expanding the graph: if

we only stretch the edges connecting the nodes of interest, we

may not be able to pull those nodes apart as desired. This is

because some of the nodes in the spatial neighborhood may not

have edges connecting to those nodes that are intended to be

expanded. To address this issue, we add an intermediate step

that triangulates the initial graph into a triangle mesh, and then

deforms the mesh to achieve the desired F+C visualization.

The deformation solves a constrained optimization based on

the significance analysis of nodes, edges, and faces of the

underlying triangle mesh to minimize the energy of the graph.

In the following discussion, we denote the time-varying

graph as Gt =< Vt ,Et > where t ∈ T = [1,n] represents the

time step, and Vt and Et are the sets of nodes and edges at time

step t, respectively. The node i and the edge connecting nodes

i and j at time step t are denoted as vi,t and ei j,t , respectively.

The face i at time step t in the triangle mesh is denoted as fi,t .

In the original graph, we assume that each edge ei j,t carries

a weight wei j,t . We also assume that each node vi,t carries

a weight wvi,t . If no such information is provided, wvi,t is

1 for all the nodes. Both wei j,t and wvi,t are used to define

the importance of nodes in the triangle mesh. We further

derive the importance of faces and edges accordingly from

the importance of the nodes. Note that weights are associated

with nodes and edges in the original graph while importance

values are associated with nodes, faces, and edges in the

triangle mesh. We opt to define node importance first and

then derive face and edge importance. The rationale is that

node positions are essential for determining a graph layout and

faces and edges are auxiliary information used in the triangle

mesh deformation.

B. Initial Layout

Our algorithm starts with an existing layout algorithm to

set up an initial layout for the graph in every time step. In

this paper, we utilize the Fruchterman-Reingold layout [10] to

generate the initial graph. To produce a temporally coherent

layout, we divide the entire time sequence into a number

of time windows where each window consists of several

consecutive time steps. For each time window, we utilize the

super graph [6] to generate a force-directed layout, from which

an initial layout for every time step is extracted.

To create the time window, we can simply partition the

time sequence uniformly. Another way is to analyze the graph

information at each time step and partition the time sequence

non-uniformly by taking into account the nature of the time-

varying graph. Similar to the importance-driven time-varying

data visualization work presented by Wang et al. [28], we

compute the conditional entropy (Equation 2) for each time

step with respect to its neighboring time steps and derive the

importance value for each time step

It =
t−1

∑
k=t−m

wkH(Xt |Yk), (1)

and

H(X |Y) = ∑
x∈X

∑
y∈Y

p(x,y) log
p(y)

p(x,y)
, (2)

where It is the importance value of time step t, m is the window

size considered, wk (in [0,1]) is the weight associated with time

step k. The closer k to t, the larger the weight. ∑t−1
k=t−m wk = 1.

In our case, the entropy is evaluated based on the distribution

of node importance defined in Section III-D (Equation 5). In

Equation 2, p(x,y) is the joint probability of node importance

at time steps of x and y which would be t and k in Equation 1,

and p(y) is the marginal probability of node importance at the

time step of y. A higher (lower) importance indicates a higher

(lower) degree of change compared with its neighboring time

steps, and thus the corresponding length of the time window

should be smaller (larger). Such a nonuniform partition evenly

distributes the variation of the graphs among all time windows,

which makes it more amenable to preserve the temporal

coherence for the initial layout generation and subsequent

deformation. To ensure the continuity between time windows,

we let two consecutive time windows share an overlapping

time interval and the time steps falling into the interval keep

their common nodes in the same positions. Figure 3 illustrates

such an example.

C. Graph Triangulation

From the initial graph layout produced for each time step,

we use the node positions to generate a constrained conform-

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

(a) (b)

Fig. 2. (a) the node (edge) importance is mapped to visual properties such as size (thickness), color, and opacity. The two transfer functions in the corner
are for nodes and edges, respectively. (b) the underlying triangle mesh is displayed where we map face importance to color and edge importance to thickness.

Fig. 3. An illustration showing the importance values of individual time
steps as dots and the non-uniform partition of the entire time sequence into
seven overlapping time windows. The horizontal direction is for time step and
the vertical direction is for importance value. The size of overlapping time
intervals is two in this example.

ing Delaunay triangulation (CCDT) mesh [27]. Figure 2 shows

an example of the resulting triangle mesh. With the CCDT,

all the triangles produced are well-behaved, i.e., they have

similar areas. Based on the input of desired triangle area and

the maximum angle within any triangle, we can determine a

suitable number of triangles accordingly. Additional vertices,

called Steiner points, could be inserted to meet the constraints

of triangle area and angle. Using the triangle mesh rather

than the initial graph for F+C adjustment enables us to

generate desirable effects while maintaining a satisfying level

of spatiotemporal coherence of the time-varying graph.

