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Abstract—We treat streamline selection and viewpoint selection
as symmetric problems which are formulated into a unified
information-theoretic framework. This is achieved by building
two interrelated information channels between a pool of can-
didate streamlines and a set of sample viewpoints. We define
the streamline information to select best streamlines and in a
similar manner, define the viewpoint information to select best
viewpoints. Furthermore, we propose solutions to streamline clus-
tering and viewpoint partitioning based on the representativeness
of streamlines and viewpoints, respectively. Finally, we define
a camera path that passes through all selected viewpoints for
automatic flow field exploration. We demonstrate the robustness
of our approach by showing experimental results with different
flow data sets, and conducting rigorous comparisons between
our algorithm and other seed placement or streamline selection
algorithms based on information theory.

Index Terms—Flow visualization, information channel, stream-
line selection, viewpoint selection, camera path.

I. INTRODUCTION

FLOW simulation plays an important role in many scien-

tific and engineering disciplines such as climate model-

ing, turbulent combustion, and automobile design. To visualize

data generated from these simulations, one common method

is to display flow lines such as streamlines computed from

particle tracing. This method gains its popularity because

streamlines are easy to compute via standard numerical in-

tegration and can be rendered at interactive frame rates. We

refer interested readers to a survey by McLoughlin et al. [18]

for integration-based flow visualization techniques.

Effective streamline visualization can be formulated as the

problem of seed placement or streamline selection. Seed

placement aims at carefully placing seeds in the domain to

generate streamlines that capture flow features. Streamline

selection aims at carefully selecting streamlines from a large

streamline pool for effective display. Streamline seeding for

2D and 3D vector fields has been well studied and continues

to receive much attention [11], [15], [19], [26], [28], [33], [34].

Compared to selecting seeds, selecting streamlines is directly

related to the final visualization results. Seed placement algo-

rithms were first proposed about fifteen years ago. With the

rapid advances of general-purpose computing on GPUs, it is

quite affordable nowadays to generate a large pool of stream-

lines. As such, streamline selection has become a promising

alternative to seed placement and has received increasing
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attention [4], [13], [17]. Besides streamline selection, selecting

good viewpoints is also critical for understanding large and

complex 3D flow fields. This is because automatically guiding

the viewers to good viewpoints improves both the speed and

the efficiency of data understanding. While viewpoint selection

for volume data has been extensively studied [2], [10], [25],

[29], the same issue for flow visualization remains to be

thoroughly investigated.

In this paper, we present a unified information-theoretic

framework, which solves the problems of streamline selec-

tion and viewpoint selection by constructing two interrelated

information channels between a set of streamlines and a set of

viewpoints. Based on the information channel from streamline

to viewpoint, we define streamline information as a measure

of streamline quality to guide streamline selection. Similarly,

in the inverted channel from viewpoint to streamline, we

define viewpoint information to guide viewpoint selection for

the selected streamlines. Leveraging the two channels, we

also present a unified algorithm for streamline clustering and

viewpoint partitioning. In addition, a camera path is designed

for automatic exploration of the flow field. Our approach

results in a rigorous and robust framework for selecting

good streamlines and viewpoints, clustering streamlines, and

partitioning viewpoints, which we demonstrate with flow fields

of different characteristics. We also compare out results against

results produced from other information theory based methods,

through both objective comparison and subjective evaluation,

to show the effectiveness of our approach.

II. RELATED WORK

Seed Placement. Seed placement is a widely used strategy

in flow visualization. Early work includes image-guided [26]

and evenly-spaced [11] streamline placements. In a similar

spirit, Mebarki et al. [19] suggested to place a seed at the

position that is farthest from all existing streamlines, i.e., the

center of largest void area. Verma et al. [28] introduced a

feature-based approach which detects critical points and uses

seeding templates to capture the 2D flow field features. This

approach was extended to 3D vector fields by Ye et al. [34].

Li and Shen [15] placed seeds on a 2D projection plane and

unprojected the seeds back to the 3D vector field to avoid

clutter. Xu et al. [33] used seeding templates for regions with

high entropy and then placed additional seeds at locations

where the conditional entropy is high, i.e., much information

is still unrevealed. Other seeding techniques include priority

seeding [23], dual seeding [21], and surface seeding [24].
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Fig. 1. We model the problems of streamline selection and viewpoint selection in a single, unified framework. (a) Sample viewpoints are constructed along
a sphere from the recursive discretization of an icosahedron. Velocity magnitudes are mapped to streamline colors. (b) The information channel V → S (left)
and the inverted channel S →V (right) are connected via the Bayes theorem.

Streamline Selection. An alternative to seed placement is

streamline selection. Previously, Chen et al. [4] defined a

metric for local similarity between streamlines and used it to

explicitly control the streamline density displayed. Marchesin

et al. [17] measured the contribution of each streamline to

the understanding of the vector field, and selected those

streamlines that have higher contribution and lower probability

leading to visual clutter. Lee et al. [13] proposed to generate a

maximum entropy projection buffer and then select the stream-

lines that cause the minimum occlusion to important regions.

Unlike these view-dependent solutions [13], [17], we select

streamlines in a view-independent manner by considering their

contributions to all sample viewpoints.

Viewpoint Selection. Solutions to viewpoint selection have

been proposed for the problem of modeling a 3D object from

range data [31] and from images [7], for object recognition

[1], and for cinematography [8]. Vázquez et al. [27] defined

the viewpoint entropy from the projected areas of the faces of

the geometric models in the scene to derive good viewpoints.

Bordoloi and Shen [2] presented a view selection method for

volume rendering, in which a voxel-based entropy function

was used to evaluate each viewpoint. Takahashi et al. [25]

proposed to decompose an entire volume into a set of feature

components, and then compromise between the locally optimal

viewpoints for the components to achieve a globally best

viewpoint. Ji and Shen [10] suggested a method that combines

static view selection with dynamic programming to select

time-varying viewpoints and produce a smooth animation.

Information Channel. An overview of information theory

in visualization can be found in [3], [30]. Our work is inspired

by previous work on volumetric and polygonal data that were

built upon similar information channels [6], [22], [29]. Viola et

al. [29] used an information channel built between viewpoints

and volumetric objects and evaluated viewpoints using mutual

information computed from that channel. Feixas et al. [6]

proposed an information-theoretic framework for polygonal

data in which a channel from viewpoints to polygons and

its inverted channel were built, and mutual information of

viewpoints and polygons were defined respectively. Ruiz et al.

[22] applied a similar method to define voxel information in

volume visualization. Several challenges exist when applying

this information-theoretic framework to flow fields. Unlike

voxels which are fine-grained elements and polygons which

are fairly localized data items, a streamline could stretch across

the entire field and have a very complex shape. This makes

it difficult to analyze the conditional probability p(s|v) for

a streamline. In addition, there exists no inherent concept of

neighbors for streamlines because no connectivity information

is given. We contribute to the state of the art flow visualization

by introducing a new way to evaluate streamline information

and viewpoint information, and presenting a unified framework

for streamline selection and viewpoint selection.

