
1

A Graph-Based Interface for Visual Analytics of
3D Streamlines and Pathlines
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Abstract—Visual exploration of large and complex 3D steady and unsteady flow fields is critically important in many areas of science

and engineering. In this paper, we introduce FlowGraph, a novel compound graph representation that organizes field line clusters and

spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. It works with any seeding strategy as long

as the domain is well covered and important flow features are captured. By transforming a flow field to a graph representation, we

enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in

the transformed space. FlowGraph not only provides a visual mapping that abstracts field line clusters and spatiotemporal regions in

various levels of detail, but also serves as a navigation tool that guides flow field exploration and understanding. Through brushing and

linking in conjunction with the standard field line view, we demonstrate the effectiveness of FlowGraph with several visual exploration

and comparison tasks that cannot be well accomplished using the field line view alone. We also perform an empirical expert evaluation

to confirm the usefulness of this graph-based technique.

Index Terms—Flow visualization, streamlines, pathlines, graph representation, visual interface, visual analytics.
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1 INTRODUCTION

For more than two decades, flow visualization has been a cen-

tral topic in scientific visualization and a variety of techniques,

including glyph-based [20], texture-based [14], integration-

based [17], partition-based [22], illustration-based [2], and

surface-based [7] techniques have been presented. We focus on

integration-based flow visualization as it is most widely used in

practice. For integration-based flow visualization, particles or

seeds are placed in a vector field and advected over time. The

traces or field lines that the particles follow, i.e., streamlines

for steady flow and pathlines for unsteady flow, depict the

underlying vector data.

The ever-growing size and complexity of flow data pro-

duced from scientific simulations pose significant challenges

which are not thoroughly addressed by existing visualization

techniques. Among them, a fundamental challenge is the poor

scaling of visualization algorithms from 2D flow to 3D flow

visualization due to occlusion and clutter. When depicting

a 3D flow field using streamlines, it is often possible to

reduce spatial occlusion (e.g., through streamline seeding or

filtering) but not eliminate it. This prevents an occlusion-

free observation and comparison of the relationships among

streamlines, a critical task commonly found in many flow

field applications. This challenge was echoed in recent state

of the art reports on flow visualization [2], [17]. Furthermore,

even though streamlines can be organized into a hierarchy to
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facilitate the understanding [11], [26], [30], visual exploration

could still remain a significant challenge due to the lack of

capability to observe streamlines and their spatial relationships

in a controllable fashion. Pathlines are even more challenging

than streamlines due to the addition of the time dimension. In

this case, we need to examine and explore pathlines and their

spatiotemporal relationships.

In this extended version of our IEEE PacificVis 2013 paper

[15], we present FlowGraph, a visual representation and an

interface for effective exploration and analytics of a 3D flow

field. The design target of FlowGraph is to address the intrinsic

limitations of 3D occlusion and lack of control when using the

standalone field line view for field line exploration, compari-

son and examination. In particular, we seek deeper meanings

and richer values of leveraging such an abstract graph in flow

field analysis. In our view, this greater extent of integrating

information visualization techniques for scientific visualization

represents a significant advance in visual analytics of flow field

data. Our solution works with both streamlines for steady flow

fields and pathlines for unsteady flow fields. In conjunction

with the standard view of field lines, FlowGraph transforms

field line clusters and spatiotemporal regions into a compound

hierarchical graph representation to support effective relation-

ship overview and detailed exploration.

We specifically design a set of functions that enable hierar-

chical exploration of field line clusters, spatiotemporal regions

and their interconnection, detailed comparison among field

line clusters in terms of their paths passing through different

spatiotemporal regions, and close examination of spatiotempo-

ral regions by comparing different field line clusters passing

through them. Through brushing and linking, the user can

easily make connection between the graph view and the field

line view. Animation is used to help intuitive comprehension of

graph transition and path illustration. A graph layout algorithm
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is realized to maintain stable graph update during the level-

of-detail exploration. We also introduce animated transition

that switches between the entire compound graph and the

field line cluster or spatiotemporal region subgraph, allowing

observation of the subgraphs in a less cluttered view.

From Sections 3 to 5, we present FlowGraph definition

and construction, drawing, exploration and interrogation in

the context of streamlines. In Section 6, we extend Flow-

Graph to handle pathlines, focusing on the differences with

respect to streamlines and explaining our strategy and so-

lution. To demonstrate the effectiveness of FlowGraph, we

perform several case studies on flow field data sets of various

characteristics (Section 7) and conduct an empirical expert

evaluation (Section 8). Our results show that FlowGraph can

substantially augment our ability to understand and explore a

flow field in different levels of detail, providing the clarity and

flexibility previously unavailable. Extension of FlowGraph to

handle pathlines and feedback from a domain expert are new to

the journal version of this work, and thus significantly extends

the work in the IEEE PacificVis 2013 paper [15].