Since our graph is embedded in the triangle mesh where the

F+C distortion is performed, each node can still be expanded

or shrunk even though it is not connected to its spatially

neighboring nodes in the original graph. Figure 4 shows two

examples of a F+C adjustment using initial graph edges and

triangle mesh edges, respectively. In both examples, using

triangle mesh edges more effectively expands the neighbor-

hood of nodes with higher importance and better maintains

the consistency of relative positions among nodes. Note that

in (b) and (c), there is no adjacent edge between the red and

orange nodes. In (b), F+C adjustment using the initial graph

does not work when two neighboring nodes in the layout are

not adjacent. Therefore, both the red and orange nodes are

squeezed together in (b) but they are properly separated in

(c). We can observe similar results in (e) and (f).

D. Significance Analysis

Node Importance. To allow the users to clearly capture the

characteristics of the time-varying graph and achieve a desired

F+C visualization, we define the importance for every node

in the graph at each time step. Specifically, we consider two

properties for a node: centrality and authority. The centrality

of a node vi,t is defined as

C (vi,t) = deg(vi,t) = ∑
j

εi j,t , (3)

where deg(vi,t) returns the degree of node vi,t . In an undirected

graph, it is the number of edges incident to vi,t . εi j,t = 1 iff

there is an edge between vi,t and v j,t in the graph; otherwise,

εi j,t = 0. The authority [19] of a node vi,t is defined as

A (vi,t) = ∑
v j,t∈Vt

we2
i j,twv j,t , (4)

where wei j,t is the weight of edge ei j,t in the original graph

and wv j,t is the average of edge weights incident to node v j,t .

vi,t and v j,t are connected by edge ei j,t . The authority of a

node indicates its representativeness. The squared weights for

edges give preference to nodes that are very representative of

some nodes over those that are moderately representative of all

nodes. We use the mean weight to ensure that the most central

nodes are also representative of other less central nodes.

Finally, we define the importance of a node vi,t as

I (vi,t) = αC (vi,t)+βA (vi,t)+ γwvi,t , (5)

where α , β , and γ are all in [0,1] and α +β +γ = 1. wvi,t is the

weight of vi,t carried from the input of the original graph. Note

that we only compute the importance for nodes in the original

graph. For other pseudo nodes introduced in the triangle mesh,

their importance values are zero.

In practice, our deformation is based on node importance

values at every time step. We notice that if a node at two

consecutive time steps has significantly different importance

values, then the resulting deformation would be flickering. To

alleviate this problem, we blend the importance value of a

node with its values at previous m−1 time steps

I (vi,t) =
t

∑
l=t−m+1

wlI (vi,l), (6)

where m is the size of blending window, wl (in [0,1]) is the

normalized weight for time step l. The closer l to t, the larger

the weight. ∑t
l=t−m+1 wl = 1.

Face Importance. For each face in the triangle mesh, we

define its importance as

FENG et al.: COHERENT TIME-VARYING GRAPH DRAWING WITH MULTIFOCUS+CONTEXT INTERACTION 5

(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) initial graph (important nodes shown in red). (b) F+C adjustment using the initial graph edges. (c) F+C adjustment using the triangle mesh edges
which allows the nodes close to important nodes to expand as well. (d) initial graph. (e) F+C adjustment using the initial graph edges. (f) F+C adjustment
using the triangle mesh edges which avoids the drastic change of relative positions among nodes.

I (fi,t) = max
v j,t∈Vt

I (fi,t ,v j,t), (7)

and

I (fi,t ,v j,t)=











0, I (v j,t) = 0

0, ⊥ (v j,t , fi,t) > e/2

I (v j,t)
(

1− ⊥(v j,t , fi,t)

e/2

)

, otherwise

(8)

where ⊥ (v j,t , fi,t) is the distance from v j,t to the center of

mass in face fi,t and e is the average edge length computed

from the original graph. The rationale for Equation 8 is that

we only consider the face importance for a contributing node

if the node’s importance is nonzero and the distance from the

node to the center of mass of the face is sufficiently small.

Edge Importance. With the face importance, the impor-

tance of an edge ei j,t in the triangle mesh can be defined as

the average of the importance of its incident faces. That is,

I (ei j,t) =
∑ fk,t∈Fei j,t

I (fk,t)

||Fei j,t ||
, (9)

where Fei j,t is the set of faces incident to edge ei j,t . For the

triangle mesh, ||Fei j,t || is 2 if ei j,t lies inside of the mesh and

1 if ei j,t lies on the mesh boundary.

In Figure 2, we illustrate a graph where we map the

importance value of nodes/edges to their sizes/thicknesses,

colors, and opacities. More important nodes are drawn with

bigger circles and more opaque colors. More important edges

are drawn with thicker lines and more opaque colors. The

triangle mesh shows the importance of faces and edges. Such

a visualization allows important nodes, edges, and faces to

stand out as the foci. The users can adjust the importance

values for nodes or edges during interaction. For example, the

users may choose some nodes as the foci and the importance

values of these nodes get increased to reflect user preference

for the following optimized F+C visualization.

E. Optimized F+C Visualization

The result of the significance analysis guides the follow-

ing F+C visualization. The key to achieve a smooth F+C

visualization lies in maintaining the continuity and relative

relationships among nodes and edges. We take into account

the following conditions and constraints to define our objective

energy function.