III. OUR APPROACH

A. Information Channel

We solve the problems of streamline selection and viewpoint

selection in a single, unified framework. We consider a set

of streamlines S = {s1,s2, . . . ,sn} and a set of viewpoints

V = {v1,v2, . . . ,vm} as discrete random variables and build

two interrelated information channels between them: V → S

and S → V . Our assumptions for viewpoints are (1) the flow

field is centered in a sphere of sample viewpoints constructed

from the recursive discretization of an icosahedron; and (2)

the camera at a sample viewpoint is looking at the center of

the sphere. Figure 1 (a) shows sample viewpoints along the

sphere. Throughout this paper, we use modified spectral colors

[16] for streamline coloring based on the velocity magnitude.

The main components in the information channel V → S are

the following:

• The transition probability matrix p(S|V ) where condi-

tional probability p(s|v) represents the probability of

“seeing” streamline s from viewpoint v (i.e., the impor-

tance of s with respect to v).

• The input probability distribution p(V ) where p(v) rep-

resents the probability of selecting viewpoint v. If we

assume p(v) to be evenly distributed, then p(v) = 1/m

where m is the number of sample viewpoints.

• The output probability distribution p(S) where p(s) rep-

resents the average probability that streamline s is seen

from all viewpoints V . That is, p(s) = ∑v∈V p(v)p(s|v).

Similarly, we can construct the inverted information channel

S → V , where the input and output probability distributions

are swapped: p(S) becomes the input and p(V ) becomes the

output. In this inverted channel, the new transition probability

matrix is p(V |S), where p(v|s) represents the probability of

selecting viewpoint v given streamline s. As shown in Figure

1 (b), these two channels are connected via the Bayes theorem,
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i.e., p(v)p(s|v) = p(v,s) = p(s,v) = p(s)p(v|s), which provides

us a means to compute p(v|s) given p(v), p(s), and p(s|v).

B. Conditional Probability Definition

The key for deriving the information channel V → S lies in

how to define the conditional probability p(s|v). In our sce-

nario, we consider the following two view-dependent factors

for computing p(s|v):
Mutual Information. This measure, denoted as I(s;sv),

indicates how much information about streamline s is revealed

in its 2D projection sv under viewpoint v. We know that

information loss is inevitable due to streamline projection.

A large value of I(s;sv) shows that 3D streamline s itself

contains a high amount of information and its 2D projection sv

preserves well the information of s. Therefore, the probability

of “seeing” s from v is high. Conversely, if s itself contains a

low amount of information or its 2D projection sv loses much

of the information of s, then the probability of “seeing” s from

v is low. I(s;sv) is defined as [5]

I(s;sv) = ∑
i∈s

∑
j∈sv

p(i, j) log
p(i, j)

p(i)p( j)
, (1)

where p(i) and p( j) are the marginal probabilities of s and

sv respectively, and p(i, j) is their joint probability. Here we

treat a streamline as a finite set of points. That is, i and j

loop through the lists of points obtained either from streamline

tracing or parameterization by the arc length along s and sv,

respectively. To compute p(i), we interpolate vectors from the

original flow data based on the positions of all the points

along s. These vectors are used to construct a 2D histogram

based on vector magnitude and direction. To compute p( j), we

use the projections of these vectors along sv to construct the

corresponding 2D histogram. To quantize vector directions,

we use the recursive discretization of an icosahedron for

3D quantization, and the even circle partition by angle for

2D quantization. All vectors falling into the same range are

quantized into the same bin of vector direction. The joint

probability p(i, j) can be computed by constructing a joint

histogram for s and sv where each of the two axes consists of

all vector direction and magnitude combinations. In the joint

histogram, the normalized bin count corresponds to p(i, j).
Shape Characteristics. This property indicates how stereo-

scopic the shape of streamline s is reflected under viewpoint

v. Since the number of points along each streamline could be

fairly large (e.g., in the order of hundreds or thousands of

points), we opt to approximate a streamline using its skeleton

for fast shape characteristics analysis. The “skeleton” of a

streamline is obtained using a uniform subsampling scheme

along the integration points of the streamline to reduce the

number of points to a smaller scale (e.g., in the order of

tens of points). Let us denote the skeleton of streamline s

as s̃ = {p̃1, p̃2, . . . , p̃k}, the viewing vector as −→v , and the

angle between −→v and
−−−→
p̃i p̃i+1 as θ . We define the shape

characteristics of
−−−→
p̃i p̃i+1 as

αp̃i p̃i+1;v = αmin +(1.0−αmin)
(

1.0−
|π/4−θ ′|

π/4

)

, (2)

Fig. 2. The order of computing the probabilities for the two channels.

Fig. 3. The best viewpoint selection result based on p(v) that considers
mutual information only (left), shape characteristics only (middle), and both
mutual information and shape characteristics (right).

where αmin is the minimum value for the shape characteristics

(we set αmin = 0.1 in this paper) and

θ ′ =

{

π −θ , θ > π/2

θ , θ ≤ π/2
(3)

The intuition is that αp̃i p̃i+1;v gets its maximum (minimum)

value of 1.0 (αmin) when −→v and
−−−→
p̃i p̃i+1 form a 45◦ or 135◦ (0◦,

90◦, or 180◦) angle. The shape characteristics of streamline

skeleton s̃ is defined as

αs̃;v =
∑k−1

i=1 αp̃i p̃i+1;v‖p̃i p̃i+1‖

∑k−1
i=1 ‖p̃i p̃i+1‖

. (4)

Conditional Probability. With mutual information and

shape characteristics defined for streamline s under viewpoint

v, we define conditional probability p(s|v) as

p(s|v) =
αs̃;vI(s;sv)

∑s∈S αs̃;vI(s;sv)
. (5)

With p(s|v) defined, besides simply assuming p(v) = 1/m, we

can also obtain p(v) from the normalization of the summation

of all streamlines’ conditional probabilities under v over all

viewpoints V . That is, p(v) = p(S|v)/p(S|V ), where p(S|v) =

∑s∈S p(s|v) and p(S|V ) = ∑v∈V p(S|v). We use this nonuniform

specification of p(v) in our work. Figure 2 summarizes the

order of computing the probabilities for the two channels.

Figure 3 shows a comparison of selecting the best viewpoint

based on p(v) with considering mutual information only, shape

characteristics only, and both. When only mutual information

is considered, the main axis of the tornado is almost parallel

to the viewing vector, making −→v and
−−−→
p̃i p̃i+1 form an almost

0◦ or 180◦ angle. p(s|v) achieves its maximum for almost

every streamline, letting p(v) get its highest value. When only

shape characteristics is considered, −→v and
−−−→
p̃i p̃i+1 now form

an almost 45◦ or 135◦ angle. The best viewpoint selected is

still not desirable. When considering both mutual information

and shape characteristics into p(v) evaluation, we can select

the more desirable best viewpoint as the overall structure of

the tornado is best perceived.
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C. Best Streamlines Selection

For streamline selection, we start from a pool of randomly

or uniformly traced streamlines and select the best streamlines

for display. For streamline tracing, we use the Runge-Kutta

method to integrate streamlines as long as possible until

they leave the domain or reach critical points. The “best”

streamlines are those that best capture flow features by passing

through the vicinity of critical points or interesting regions.