Aesthetic Balance Adjustment. Although using the super

graph gives a convenient solution that achieves temporal

coherence, the resulting initial graph layout for every time

step may not have a good balance between aesthetic quality

and dynamic stability. To improve this, we add the following

constraint to let the area of each face in the triangle mesh

match its importance

A fi,t = A
I (fi,t)

∑ f j,t∈Ft
I (f j,t)

, (10)

where A fi,t is the area of face fi,t , A = w× h is the area of

the drawing region (w and h are the width and height, respec-

tively), and I (fi,t) is the importance of face fi,t (Equation 7).

To expand each face to match the desired area A fi,t , we adjust

each of its edges to an optimal length

l(ei j,t) =

√

4√
3

A
I (ei j,t)

∑ fk,t∈Ft
I (fk,t)

, (11)

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

(a) (b)

(c) (d)

(e) (f)

Fig. 5. (a) shows the graph of a time step extracted from the super graph.
(b) is the corresponding triangle mesh of (a). (c) and (d) are the graph and the
triangle mesh after aesthetic balance adjustment, respectively. (e) and (f) are
the graph and the triangle mesh after weighted edge expansion, respectively.
s = 10 in this example.

where I (ei j,t) is the importance of edge ei j,t (Equation 9). In

Equation 11, we want each triangle area to match an optimal

area A fi,t , assuming it is an equilateral triangle. We can add a

constraint to approach an equilateral triangle when generating

the CCDT mesh. In addition, since each edge ei j,t can be

shared by one or two triangles, we compute its optimal length

weighted by I (ei j,t), i.e., the average importance of adjacent

faces, in Equation 11. We now add the following constraint

Da = ∑
t∈T

∑
ei j,t∈Et

||e′i j,t − l(ei j,t)êi j,t ||2, (12)

where e′i j,t is the deformed version of ei j,t and êi j,t is the unit

vector of ei j,t . Figure 5 shows an example graph before and

after aesthetic balance adjustment. The graph after adjustment

introduces dynamic layout changes which means that the same

node in different time steps may not stay at the same position.

But the spatiotemporal coherence is still preserved as our

optimization operates on all time steps in each time window

simultaneously. Expanding triangle faces better utilizes the

drawing area and allows us to improve the aesthetic quality.

Weighted Edge Expansion. Recall that we compute the

importance value for every edge in the triangle mesh, i.e.,

I (ei j,t) in Equation 9. Let us denote s as a scaling factor given

by the user during graph expansion for F+C visualization. In

general, we have s > 1, and the larger the value of s, the higher

the degree of expansion applied to the nodes in the focus. For

edges with higher importance values, we need to expand them

more compared with edges with lower importance values. In

our energy model, we want to minimize the following term

related to the graph edges

De = ∑
t∈T

∑
ei j,t∈Et

I (ei j,t)||e′i j,t − sts(ei j,t)l(ei j,t)êi j,t ||2, (13)

where

s(ei j,t) = 1+I (ei j,t)
2(s−1).

In Equation 13, e′i j,t is the deformed version of ei j,t , êi j,t is the

unit vector of ei j,t , and l(ei j,t) is the optimal length of edge

ei j,t . s(ei j,t) indicates the expected scaling factor associated

with edge ei j,t and is computed according to user-specified

s. st is an unknown scaling factor associated with time and

is initialized as 1. If s(ei j,t) is too large, the resulting node

position can be placed outside of the drawing area. We can

avoid this by adjusting st to a value less than 1. If the

importance of an edge approaches zero, the edge keeps its

original length. Figure 5 shows an example graph before and

after weighted edge expansion. It is clear that the expansion

allows edges with higher importance values to expand while

edges with lower importance values are shrunk. As a result,

nodes with higher importance values are highlighted as nodes

with lower importance values are pushed aside.

In the above F+C scenario, after the user specifies the

scaling factor s, our algorithm first computes an initial scaling

factor s(ei j,t) for each edge, i.e., weighted by its importance,

and then computes the optimized scaling value. Another useful

F+C scenario is to allow the user to assign the scaling factor s

to some nodes of interest directly. Then, we assign 1, i.e., the

maximum importance value, in Equation 6 for each selected

node. Finally, we apply the same principle described above to

perform F+C visualization.

Temporal Coherence Preservation. To maintain temporal

coherence in the resulting time-varying graph, nodes with

higher importance values should keep their locations as stable

as possible. We add the following energy term to make sure

that nodes in the focus do not move too much accumulatively

over the time series

Dt =
n−1

∑
t=1

∑
vi,t∈Vt

I (vi,t)||v′i,t − vi,t ||2, (14)

where I (vi,t) is the importance of node vi,t and v′i,t is vi,t’s

new position, i.e., the deformed version.

Boundary Constraint. The boundary constraint states that

during the deformation, nodes on the boundary of the drawing

area at the previous iteration are forced to keep their positions

on the boundary at the current iteration. That is,

v′i,t,y =

{

0, vi,t,y = 0

h, vi,t,y = h
(15)

and

v′i,t,x =

{

0, vi,t,x = 0

w, vi,t,x = w
(16)

where v′i,t,x (vi,t,x) and v′i,t,y (vi,t,y) are the x- and y-coordinates

of node v′i,t (vi,t) respectively, w and h are the width and height

of the drawing area respectively. Together with st in Equation

FENG et al.: COHERENT TIME-VARYING GRAPH DRAWING WITH MULTIFOCUS+CONTEXT INTERACTION 7

Algorithm 1 LINEARSYSTEMSOLVER (A,V′,B(V))

1: Use node positions in the initial layout at each time step as the
initial guess for the first iteration

2: done ⇐ false{done indicates whether more iterations are needed
or not}

3: while done = false do
4: Use the current iteration result V to solve the unknown node

positions V′ constrained by the boundary and overlapping
conditions

5: if any node’s new position is beyond the drawing region then
6: Adjust st to pull the node position back to stay within the

drawing region
7: else
8: if each node’s position change between the current and

previous iterations is less than one pixel then
9: done ⇐ true

10: end if
11: end if
12: V′ = c×V′ +(1− c)×V
13: end while

13, this boundary constraint ensures that no node goes out of

bound and the graph is kept within the rectangular drawing

area during F+C adjustment.

Overlapping Constraint. The overlapping constraint states

that the positions of nodes in the overlapping portion of two

consecutive time windows should remain unchanged. That is,

vi,t,w j
= vi,t,w j+1

, (17)

where vi,t,w j
and vi,t,w j+1 denote the positions of node vi,t

in the time windows w j and w j+1, respectively. Our layout

optimization operates on each time window one by one. This

overlapping constraint is to ensure that temporal coherence

among nodes between neighboring time windows is preserved.

Objective Energy Function. We define the objective energy

function as

argmin
Vt

(

c1Da + c2De + c3Dt

)

. (18)

where c1, c2, and c3 are all in [0,1] and c1 + c2 + c3 = 1.

Our goal is to minimize the energy function under the three

constraints stated above, and to achieve a smooth F+C visu-

alization of the time-varying graph. As sketched in Algorithm

1, we iteratively solve for the unknown node positions V′

in a least square sense, where A represents the coefficients

of unknown node positions, V represents the node positions

solved in the most recent iteration, and B(V) is a vector

function of V. In practice, we set c = 0.7 which produces

good results for all graphs we experimented with. To solve

the linear least squares problem, we apply the GPU-based

conjugate gradient solver [4] with a multigrid strategy, which

is more memory- and time-efficient than a direct solver.

IV. RESULTS

We experimented with three time-varying graphs to demon-

strate the effectiveness of our approach. In the following,

we describe our data sets and test environment, followed by

visualization results. For a better impression of our method

and results, we refer the readers to the supplementary video.

In addition, the readers can find high-resolution video clips at

http://graphics.csie.ncku.edu.tw/Time varying Graph/.

Enron DBLP Tag Tag
(week) (day)

nodes 151 873 329 329
time steps 38 31 52 365
time window size 6 3 1 1
scaling factor s 10 10 10 10
initial layout time 0.5s 3.5s 1.1s 3.0s
mesh computation time 0.6 0.6s 0.8s 5.2s
significance computation time 0.6s 1.5s 1.6s 12.1s
mesh deformation time 4.9s 2.4s 7.6s 74.7s

TABLE I
THE TIMING OF THE THREE TIME-VARYING GRAPH DATA SETS. THE TIME

REPORTED IS THE COMPUTATION TIME FOR ALL TIME STEPS.

naı̈ve incremental AB AB + AB +
FR-layout FR-layout F+C F+C +

TC

average node displacement

Enron 183.96 118.29 13.37 36.17 15.61
DBLP 168.84 60.49 6.43 15.51 10.05
Tag (week) 237.04 55.25 4.01 8.58 2.98
Tag (day) 237.27 44.94 2.61 5.67 1.82

average important node displacement

Enron 133.69 67.31 15.91 42.71 7.38
DBLP 124.37 39.50 13.40 28.17 6.64
Tag (week) 147.70 31.84 4.89 9.76 2.41
Tag (day) 148.59 22.12 2.93 6.70 1.42

TABLE II
COMPARISON OF AVERAGE NODE DISPLACEMENT (IN PIXEL) FOR ALL

NODES AND NODES WITH HIGH IMPORTANCE VALUES (> 0.8).
FR-LAYOUT: FRUCHTERMAN-REINGOLD LAYOUT. AB: AESTHETIC

BALANCE. F+C: FOCUS+CONTEXT. TC: TEMPORAL COHERENCE.

A. Data Sets

We acquired three time-varying graph data sets from differ-

ent applications which we describe in the following.

Enron Email. This data set is provided by the UC Berkeley

Enron email analysis project. The data set contains email

communication records at Enron over a couple of years.

We extracted the company’s intra-communication records and

built a time-varying graph with each time step corresponding

to one month’s statistics. This gave us 38 time steps with

151 employees. At each time step, each node represents an

employee and the weight of each edge is the number of emails

between the two employees over that month.