In this section, we propose two methods to evaluate each

individual streamline and then introduce our selection process.

Our first method uses the probability distribution p(S).
Since p(s|v) indicates how interesting streamline s is from

viewpoint v, p(s) gives us the summation of importance of s

from all viewpoints V . If the distribution p(V ) is not uniform,

p(s) can be considered as a weighted summation, in which a

more interesting viewpoint has a higher weight.

Our second method uses the streamline information (SI). In

the information channel S →V , we define SI as

I(s;V ) = ∑
v∈V

p(v|s) log
p(v|s)

p(v)
, (6)

which represents the degree of dependence between streamline

s and the set of viewpoints V . Intuitively, SI indicates the

quality of s with respect to V . Note that I(s;V ) is the contri-

bution of streamline s to I(S;V ), which expresses the degree

of correlation between the set of streamlines S and the set

of viewpoints V . Low values of SI correspond to streamlines

seen by a large number of viewpoints in a balanced way.

The term “balance” indicates that the conditional probability

distribution p(V |s) is similar to p(V ). This similarity can be

expressed by the Kullback-Leibler divergence [12] between

p(V |s) and p(V ), which equals zero when p(V |s) = p(V ).
Conversely, a high value of I(s;V ) means a high degree of

dependence between streamline s and the set of viewpoints V .

Therefore, streamline s that shows more information over the

set of viewpoints V have a lower value of SI. The advantage

of this streamline information over the streamline entropy, i.e.,

H(V |s) =−∑v∈V p(v|s) log p(v|s), lies in its robustness to deal

with any type of discretization or resolution of the viewpoints

V . This property has been shown by Viola et al. [29] in the

context of volume visualization.

After streamline evaluation, we sort all the streamlines S

into a priority queue. If p(s) is used, the streamlines are sorted

in the decreasing order of p(s), where a streamline with a

higher value of p(s) is preferred. If SI is used, the streamlines

are sorted in the increasing order of SI, since a streamline

with a lower value of SI is better.

We can now select the best streamlines according to the

sorted order, but the similarities between streamlines are still

not taken into account. It is very likely that two or more

streamlines which are close to each other in the space and

have a similar shape would be selected together for display.

However, these streamlines are not only redundant but also

likely to cause occlusion and clutter. Therefore, we check

the pairwise dissimilarity between two streamlines to avoid

selecting streamlines that are very similar to each other. To

measure streamline dissimilarity, we use the mean of closest

point distances as suggested by Moberts et al. [20] in DTI

fiber clustering. Our selection process starts from selecting the

first streamline in the priority queue. Then, we check the next

streamline and select it if its distance to the first one is larger

than a given distance threshold ds. At each step, we consider

one new streamline, and compute the distance between it

and every streamline previously selected. This streamline is

selected if and only if the distances are all larger than ds. The

selection process stops when a given number of streamlines is

selected or all streamlines in the pool are considered.

D. Best Viewpoints Selection

Similar to SI, in the information channel V → S, we define

the viewpoint information (VI) as

I(v;S) = ∑
s∈S

p(s|v) log
p(s|v)

p(s)
, (7)

which represents the degree of dependence between viewpoint

v and the set of streamlines S. Note that in our scenario, the set

of streamlines now is actually the set of selected streamlines,

not the original pool of streamlines. This corresponds to (1)

removing all rows in the transition probability matrix p(V |S)
in the channel S → V and the input probability distribution

p(S) as shows in Figure 1 (b) for all streamlines that are

not selected; and (2) renormalizing all remaining p(s) in p(S)
and recomputing all p(v) in the output probability distribution

p(V ). For simplicity, we still use the notation S in this section

when referring to the selected streamlines.

Similar to streamline selection, the best viewpoints can be

defined either by p(v) or VI. If we use p(v) to select the best

viewpoints, we mainly consider the amount of information

about the set of streamlines S revealed by viewpoint v. As a

result, the best viewpoints are those that show more informa-

tion of S than others. If we use VI to select best viewpoints,

VI indicates the quality of viewpoint v with respect to the set

of streamlines S. Low (high) values of VI correspond to more

independent (coupled) viewpoints. Thus, viewpoints with low

values of VI are considered as better ones.

Till now, our algorithm could select very similar neigh-

boring viewpoints as the best viewpoints which is clearly

not desirable. To avoid this, we make use of the distribu-

tion p(S|v) computed in the last step. Considering p(S|v)
as a vector associated with each viewpoint, i.e., p(S|v) =<
p(s1|v), p(s2|v), . . . , p(sn|v) >, the difference between two

viewpoints can be expressed as the Euclidean distance between

their corresponding vectors. Thus, a viewpoint is not selected

if its distance to any of the selected viewpoints falls below a

given threshold dv.

E. Streamline Clustering

We propose a streamline clustering algorithm using the

information channels built between S and V . The first stage of

our algorithm is to find the representative streamlines. Unlike

the “best” streamlines (Section III-C) which are evaluated

individually, the “representative” streamlines are defined as a

small set of streamlines in which the streamlines as an entirety

best characterize the flow field. This is formed by selecting the

streamlines such that their merging minimizes the distance to
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TABLE I
THE TEN FLOW DATA SETS AND THEIR PARAMETER VALUES. ALL USE 320 INITIAL VIEWPOINTS. FOR ds , WE USE THE AVERAGE OF ALL PAIRWISE MEAN

OF CLOSEST POINT DISTANCES BETWEEN STREAMLINES DIVIDED BY A CONSTANT FACTOR. REFER TO SECTION IV-A FOR DETAIL.

initial selected rep. avg. rep. line distance view distance
data set dimension # lines # lines # lines # pts. #views threshold ds threshold dv

five critical points 51×51×51 800 140 5 112.9 3 4.1 0.2
tornado 64×64×64 500 60 7 295.2 3 5.8 0.1
two swirls 64×64×64 500 100 6 157.3 3 3.8 0.18
supernova 100×100×100 500 140 5 184.5 4 4.5 0.15
car flow 368×234×60 600 140 5 185.5 3 5.9 1.0
crayfish 322×162×119 800 100 7 208.7 3 18.7 0.15
solar plume 126×126×512 600 140 4 100.2 4 15.0 0.1
computer room 417×345×60 800 200 6 172.9 4 17.3 0.15
hurricane 500×500×100 600 140 5 341.1 3 31.6 0.15
ABC flow 1024×1024×1024 800 140 7 179.8 4 68.3 0.15

the target distribution p(V ). That is, our selection algorithm

should select n′ streamlines (n′ << n) so that their merging ŝ

minimizes I(ŝ;V ). Since finding an optimal solution to this

problem is NP-complete [22], we adopt a greedy strategy

by selecting successive streamlines to minimize I(ŝ;V ). At

each merging step, we aim to maximize the Jensen-Shannon

divergence between the set of previously merged streamlines

and the new streamline to be selected.