DBLP Coauthorship. We built this data set from the search

results of the DBLP Computer Science Bibliography. We

searched one influential author in our field and her coauthors

as well as her coauthors’ coauthors. We built a time-varying

graph with each time step corresponding to one year’s statis-

tics. This gave us 31 time steps and a total of 873 authors. At

each time step, each node represents an author and the weight

of each edge is the number of publications coauthored by the

two authors accumulated up to that year. This graph grows as

the time step increases.

Astronomy Tag. We built this data set from an astronomy

archive maintained by NASA and Michigan Tech. Everyday

the website features a new astronomy picture along with a

paragraph of explanation and a list of meta-tagged keywords.

We extracted all tags during the year of 1998 and built two

time-varying graphs where each time step corresponds to the

statistics of one day (week). This gave us 365 (52) time steps

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. The same initial graph layout before deformation where node importance is derived by favoring node authority and centrality in (b) and (c) respectively.
Their corresponding triangle meshes are displayed in (a) and (d) respectively. (f) and (g) are the adjusted graph layouts for (b) and (c) respectively. (e) and
(h) are the corresponding triangle meshes of (f) and (g) respectively.

Fig. 7. Top row, left to right: triangle meshes showing the significance of the time-varying graph for five consecutive time steps without blending node
importance over time. Bottom row, left to right: the corresponding triangle meshes with blending. The size of the time windows is ten in this example.

with 329 tags. At each time step, each node represents a tag

and the weight of each edge is the number of co-occurrence

of the two tags accumulated up to that day (week).

B. Timing Performance and Displacement Comparison

We utilized a GPU implementation of the concurrent num-

ber cruncher (CNC) sparse solver [4] to solve the linear

system. The CCDT mesh was generated following the work

of Shewchuk [27]. All tests were run on a PC with an

Intel 2.67GHz CPU, 8GB memory, and an nVidia GTX 295

graphics card. In Table I, we report the timing breakdown for

the three data sets. As we can see, the time to perform mesh

deformation dominates the total computation time. For mesh

deformation, the main limiting factor is the number of time

steps. This is evident by comparing the performance results

for the two versions of the astronomy tag data set.

We set the window size to one for the astronomy tag data

set. This is mainly due to the reason that this data set grows

as the time step increases. That is, the graph of the current

time step is updated from the graph in the previous time

step with some newly-added nodes and edges. For this kind

of time-varying graph, if we use a window size larger than

one, the initial layouts of later time windows are strongly

influenced by the layouts of previous windows (due to the

need to maintain temporal coherence between windows). This

may lead to an undesired layout quality for later time windows.

The DBLP coauthorship data set also has this issue. But such

an influence is not as significant because the number of time

steps is relatively small.

In Table II, we compare the averages of accumulated

displacements for all nodes and for nodes with importance

values larger than 0.8. As we can see, the naı̈ve Fruchterman-

FENG et al.: COHERENT TIME-VARYING GRAPH DRAWING WITH MULTIFOCUS+CONTEXT INTERACTION 9

Fig. 8. Left to right: four selected time steps of the astronomy tag data set. Top to bottom: the initial graph layouts extracted from the super graph, the
adjusted layout only considering aesthetic balance and temporal coherence, and the final layout after mesh deformation, respectively.

Fig. 9. The graph layouts for one selected time step of the DBLP coauthorship data set. Left: the initial graph layouts extracted from the super graph.
Middle: the adjusted layout only considering aesthetic balance and temporal coherence. Right: the final layout after mesh deformation.

Reingold layout incurs the most node displacement, making

it very difficult for users to track changes. The incremental

Fruchterman-Reingold layout, where node positions in the

previous frame are used as the input to decide node positions in

the current frame, reduces the node displacement substantially.

Our approach produces an even smaller node displacement

with the addition of aesthetic balance adjustment. Introducing

F+C distortion brings larger displacements. However, when

temporal coherence is also considered, the average displace-

ment is fairly small in general. Our results accentuate nodes in

the focus and significantly reduce the average node displace-

ment, thus offering a more engaging experience for users.

C. Significance Adjustment

We allow the user to adjust the weights for node authority

and centrality (Equation 5) to highlight different aspects of the

graph. In Figure 6, we show two examples with one favoring

node authority (α = γ = 0.5, β = 0.0) and the other favoring

node centrality (β = γ = 0.5, α = 0.0). The initial graph

layout is the same while the resulting layouts are different.

Adjusting these parameters allows the user to observe different

characteristics of the graph accordingly. In addition, blending

node importance using a time window can generate smooth

layout results over time. The larger the size of the time

window, the smoother the resulting time-varying graph. Figure

7 gives such an example.

D. Time Budget Allocation

When a time-varying graph consists of a large number of

time steps, we can perform importance-driven time-varying

graph visualization by allocating a given time budget for

animation based on importance values of time steps. That

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

Fig. 10. Left to right: the final layout of four selected time steps of the Enron email data set.

(a) (b) (c)

Fig. 11. Multi-F+C Visualization. (a) the initial graph and its corresponding triangle mesh. (b) the result with a single focus. (c) the result with two foci.

is, we can slow down the animation when we encounter

important time steps (their conditional entropies with respect

to neighboring time steps are high), and speed up the ani-

mation when we encounter non-important time steps. In the

supplementary video, we show a side-by-side comparison be-

tween uniform and importance-driven time budget allocation.

As we can see, this importance-driven technique allows us to

observe the graph better as more animation time is spent on

more important time steps (i.e., their difference with respect

to neighboring time steps are larger thus demanding more

animation time for clear observation).

E. F+C Visualization

In Figure 8, we show the comparison of the astronomy tag

data set with the initial graph layout extracted from the super

graph, the adjusted layout, and the final layout after mesh

deformation. For better observation, we highlight important

nodes with a halo. The area of a halo is proportional to the

node’s importance value, indicating its significance. Compared

with the initial layouts, the final layouts better utilize the

screen space to highlight the significant nodes in the F+C

visualization, leading to a more effective way of tracking

important nodes over time and a better understanding of the

overall time-varying graphs. Figures 9 and 10 show additional

results with the other two data sets. Another nice feature we

provide is multi-F+C visualization. In this scenario, the user

specifies multiple foci in the graph. We update the significance

accordingly and produce graph visualization with multiple

foci. Figure 11 shows such an example.

F. Mental Map Preservation

Our framework allows the user to fine tune the three

parameters in Equation 18 (c1 for aesthetic balance, c2 for

focus+context visualization, and c3 for temporal coherence)

to adjust the degree of mental map preservation. In the sup-

plementary video, we show a comparison among low, medium,

and high degrees of mental map preservation with (c1,c2,c3 =
0,1,0), (c1,c2,c3 = 1,0,0), and (c1,c2,c3 = 0,0,1), respec-

tively. We also show our default setting with (c1,c2,c3 =
1/3,1/3,1/3). The average node displacement quantifies the

difference among these cases with a lower displacement cor-

responding to a higher mental map. In addition, we compare

two sets of parameter settings in the video to show the flexible

control over the degree of mental map preservation. Our results

confirm that in general, the two extreme cases (i.e., fairly

low or high mental maps) are not the best choices for time-

varying graph drawing. We recommend the default setting with

(c1,c2,c3 = 1/3,1/3,1/3), but the user can always customize

FENG et al.: COHERENT TIME-VARYING GRAPH DRAWING WITH MULTIFOCUS+CONTEXT INTERACTION 11

the degree of mental map preservation for the most effective

viewing.

V. DISCUSSION

Our work on time-varying graph visualization is inspired by

Wang et al. [29]–[31]. While they solved the F+C problems

for static polygon and volume data, a direct application of

these methods [30], [31] by adding spatiotemporal coherence

terms [29] to time-varying graphs does not lead to smooth F+C

visualization. This is because unlike video frames, which tend

to change more smoothly, a time-varying graph can experience

more abrupt changes in the location, size, and connectivity of

nodes and edges at consecutive time steps. In addition, because

spatially adjacent nodes in a graph may not always have edges

connecting them, when trying to shrink or expand the graph

to achieve F+C views by pulling the nodes, we need special

treatments beyond what is presented by Wang et al. [30], [31]

to achieve satisfactory results.

Our work addresses two major limitations in the original

super graph algorithms [5], [6]. First, while the super graph

algorithms preserve the mental map using the global layout for

a given sequence of graphs, they did so at the cost of certain

aesthetic criteria. Diehl and Görg [5] solved this problem by

compromising aesthetic quality and dynamic stability, which

is very computationally expensive. Another major limitation is

that, when we perform F+C visualization on super graphs, the

weights of nodes can change over time as nodes in the focus

change in size and location. In this case, it is very difficult to

maintain spatiotemporal coherence of the graphs.

We combine the super graph with the deformation model

to generate smooth F+C visualization for time-varying graphs.

The advantage of this combination is twofold. First, for F+C

visualization, the super graphs can maintain spatiotemporal

coherence to some extent on several consecutive time steps

(i.e., a local time window), thus avoiding nodes to be placed

in very distinct locations within the time window. We maintain

high aesthetic quality using spatiotemporal energy terms in

the deformation and solve the problem of Diehl et al. [6]

without incurring high computation cost to generate the graph

layout for every time step. As a result, interactive F+C

visualization of time-varying graphs becomes possible. The

second advantage is that our energy minimization approach

can maintain spatiotemporal coherence for nodes of various

weights while our deformation model achieves stable F+C

viewing. In addition, the transition between the graphs in

consecutive local time windows is delivered smoothly. To

the best of our knowledge, using optimization-based methods

to generate F+C visualization of time-varying graphs has

not been studied previously. Our work naturally integrates

dynamic graph drawing and multi-F+C visualization into a

single optimization framework.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a new solution to visualize time-varying

graphs that allows users to generate customized layouts and

animations via simple interaction. We achieve this by utiliz-

ing the ideas of the super graph and graph triangulation to

produce a smooth and coherent visualization with multi-F+C

capability. By transforming the graph layout problem to a

constrained optimization problem for mesh deformation, we

improve the layout directly extracted from the super graph

while highlighting nodes and their surrounding regions of

interest. Through adjusting the importance of nodes, the users

can dynamically change the significance distribution in the

graph and observe the new layout. They can also specify

different nodes in the focus at a certain time step and rearrange

the graph layout effectively via GPU acceleration. Importance-

driven time budget allocation produces an animation with an

emphasis on important time steps, thus facilitating detailed

analysis of the graph.