Our solution proceeds as follows. First, we select the best

streamline s1 with distribution p(V |s1) corresponding to the

minimum I(s;V ). Next, we select s2 such that the mixed dis-

tribution
p(s1)
p(ŝ) p(V |s1)+ p(s2)

p(ŝ) p(V |s2) minimizes I(ŝ;V ), where

ŝ represents the merging of s1 and s2 and p(ŝ) = p(s1)+ p(s2).
At each step, a new mixed distribution

p(s1)

p(ŝ)
p(V |s1)+

p(s2)

p(ŝ)
p(V |s2)+ . . .+

p(si)

p(ŝ)
p(V |si), (8)

where p(ŝ) = p(s1)+ p(s2)+ . . .+ p(si), is produced until the

streamline information ratio (SIR), denoted as I(ŝ;V )/I(S;V ),
is lower than a given threshold or we have selected n′

streamlines. The SIR can be interpreted as a measure of the

representativeness of the selected streamlines.

The second stage of our algorithm is to cluster other

streamlines to the representatives we have identified in the

first stage. Following the data processing inequality [5], we

know that any clustering of streamlines reduces the mutual

information I(S;V ) between the set of streamlines S and the

set of viewpoints V . Therefore, a good clustering is the one

that minimizes this mutual information loss. Assuming that

two streamlines s1 and s2 are merged into one cluster ŝ, the

reduction of mutual information can be described by

δ I(s1;s2) = I(S;V )− I(Ŝ;V )

= p(s1)I(s1;V )+ p(s2)I(s2;V )

−p(ŝ)I(ŝ;V ), (9)

where Ŝ is the resulting streamline set and p(ŝ) = p(s1) +
p(s2). Note that δ I(s1;s2) is small if the two streamlines

have very similar distributions, i.e., p(V |s1) ≈ p(V |s2), and it

reaches zero if the two streamlines share the same distribution,

i.e., p(V |s1) = p(V |s2). At each step, we pick a streamline s

and calculate δ I(s;s′) for each of the streamlines s′ in the

representative set. Then, s is merged into the cluster in which

δ I(s;s′) between s and its representative s′ is minimal.

We use the elbow criterion to determine the proper number

of clusters. That is, we should choose a number of clusters

so that adding another cluster does not greatly increase the

percentage of variance explained (i.e., the ratio of the between-

group variance to the total variance). Specifically, if we plot

the percentage of variance explained by the clusters against

the number of clusters, the first few clusters will add much

information (explain a lot of variance), but at some point the

marginal gain will drop, giving an angle in the graph (the

elbow). In practice, we run from two to ten clusters from which

we choose the appropriate number of clusters.

F. Viewpoint Partitioning

Similar to streamline clustering, we can perform viewpoint

partitioning in two stages. The first stage is the selection of

representative viewpoints and the second stage is clustering

other viewpoints to the representatives. The most representa-

tive viewpoints are a small number of viewpoints (m′ << m)
that provide the best representation of the selected streamlines.

Leveraging the VI measure (Equation 7), our solution for

viewpoint selection is the same as the greedy solution we

propose for identifying representative streamlines (Section

III-E) with the only difference being the swap of notations

for streamline and viewpoint. The viewpoint selection process

stops when the viewpoint information ratio (VIR), denoted as

I(v̂;S)/I(V ;S), is lower than a given threshold or we have

selected m′ viewpoints. Similar to the SIR, the VIR can

be interpreted as a measure of the representativeness of the

selected viewpoints.

For viewpoint partitioning, we measure the difference be-

tween two viewpoints by the reduction of mutual information,

where the reduction δ I(v1;v2) is defined in the same way as

δ I(s1;s2) (Equation 9). Then, we apply the same procedure

of streamline clustering to partitioning viewpoints in a similar

manner: at each step, a viewpoint v is merged into the par-

tition whose representative v′ minimizes the information loss

measured by δ I(v;v′). Similarly, we use the elbow criterion

to identify the proper number of partitions for all viewpoints.

G. Camera Path

Given a set of best (Section III-D) or representative (Section

III-F) viewpoints, we construct a smooth camera path that
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TABLE II
THE TIMING RESULT FOR DIFFERENT DATA SETS. THE TIME FOR BOTH

BEST STREAMLINES SELECTION BASED ON P(S) AND THAT BASED ON

I(S;V ) INCLUDE THE COST FOR STREAMLINE EVALUATION. THE TIME FOR

CLUSTERING INCLUDES REPRESENTATIVE STREAMLINE SELECTION,
WHICH DOMINATES THE CLUSTERING TIME.

task tornado crayfish hurricane

best selection P(S) 137min 185min 324min
CPU best selection I(S;V ) 165min 248min 368min

clustering 4.0sec 6.4sec 2.5sec

best selection P(S) 6.2sec 9.3sec 7.0sec
GPU best selection I(S;V ) 6.2sec 9.3sec 7.0sec

clustering 0.01sec 0.01sec 0.008sec
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Fig. 4. Left: the SIR plot for the computer room data set. Right: the VIR
plot for the five critical points data set.

goes through all selected viewpoints for automatic flow field

exploration. Our algorithm creates a graph by treating all

sample viewpoints as nodes and their neighboring relationships

as edges. The weight of an edge is defined as the Jensen-

Shannon divergence between the two viewpoints. With this

graph, we can define the camera path by finding the shortest

path among the set of selected viewpoints using Dijkstra’s

algorithm. Specifically, we use the best (or the most represen-

tative) viewpoint as the starting point, and find the nearest

viewpoint (with the minimum Jensen-Shannon divergence)

from selected viewpoints as the next target viewpoint. The

path between these two viewpoints is derived from the shortest

path between their corresponding nodes in the graph. When

the first target viewpoint is achieved, we select a new target

viewpoint among the rest of selected viewpoints and proceed

in the same way until all viewpoints have been considered.

IV. RESULTS

A. Timing Performance and Parameter Choices

We experimented our approach with ten flow data sets of

different sizes and characteristics. For all these data sets, the

initial pool of streamlines was generated by dense placement

of seeds randomly. In Table I, we list the parameter values

used for each data set. We used 320 viewpoints for all data

sets, and determined the number of initial streamlines based

on the SIR. Normally, a larger number of initial streamlines

should be generated for a data set with a larger spatial

dimension or a more complicated structure. For the streamline

distance threshold ds, we used the average of all pairwise

mean of closest point distances between streamlines divided

by a constant factor. This constant factor should not be too

small, in case that the distance becomes the dominant factor

in streamline selection. It should not be too large, so that it

remains effective in reducing the occlusion. Our experiment

shows that data sets containing more features or patterns need

a smaller constant factor, so that the distance threshold is

larger. Unlike the streamline distance threshold, the viewpoint

distance threshold dv was chosen as a constant, since the

average distance between viewpoints does not vary that much

for different data sets. Please refer to Table I for the actual

values we used for ds and dv for each data set.

Table II shows the timing results on three benchmark data

sets for both CPU and GPU versions of our implementation,

tested on a PC with an Intel Core 2 Q6600 quad-core CPU

running at 2.4GHz and an nVidia GeForce GTX 465 graphics

card. Although the ideal speedup is the same for these three

tasks, the experiment shows that streamline selection based

on both P(s) and I(S;V ) gains a more significant speedup

than streamline clustering does. This might be the result of

the following two facts. First, streamline clustering, which

is sequential in nature, requires more synchronizations than

streamline selection does. Second, most tasks of streamline

selection are free from control flow instructions, i.e., contain-

ing just one branch, which benefits more from the CUDA

hardware structure, since every streaming multiprocessor runs

threads in lockstep.

Figure 4 shows the SIR and VIR with respect to the

number of representative streamlines and viewpoints selected,

respectively. From the SIR plot, we see that when the number

of representative streamlines selected is small (less than 100),

a larger pool of initial streamlines can reduce the SIR more

effectively. This is because as we have more streamlines to

choose from, we are more likely to select a better set of

representative streamlines to represent the flow field. As the

number of representative streamlines selected continues to

increase, the reduction of SIR is not significant anymore. We

conclude that using an initial pool of 500 to 1000 streamlines

is sufficient for the computer room data set, and selecting about

120 to 140 streamlines suffices as the SIR is below 0.0002.

Such an experiment provides us with a quantitative means

to determine the appropriate numbers of initial and selected

streamlines. From the VIR plot, we see that the VIR is already

less than 0.01 for the five critical points data set when 10

representative viewpoints are selected. It is clear that using

80 sample viewpoints is actually sufficient in terms of VIR

reduction since the differences among the three curves are not

substantial. In practice, we chose 320 viewpoints instead for

smoother view sphere rendering and camera path planning.

B. Streamlines Selection Results

Figure 5 shows the comparison of streamline selection

results for four different methods: best selections based on

p(s) and I(s;V ), representative (REP) selection, and random

selection. For the hurricane data set, both selections based

on p(s) and I(s;V ) yield similar results. The two circling

patterns of the velocity field are clearly visible. REP selection

produces less accentuated circling patterns due to the need

to cover the domain more evenly in order to best represent

the entire field. Random selection leads to a similar result as

REP selection, but the circling pattern in the right side of

the image is much less obvious. For the car flow data set,

both selections based on p(s) and I(s;V ) are similar and are
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initial p(s) I(s;V ) REP random

Fig. 5. Streamline selection. First row: the hurricane data set, 600 streamlines, 60 selected. Second row: the car flow data set, 600 streamlines, 40 selected.
Third row: the computer room data set, 800 streamlines, 140 selected. Fourth row: the solar plume data set, 600 streamlines, 100 selected. Streamline selection
based on I(s;V ) achieves the most consistent results among all four cases compared.

clear winners. REP and random selections produce undesirable

results because interesting flow features are fairly localized in

the domain. For the computer room data set, all four selections

produce reasonable results. The two selections based on p(s)
and I(s;V ) reveal more swirling flow patterns. For the solar

plume data set, all but the selection based on p(s) produce

acceptable results. The selection based on p(s) misses the

portion of the field that is less turbulent. Overall, we conclude

that streamline selection based on I(s;V ) achieves the most

consistent results.

C. Viewpoint Selection Results

In Figure 6, we show the ranking of viewpoints based on

p(v) and I(v;S) for the tornado data set, together with the

corresponding best and worst viewpoints. As expected, the

view sphere images indicate that neighboring viewpoints have

similar rankings and the viewpoint ranking varies gradually

over the view sphere. Although the two methods based on

p(v) and I(v;S) give less similar results, the best and worst

viewpoints convey the same meaning. That is, the best view-

point corresponds to a view which clearly reveals the swirling

pattern, while the worst viewpoint corresponds to a view where

the swirling pattern is least clear. Our result is consistent with

the viewpoint evaluation work reported in [13].

Figure 7 shows the comparison among best viewpoint selec-

tions based on p(v) and I(v;S), and REP viewpoint selection.

For each method, we marked where the first three choices

are on the view sphere. Note that from the second choice

onward, the selection based on p(v) and I(v;S) depends on the

threshold dv used. The three selection methods find the same

viewpoint as their first choice. In general, the first choices

based on I(v;S) selection and REP selection are always the

same since both select the one with the minimum I(v;S)
value first. But the first choice based on p(v) selection may

not always be the same as the other two methods. The three

methods pick different viewpoints for their second and third

choices. Nevertheless, we observe that all viewpoints selected

are good as they reveal some new information about different

critical regions that are not immediately visible from the

previous selected viewpoints.

D. Streamline Clustering and Viewpoint Partitioning

Our solution for streamline clustering is solely based on

the reduction of mutual information (Equation 9). The results

with the two swirls data set are shown in Figure 8. The blue,

yellow, and pink clusters are quite distinct which capture the

internal swirls, external swirls, and outliers, respectively. The

red and green clusters are in between the blue and yellow ones.
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best view p(v) worst view p(v) best view I(v;S) worst view I(v;S)

Fig. 6. Viewpoint ranking of the tornado data set. In each of the view sphere images, red to blue is for the best viewpoint to the worst viewpoint. Streamline
rendering from the best viewpoint and the worst viewpoint is also shown. All cases use the best streamlines selected.

(a) best viewpoints p(v) (b) first view in (a) (c) second view in (a) (d) third view in (a) (e) best viewpoints I(v;S)

(f) second view in (e) (g) third view in (e) (h) rep. viewpoints (i) second view in (h) (j) third view in (h)

Fig. 7. Viewpoint selection of the five critical points data set. (a)-(d): best viewpoint selection based on p(v). (e)-(g): best viewpoint selection based on
I(v;S), the first view in (e) is the same as (b). (h)-(j): representative viewpoint selection, the first view in (h) is the same as (b). In (a), (e), and (h), the first,
second, and third best viewpoints are highlighted in read, green, and blue, respectively.

Fig. 8. Streamline clustering of the two swirls data set. Five clusters are produced from 500 streamlines. The appropriate number of clusters is suggested
by the elbow criterion.

We point out that even though our clustering results may not

be as good as other clustering methods [20] based on spatial

neighborhood and geometrical similarity, our method is very

fast and produces quite meaningful streamline clusters. Figure

9 shows the result of viewpoint partitioning. Three partitions

are denoted in different colors in the view sphere partition

images. We show a selected viewpoint from each partition to

highlight the distinction among the three partitions.

E. Camera Path for Visual Exploration

Figure 10 shows the camera paths we derived using the

shortest path strategy. The shortest path is not based on

geodesic distances, but according to the Jensen-Shannon di-

vergences. Representative viewpoints were used to plan the

camera path. Each path visits the representative viewpoints

one by one. The resulting camera path is smooth because the

shortest path between any two target viewpoints ensures that

the change along the path is minimized. In other words, the

viewpoints selected along the path are the most stable.

V. COMPARISON AND EVALUATION

A. Comparison with Other Methods

We compared our algorithm with other information theory

based streamline placement and streamline selection algo-

rithms. For streamline placement, we chose to implement

a prototype of the entropy-guided streamline placement al-

gorithm proposed by Xu et al. [33]. We implemented their

template-based seeding technique based on the derived entropy
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Fig. 9. Viewpoint partitioning of the five critical points data set. We denote the three partitions in red, blue, and yellow, respectively. Streamline rendering
corresponding to the viewpoint centering at each of the view sphere partition images is also shown. In this example, 1280 sample viewpoints are used for
smooth view sphere rendering.

field in conjunction with redundant streamline pruning. We

used a moving window of 93 to compute the entropy centered

at each voxel. Vector directions are quantized into 50 bins

for histogram computation. If a voxel has a high entropy

value, we placed the seeds at the voxel and also its eight

corners of the 93 window (a total of nine seeds are placed).