In this paper, we utilize the definitions of degree centrality

and authority from graph theory to determine node importance.

There exist other ways of defining degree centrality such as

betweenness centrality, closeness centrality, and eigenvector

centrality [32]. All these can be utilized and incorporated into

our work to generate desired layout results. We would like to

note that the use of mesh deformation has its own limitation.

Due to the continuity of a mesh, we cannot change the relative

node positions in the initial graph layouts. In some extreme

cases, the initial layouts may not exhibit spatiotemporal coher-

ence at all and the deformation could lead to undesired layouts

by breaking and flipping node relationships in the mesh. For

a time-varying graph with a large number of nodes and/or

time steps, the optimization for mesh deformation could take

a long time and the results could be very complex. In the

future, we would like to improve our algorithm by taking a

multi-level approach to prioritize nodes for time-varying graph

visualization. This would reduce the complexity of graph and

speed up the computation, providing a more efficient way to

visualize large time-varying graphs.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for

their insightful comments. This work was supported in part

by the National Science Council (contracts NSC-99-2221-

E-006-066-MY3, NSC-100-2628-E-006-031-MY3, NSC-100-

2221-E-006-188-MY3), Taiwan, and was supported in part by

Michigan Technological University startup fund and the U.S.

National Science Foundation through grant IIS-1017935.

REFERENCES

[1] U. Brandes. Drawing on physical analogies. In M. Kaufmann and
D. Wagner, editors, Drawing Graphs: Methods and Models, pages 71–86.
Springer-Verlag Berlin Heidelberg, 2001.

[2] U. Brandes and D. Wagner. A Bayesian paradigm for dynamic graph
layout. In Proceedings of International Symposium on Graph Drawing,
pages 236–247, 1997.

[3] J. Branke. Dynamic graph drawing. In M. Kaufmann and D. Wagner,
editors, Drawing Graphs: Methods and Models, pages 228–246. Springer-
Verlag Berlin Heidelberg, 2001.

[4] L. Buatois, G. Caumon, and B. Lévy. Concurrent number cruncher:
A GPU implementation of a general sparse linear solver. International

Journal of Parallel, Emergent and Distributed Systems, 24(3):205–223,
2009.

[5] S. Diehl and C. Görg. Graphs, they are changing. In Proceedings of

International Symposium on Graph Drawing, pages 23–30, 2002.
[6] S. Diehl, C. Görg, and A. Kerren. Preserving the mental map using

foresighted layout. In Proceedings of Eurographics - IEEE VGTC

Symposium on Visualization, pages 175–184, 2001.

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

[7] P. Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149–160, 1984.

[8] Y. Frishman and A. Tal. Dynamic drawing of clustered graphs. In
Proceedings of IEEE Symposium on Information Visualization, pages
191–198, 2004.

[9] Y. Frishman and A. Tal. Online dynamic graph drawing. In Proceedings

of Eurographics - IEEE VGTC Symposium on Visualization, pages 75–82,
2007.

[10] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software - Practice and Experience, 21(11):1129–
1164, 1991.

[11] G. W. Furnas. Generalized fisheye views. ACM SIGCHI Bulletin,
17(4):16–23, 1986.

[12] G. W. Furnas. A fisheye follow-up: Further reflections on focus+context.
In Proceedings of ACM SIGCHI Conference on Human Factors in

Computing Systems, pages 999–1008, 2006.
[13] E. Gansner, Y. Koren, and S. North. Topological fisheye views for visu-

alizing large graphs. In Proceedings of IEEE Symposium on Information

Visualization, pages 175–182, 2004.
[14] E. R. Gansner and Y. Hu. Efficient, proximity-preserving node overlap

removal. Journal of Graph Algorithms and Applications, 14(1):53–74,
2010.

[15] E. R. Gansner, Y. Koren, and S. North. Graph drawing by stress
majorization. In Proceedings of International Symposium on Graph

Drawing, pages 239–250, 2005.
[16] C. Görg, P. Birke, M. Pohl, and S. Diehl. Dynamic graph drawing

of sequences of orthogonal and hierarchical graphs. In Proceedings of

International Symposium on Graph Drawing, pages 228–238, 2005.
[17] D. Harel and Y. Koren. Graph drawing by high-dimensional embedding.

In Proceedings of International Symposium on Graph Drawing, pages
299–345, 2002.

[18] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information Processing Letters, 31(1):7–15, 1989.

[19] G. Kumar and M. Garland. Visual exploration of complex time-varying
graphs. IEEE Transactions on Visualization and Computer Graphics,
12(5):805–812, 2006.