For streamline selection, we selected the view-dependent

streamline visualization algorithm presented by Marchesin et

al. [17]. We implemented their streamline evaluation based

on angular and linear entropies and an approach similar to

their occupancy buffer to account for streamline occlusion.

We weighted angular and linear components equally by setting

α = β = 0.5. For the initial streamlines, we used the same pool

of streamlines used in our method. For streamline pruning

in [33] and occlusion consideration in [17], we used the

mean of the closest point distances between two streamlines.

The threshold was set as 5.0. This parameter determines

the minimum distance between any two streamlines in the

streamline pool that can be selected for visualization.

Figure 11 shows the comparison of the results on six data

sets. Our judgement is that our approach yields results that

are as good as the ones produced by the other two methods

for the first five data sets. In Sections V-B and V-C, we show

objective comparison and user study to justify this. For the

computer room data set, our results perform better. In [33],

in order to avoid large voids, the seeding method needs to

consider the conditional entropy between the original field and

the field reconstructed from currently displayed streamlines

to decide the additional seeding locations. In [17], using the

linear and angular entropies actually favors streamlines that

have a constant angle change and a constant segment length

along the points of the streamlines. This criterion, however,

actually prefers well-behaved streamlines and misses those

interesting streamlines that vary greatly in length and angle

along their points. Our information channel approach works

well, and is conceptually simple and easy to understand. It

does not involve several steps as required in other methods

for additional touch-up treatment (e.g., importance-based seed

sampling in [33] and view-dependent streamline addition in

[17]). Moreover, our approach is powerful as the same solution

for streamline selection applies to viewpoint selection in the

inverted information channel. This feature is not available in

other methods.

Fig. 10. Camera paths for the five critical points data set (left), the solar
plume data set (middle), and the supernova data set (right).

TABLE III
ERROR COMPARISON OF OUR APPROACH BASED ON p(s), I(s;V ), AND

REP WITH XU ET AL. AND MARCHESIN ET AL. FOR THE SIX DATA SETS

AS SHOWN IN FIGURE 11. THE SMALLEST FINAL AVERAGE

RECONSTRUCTED VECTOR ERRORS ARE HIGHLIGHT IN BOLD.

p(s) I(s;V ) REP Xu Marchesin

initial average boundary vector error

car flow 0.01098 0.01075 0.00245 0.00467 0.01955
solar plume 0.01859 0.01397 0.01368 0.01906 0.01698
two swirls 0.00790 0.00815 0.00905 0.00933 0.00764
crayfish 0.00715 0.01068 0.00829 0.00559 0.00767
supernova 0.00399 0.00454 0.00331 0.01203 0.00949
comp rm 0.01784 0.01688 0.01471 0.02551 0.01117

final average reconstructed vector error

car flow 0.01335 0.01344 0.01696 0.05301 0.02107
solar plume 0.13851 0.11917 0.11967 0.17513 0.13027
two swirls 0.17485 0.17583 0.16208 0.17782 0.18441
crayfish 0.14950 0.14786 0.15204 0.17477 0.16078
supernova 0.10318 0.09300 0.07752 0.18122 0.16829
comp rm 0.28903 0.29236 0.30306 0.30334 0.32645

B. Objective Comparison

To objectively evaluate the effectiveness of our methods

with other streamline placement and selection algorithms, we

reconstructed a vector field from the streamlines produced

from each method and compared it with the original vector

field. The rationale is that if the visualization successfully

reveals most of the information in the field, then the field

should be reconstructed from the visualization with minimal

errors [4], [9], [14], [33]. The 3D reconstructed vector field

can be obtained by linear interpolation via the Delaunay

triangulation [4] or through the distance field [14], or using

Gaussian smoothing and streamline diffusion [33]. We used

the gradient vector flow (GVF) proposed by Xu and Prince

[32] to reconstruct the vector field from the streamlines. As

pointed out by Xu et al. [33], the GVF consisting of two

terms—the smoothing term and the boundary term—allows
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(a) p(s) (b) I(s;V ) (c) REP (d) Xu et al. (e) Marchesin et al.

Fig. 11. Comparison of our approach based on p(s), I(s;V ), and REP with Xu et al. and Marchesin et al. Top to bottom are the car flow, solar plume, two
swirls, crayfish, supernova, and computer room data sets, respectively. All five methods show the same number of streamlines: 40, 100, 60, 70, 100, and 100
for the six data sets, respectively.

us to properly cover the entire field in the sense that (1) the

difference between the adjacent vectors in the reconstructed

vector field is minimized (the smoothing term); and (2) the

difference between the original vectors on the streamlines and

the approximate vectors is minimized (the boundary term).

We set µ = 0.1 for the smoothing term in the equation. The

minimization can be achieved iteratively using generalized

diffusion equations. More details about the solution and the

convergence of the diffusion can be found in [32], [33].

We reconstructed the initial vector at a voxel by considering

a sphere with a radius of 0.5 (where 1.0 is the distance

between two neighboring voxel along either x, y, or z axis)

and interpolated known vectors at points along the streamlines

within the sphere. The interpolation was done using weighted

average with the weight derived using a Gaussian function:

the larger the distance between the voxel and the point along

a streamline, the smaller the weight. From initial vectors

reconstructed, we used the generalized diffusion equations to

update the vectors in an iterative manner to reconstruct the

vector field (we run 100 iterations in our test). After that,

we calculated the angle difference between the original and

reconstructed vectors for all voxels. Then we computed the
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error between the original and reconstructed vector fields as

the average angle difference for all voxel pairs. We normalized

the error to [0, 1] by dividing the average angle difference by

π . In Table III, we report the initial average boundary vector

errors and final average reconstructed vector errors on the

six data sets experimented. We see that although the errors

are close, for all six data sets, the smallest error is always

generated by one of our approaches (p(s), I(s;V ), or REP).

C. User Study

We conducted a user study to evaluate the effectiveness of

our approach based on p(s), I(s;V ), and representative (REP).

We also implemented Xu et al. [33] and Marchesin et al. [17]

for comparison. We did not use the conditional entropy to

introduce new streamlines as in [33], because this technique

could also be applied to other streamline selection methods to

fill in void regions. All methods are view-independent, except

for [17] where we selected the streamlines with respect to a

good viewpoint and kept the set of streamlines selected for

view-independent observation. The major goal of this study

is to find out how effective our methods are compared to the

existing ones and whether our methods work in the way they

are designed to be.

The five methods were evaluated anonymously by a set

of questions without timing followed by a feature identifi-

cation task with timing. The users were 20 unpaid graduate

students, including 12 students majoring in computer science

and eight majoring in mechanical engineering, physics, and

mathematics. All students majoring in computer science (CS)

have knowledge in flow visualization and the students from

other disciplines (non-CS) have flow field backgrounds.

Rating Task Design and Procedure. We conducted a

within-subjects experiment for this task using five data sets:

the car flow, crayfish, solar plume, supernova, and two swirls.

Two more data sets were used for initial practice: the computer

room and tornado. The users were asked to rate the five

methods for each data set in the following three aspects:

• ease to locate flow features and identify their patterns;

• ease to follow flow directions; and

• overall effectiveness to help understand the flow field.

For each method, each of these three aspects was rated by

an integer between 1 and 5 with 1 being the worst and 5 the

best. We collected the evaluation scores and the background

information of the users (rank and major). This part of the

evaluation was not timed and the users had enough time to

complete the work.

This user study was conducted in a lab using four PCs

with the same configuration. Each PC has a monitor with the

resolution of 1920×1080 and the visualization result occupied

an 800 × 800 viewport. The users could sit in any fashion

they found comfortable. They started with a practice session

to become familiar with our visualization system and the

rating criteria. They could ask questions about the interface,

interaction, and rating criteria, but not which visualization

result is better. Evaluation activities began when the users

felt ready and were performed one data set at a time. The

users were not allowed to go back to a previous data set once

they move forward. For each data set, the five methods were

displayed anonymously in a random order, and the user could

switch among the visualization results of all five methods for

cross comparison. Specifically, we used a 5× 5 Latin square

for counterbalancing to rule out the learning effect. The order

of methods for each of the five data sets was decided by a

row of the Latin square. For the five methods to be evaluated,

the users could rotate and zoom, but could not change the

number of streamlines displayed. As a reference, the user

could also display streamlines randomly selected from the

streamline pool and rotate, zoom, and change the number of

selected streamlines. This helps them answer questions such

as if the pre-determined streamline density for each of the five

methods is appropriate or not. Random selection also avoids

any bias in the users’ subsequent rating of the five methods.

Two sets of open questions were asked for the crayfish and

solar plume data sets, which required the users to elaborate

why the most and least helpful methods were selected and

to comment on the limitation of each method. For each user,

it took about 20 minutes for introduction, 40 minutes for the

rating tasks, and 10 minutes for the timing and accuracy tasks.

Effectiveness Evaluation. Using Kolmogorov-Smirnov

test, we found out that most of our data do not pass the normal-

ity test. Therefore, instead of using ANOVA and Student’s t-

test, we mainly used Kruskal-Wallis non-parametric test (KW-

test) and Mann-Whitney U-test for effectiveness evaluation.

We used significant level α = 0.05 in all tests and investigated

the following four important issues.

First, we study the effectiveness of locating flow features.

Since Figure 12 (a) shows that the average scores for our REP

and Xu et al. are lower than the others, there is a significant

difference for the five methods (H(4) = 11.35, p = 0.023).
Further analysis shows that excluding Xu et al. yields an

insignificant result, and pairwise U-tests suggest significant

difference between REP and Xu et al. and other methods.

Consequently, p(s), I(s;V ), and Marchesin et al. are compara-

ble to each other (H(2) = 1.40, p = 0.50) and better than our

REP and Xu et al. in terms of locating features. Additionally,

both the CS (H(4) = 4.39, p = 0.36) and non-CS (H(4) =
8.44, p = 0.077) groups show no difference among the five

methods. For the non-CS group, the p-value is much higher

(H(3) = 2.22, p = 0.53) for the four methods excluding Xu et

al. As mentioned earlier, we only implemented the entropy-

based seeding part of Xu et al. Since a seed placed around

the critical regions does not guarantee that the streamline will

capture the features, this method might not show a clear flow

pattern. Our REP is designed to focus on the general flow

patterns, which makes it less effective to locate the features.

However, our p(s), I(s;V ), and Marchesin et al. are all based

on streamline importance evaluation (albeit different criteria),

which might explain why they were viewed similarly.

Second, we investigate the effectiveness of following flow

directions. A significant effect is found for the five methods

(H(4) = 19.71, p = 0.0006), and there is no significant differ-

ence for the remaining four methods if Xu et al. is excluded

(H(3) = 7.12, p = 0.068). Moreover, the CS group (H(3) =
8.67, p = 0.034) exhibits a significant difference while the non-

CS group (H(3) = 2.59, p = 0.459) does not. Our I(s;V ) has
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Fig. 12. (a) Mean values and standard errors of user rating for “ease to locate flow features”, “ease to follow directions”, and “overall effectiveness”. (b)
User rating for streamline density. (c) Mean values and standard errors of the completion time (in seconds) and accuracy for identifying five critical points.

the highest average score of 4.02, and our REP and Marchesin

et al. are very close, while that of Xu et al. is lower. Further-

more, since the p-values of U-test between Xu et al. against

other methods are all small and the other four methods have

no significant difference (H(3) = 7.12, p = 0.068), our p(s),
I(s;V ), REP, and Marchesin et al. do not have a significant

performance difference. In addition, a U-test was performed to

compare locating flow features and following flow directions

and the test result (z =−2.62, p = 0.009) suggests that REP is

better in following flow directions (the average score is 3.87)

than in locating features (the average score is 3.42). Since

our REP only considers the overall information revealed by

the selected streamlines without evaluating each individual

streamline, its selection result provides a good indication in

terms of general flow directions but does not guarantee that

the detailed features will be captured.

Third, as for overall effectiveness, our analysis indicates that

there is a significant difference for the five methods (H(4) =
19.65, p = 0.0006). If Xu et al. is excluded, no significant

difference is found (H(3) = 5.25, p = 0.155). Thus, our p(s),
I(s;V ) and REP, and Marchesin et al. do not have a significant

performance difference. The CS group and non-CS group do

not exhibit in-group difference.

Fourth, for density analysis, the five methods do exhibit

a significant difference (H(4) = 25.32, p = 0.00004). We

divided the five methods into two groups, and found that

there is no significant difference between our p(s) and I(s;V )
(H(1) = 0.04, p = 0.831) and among the other three methods

(H(2) = 3.30, p = 0.192). Therefore, our p(s) and I(s;V ) do

not have a significant performance difference and are better

than our REP, Xu et al. and Marchesin et al. as indicated by

the averages shown in Figure 12 (b).

User Comments. For the crayfish data set, we asked the

users which method was the most/least helpful to “locate and

identify the features”, and also requested them to comment

on each method. Our p(s) and I(s;V ) were each selected

four times as the most helpful methods with similar reasons

and typical comments were “it provides general idea of

surrounding streamlines, while putting more streamlines in

the focus regions” and “it captures the characteristics of the

feature regions with less occlusion”. One user selected p(s) as

the least helpful method because the feature regions were too

dense, and three users selected I(s;V ) as the least helpful one

because the feature regions could be a little denser. REP was

selected by two users as the most helpful one to locate the

features, yet by seven users as the least helpful one, although

this method does not focus on the feature regions. Xu et al.

was selected five times as the most helpful method, but it

was also selected seven times as the least helpful one. Some

users stated that it mainly placed streamlines in the interesting

regions, which made the features stand out, while other users

considered the feature regions to be too cluttered. Marchesin

et al. was rated as the most and least helpful methods by five

and two users, respectively, with similar reasons as our I(s;V ).
For the solar plume data set, we asked the users to select

the most/least helpful method to “show the flow directions”,

and also requested them to comment on each method. Our

REP was selected by eleven users as the most helpful one,

mostly due to “it fills the entire volume evenly without much

occlusion”. Our I(s;V ) was also considered as the most helpful

one by six users for a similar reason. Note that these two

methods are the only two that take the spacing and overall

density into consideration. Our p(s) was rated as the least

helpful one by fifteen users, since it left a large portion empty.