[20] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and
the mental map. Journal of Visual Languages and Computing, 6(2):183–
210, 1995.

[21] A. Noack. An energy model for visual graph clustering. In Proceedings

of International Symposium on Graph Drawing, pages 425–436, 2004.
[22] S. C. North. Incremental layout in DynaDAG. In Proceedings of

International Symposium on Graph Drawing, pages 409–418, 1996.
[23] H. C. Purchase, E. Hoggan, and C. Görg. How important is the “mental

map”? - an empirical investigation of a dynamic graph layout algorithm.
In Proceedings of International Symposium on Graph Drawing, pages
184–195, 2006.

[24] H. C. Purchase and A. Samra. Extremes are better: Investigating mental
map preservation in dynamic graphs. In Proceedings of International

Symposium on Graph Drawing, pages 60–73, 2008.
[25] M. Sarkar and M. H. Brown. Graphical fisheye views of graphs.

In Proceedings of ACM SIGCHI Conference on Human Factors in

Computing Systems, pages 83–91, 1992.
[26] M. Sarkar, S. S. Snibbe, O. J. Tversky, and S. P. Reiss. Stretching the

rubber sheet: A metaphor for viewing large layouts on small screens.
In Proceedings of ACM Symposium on User Interface Software and

Technology, pages 81–91, 1993.
[27] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator

and delaunay triangulator. In Proceedings of ACM Workshop on Applied

Computational Geometry, pages 203–222, 1996.
[28] C. Wang, H. Yu, and K.-L. Ma. Importance-driven time-varying

data visualization. IEEE Transactions on Visualization and Computer

Graphics, 14(6):1547–1554, 2008.
[29] Y.-S. Wang, H. Fu, O. Sorkine, T.-Y. Lee, and H.-P. Seidel. Motion-

aware temporal coherence for video resizing. ACM Transactions on

Graphics, 28(5), 2009.
[30] Y.-S. Wang, T.-Y. Lee, and C.-L. Tai. Focus+context visualization

with distortion minimization. IEEE Transactions on Visualization and

Computer Graphics, 14(6):1731–1738, 2008.
[31] Y.-S. Wang, C. Wang, T.-Y. Lee, and K.-L. Ma. Feature-preserving vol-

ume data reduction and focus+context visualization. IEEE Transactions

on Visualization and Computer Graphics, 17(2):171–181, 2011.
[32] S. Wasserman and K. Faust. Social Network Analysis: Methods and

Applications. Cambridge University Press, 1994.

Kun-Chuan Feng received the BS degree in Com-
puter Science and Information Engineering, National
Chung Cheng University, Taiwan, in 2008 and the
MS degree from the Department of Computer Sci-
ence and Information Engineering, National Cheng
Kung University, Tainan, Taiwan, in 2010. His re-
search interests include computer graphics, image
resizing and visualization.

Chaoli Wang is an assistant professor of computer
science at Michigan Technological University. His
research focuses on large-scale data analysis and
visualization, high-performance computing, and user
interfaces and interaction. He received the BE and
ME degrees in computer science from Fuzhou Uni-
versity, China, in 1998 and 2001, respectively, and
the PhD degree in computer and information science
from The Ohio State University in 2006. From 2007
to 2009, he was a postdoctoral researcher at the
University of California, Davis. He is a member of

the IEEE.

Han-Wei Shen is an Associate Professor at The
Ohio State University. He received his BS degree
from Department of Computer Science and Infor-
mation Engineering at National Taiwan University
in 1988, the MS degree in computer science from
the State University of New York at Stony Brook
in 1992, and the PhD degree in computer science
from the University of Utah in 1998. From 1996 to
1999, he was a research scientist at NASA Ames
Research Center in Mountain View California. His
primary research interests are scientific visualization

and computer graphics. Professor Shen is a winner of National Science
Foundation’s CAREER award and US Department of Energy’s Early Career
Principal Investigator Award. He also won the Outstanding Teaching award
twice in the Department of Computer Science and Engineering at The Ohio
State University.

Tong-Yee Lee received the PhD degree in com-
puter engineering from Washington State Univer-
sity, Pullman, in May 1995. He is currently a
distinguished professor in the Department of Com-
puter Science and Information Engineering, National
Cheng Kung University, Tainan, Taiwan, ROC. He
leads the Computer Graphics Group, Visual Sys-
tem Laboratory, National Cheng Kung University
(http://graphics.csie.ncku.edu.tw/). His current re-
search interests include computer graphics, nonpho-
torealistic rendering, medical visualization, virtual

reality, and media resizing. He also serves on the editorial boards of the
IEEE Transactions on Information Technology in Biomedicine, the Visual
Computer and the Computers and Graphics Journal. He served as a member
of the international program committees of several conferences including
the IEEE Visualization, the Pacific Graphics, the IEEE Pacific Visualization
Symposium, the IEEE Virtual Reality, the IEEE-EMBS International Confer-
ence on Information Technology and Applications in Biomedicine, and the
International Conference on Artificial Reality and Telexistence. He is a senior
member of the IEEE and a member of the ACM.