Xu et al. was selected as the most helpful one by two users,

since they believed a few streamlines were enough for the non-

feature regions. On the other hand, three users considered it

as the least helpful one because some regions were too sparse.

Marchesin et al. was neither selected as the most helpful one

nor as the least helpful one.

Timing and Accuracy Task. We conducted a between-

subjects experiment for this task using the five critical points

data set. The ABC flow data set was used for initial practice.

The users were asked to locate the five critical points in

the task. Since it would be difficult to locate 3D points

using mouse, the users selected only the 2D projection of

each critical point by mouse clicking. For each critical point

selected, an image was saved with a red circle marking the

selected position. We then graded these images manually to

derive the accuracy of user selection. Each user was required

to complete the task with one method, and each method was

performed by four users. We informed the users that accuracy

is more important than timing, so that they would try their best

to identify the correct locations of critical points. Moreover,

the users could also switch to previous selection results and

make modification if needed. The timer started when the data

set was displayed, and stopped when the users clicked a button

to finish.

Figure 12 (c) shows our p(s) has the shortest average

completion time and is closely followed by that of Marchesin
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et al. Our REP has the longest average completion time with

the largest standard error, since the representatives do not

necessarily capture the features. In terms of accuracy, our

p(s) is the highest (100% correct), while the other methods

are close. In terms of the type of critical points, seven users

missed one saddle, and one user missed one saddle and one

spiral. This is probably because streamlines passing a saddle

do not have high importance values compared to those passing

spirals. We also observed that most users took a long time to

find saddles. Among the five methods, our p(s) appears to

be the best one in terms of capturing saddles, since all users

located the two saddles successfully. Both timing and accuracy

results indicate that our p(s) is a good performer in terms of

locating features. However, this is not verified by statistical

testing, since our sample size is too small.

Summary. Our methods are designed to focus on different

aspects: p(s) selects more streamlines that show interesting

patterns, REP mainly produces evenly-spaced results, and

I(s;V ) is somewhat in between. The major goal of this

evaluation is to determine whether our methods are effective

in the way they are designed to be. The averages of rating

scores seem to support this to some degree. Our REP has

high scores for following flow directions and low scores for

locating flow features, and p(s) has higher scores for locating

features than following flow directions. In addition, our I(s;V )
has the highest average scores for all the three aspects. The

timing and accuracy study shows a consistent result that p(s)
has highest accuracy with the least completion time, while

REP takes the longest time to complete.

Hypothesis tests based on KW-test suggest that our methods

do not have a significant performance difference as other

existing methods. KW-test also indicates that our REP is more

helpful to follow flow directions than to locate flow features,

which confirms that it focuses on a different aspect compared

to other methods. This is also an advantage, since we may

benefit not only from the fact that our framework can provide

different meaningful results, but also from the potential that

we can develop a hybrid method based on this framework.

User comments indicate that streamline density is a very

important factor. The methods that generate higher density

around the feature regions and lead to a balanced overall

density are highly appreciated. We also found that there

was a connection between the three ratings and the density

rating (Figure 12 (b)). Our I(s;V ), which has the highest

average score, also has the highest percentage of being rated

“appropriate”. The users tended to rate the density of methods

that are not satisfactory to be either “should be higher” or

“should be lower”, although some users also mentioned that

the problems for those methods might be the locations of

streamlines instead of the number of streamlines. The methods

that miss certain kind of streamlines are more likely to be rated

“should be higher”, e.g., our REP might miss the features and

Xu et al. might miss the surrounding streamlines. Finally, the

methods that place many streamlines in the feature regions are

often rated “should be lower”.

VI. CONCLUDING REMARKS

As the size and complexity of 3D flow field data continue

to grow, automatic identifying good streamlines and view-

points for effective flow visualization is a heated quest. Our

information-theoretic framework provides an elegant solution

to achieve both goals. Compared to other existing information

theory guided approaches, the uniqueness of our approach

lies in the formulation of streamline selection and viewpoint

selection into a unified and rigorous framework using an

information channel. Therefore, these two problems become

symmetric and solving one problem immediately leads to the

solution for the other. We demonstrate the effectiveness and

robustness of our complete framework by showing both quali-

tative and quantitative results on a variety of flow data sets, and

comparing, both objectively and subjectively, our approach to

other information theory based seed placement and streamline

selection algorithms. To the best of our knowledge, this is the

first work that applies dual information channels to solve flow

visualization problems. We anticipate more applications and

wider usage of information-theoretic approaches in flow field

data analysis and visualization.
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focus of attention. IEEE Transactions on Visualization and Computer

Graphics, 12(5):933–940, 2006.
[30] C. Wang and H.-W. Shen. Information theory in scientific visualization.

Entropy, 13(1):254–273, 2010.
[31] L. Wong, C. Dumont, and M. Abidi. Next best view system in a

3-D modeling task. In Proceedings of International Symposium on

Computational Intelligence in Robotics and Automation, pages 306–311,
1999.

[32] C. Xu and J. L. Prince. Gradient vector flow: A new external force
for snakes. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, pages 66–71, 1997.
[33] L. Xu, T.-Y. Lee, and H.-W. Shen. An information-theoretic framework

for flow visualization. IEEE Transactions on Visualization and Computer

Graphics, 16(6):1216–1224, 2010.
[34] X. Ye, D. Kao, and A. Pang. Strategy for seeding 3D streamlines. In

Proceedings of IEEE Visualization Conference, pages 471–478, 2005.

Jun Tao is a PhD student of computer science
at Michigan Technological University. His research
interests include flow visualization, image resizing,
and mesh editing. He received a BS degree in
software engineering from Sun Yat-sen University,
China, in 2008, and a MS degree in computer
science from Michigan Technological University in
2010. He is a student member of the IEEE.

Jun Ma is a PhD student of computer science
at Michigan Technological University. His research
interests include flow visualization, large-scale data
analysis and visualization, and mesh processing. He
received a BS degree in computer science from
Xidian University, China, in 2006, and a MS degree
in computer science from Michigan Technological
University in 2009. He is a student member of the
IEEE.

Chaoli Wang is an assistant professor of computer
science at Michigan Technological University. His
research focuses on large-scale data analysis and
visualization, high-performance computing, and user
interfaces and interaction. He received BE and ME
degrees in computer science from Fuzhou Univer-
sity, China, in 1998 and 2001, respectively, and a
PhD degree in computer and information science
from The Ohio State University in 2006. From 2007
to 2009, he was a postdoctoral researcher at the
University of California, Davis. He has served on

the program committees of the IEEE Visualization Conference and the IEEE
Pacific Visualization Symposium. He is a member of the IEEE.

Ching-Kuang Shene is a professor of computer
science at Michigan Technological University. His
research interests include geometric modeling, mesh
processing, software visualization, and computer sci-
ence education. Shene has a PhD degree in computer
science from The Johns Hopkins University in 1992,
and is a member of ACM, AMS, Eurographics,
IEEE/CS, MAA and SIAM.