2 RELATED WORK

Flow Field Exploration Techniques. Visual exploration of 3D

flow fields remains quite a challenge for which a variety of

solutions have been presented. For instance, Heiberg et al. [12]

located, identified and visualized a set of predefined structures

in 3D flows using vector pattern matching. Schlemmer et al.

[23] presented the idea of invariant moments for analyzing

2D flow fields which allows extraction and visualization of

2D flow patterns, invariant under translation, scaling and

rotation. Rössl and Theisel [21] mapped streamlines to points

based on the preservation of the Hausdorff metric in the

streamline space. The image of the set of streamlines covering

the vector field is a set of 2-manifolds embedding in Rn

with characteristic geometry and topology. Other researchers

investigated sketch-based interface and interaction for intuitive

flow field exploration. For example, Schroeder et al. [24]

presented a sketch-based interface for illustrative 2D vector

field visualization which allows illustrators to draw directly

on top of the data. Their interface design strikes a good

balance between supporting artistic freedom and maintaining

the accuracy with respect to the underlying vector field data.

Wei et al. [27] targeted 3D flow fields and presented a solution

that allows the user to sketch a 2D curve for pattern matching

in 2D and streamline clustering in 3D. They also created

streamline templates hierarchically to support on-the-fly partial

streamline matching in a progressive manner.

Focus+Context Flow Visualization. Researchers also ex-

plored different focus+context techniques to enable greater

control in visual examination of flow fields. Fuhrmann and

Gröller [9] presented magic lenses and magic boxes to exam-

ine the region of interest with greater detail by showing denser

streamlines. This technique was extended to magic volumes

of varying focus regions such as cubes, prisms and spheres

[16]. Laramee et al. [13] leveraged feature-based techniques

[6] to extract interesting flow regions, such as stagnant flow,

reverse-longitudinal flow and regions of high pressure gradient

as the focus and achieved focus+context rendering through
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Fig. 1. Illustration of L-node signature with a 2D space

partitioning example. (a) the signature of the stream-

line is an ordered sequence (12,10,9,6,5,2,1). (b) the

signature of the streamline cluster is an unordered set

(1,2,3,5,6,9,10,11,12).

interactive thresholding. Correa et al. [4] introduced physical

and optical operators to intuitively visualize the internal 3D

flow through illustrative deformation. By cutting along flow

traces, they allowed clear observation of the internal 3D flow

through optical transformation and elastic deformation. To

explore blood flow in cerebral aneurysms, Gasteiger et al. [10]

designed an interactive 2D widget for flexible visual filtering

and visualization of the focus+context pairs (i.e., relevant

hemodynamic attributes). Their widget supports local probing

and conveys changes over time for the lens region.

Comparison with Flow Web. Closely related to our work

is the flow web presented by Xu and Shen [28] for 3D

flow field exploration. In their flow web, a node represents

a region in the domain and the strength of a link between

two nodes indicates the number of particles traveling between

the two regions. Similar graph representations have also been

employed for workload estimation for parallel and out-of-core

streamline generation [3], [19]. Since the flow web does not

explicitly store information about streamline clusters, queries

such as identifying streamline bundles become a trial-and-

error process. It works for structural flow fields where a path

going through a list of nodes may indeed indicate streamline

passing through the corresponding regions in order. However,

for turbulent flow fields, this may not be true anymore.

Rather than only considering streamline clusters or spatial

regions as nodes, our FlowGraph integrates both streamline

clusters or spatial regions as nodes and thus presents a more

complete picture. In this regard, the flow web is actually a

subgraph of FlowGraph (without L-nodes, L-L edges and L-

R edges). FlowGraph allows the user to fully explore their

relationships through interacting with the graph view and

making connection to the streamline view. Furthermore, our

FlowGraph also works well for pathlines traced from unsteady

flow fields, which was not shown in the work of flow web.

3 FLOWGRAPH DEFINITION AND CONSTRUC-
TION FOR STEADY FLOW FIELD

We define FlowGraph as a compound hierarchical graph that

consists of two kinds of nodes and three kinds of edges:

• R-nodes: An R-node represents a spatial region. We

partition the volume space hierarchically using an octree

and each non-leaf R-node consists of eight child R-

nodes. Each R-node maintains three lists recording the
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streamlines going in, staying inside or going out of the

R-node, respectively.

• L-nodes: A leaf L-node corresponds to a single stream-

line, and a non-leaf L-node represents a cluster of stream-

lines. We organize streamlines hierarchically and each

non-leaf L-node usually consists of a different number of

child L-nodes. Each L-node maintains an R-node string

which indicates the leaf-level regions which the L-node

goes through. If the L-node is a single streamline, the

string records a sequence of the leaf-level regions it

traverses in order. Otherwise, this string records a set of

the leaf-level regions traversed by all streamlines in the

L-node without ordering. We call this string the signature

of the L-node and define the size of the L-node as the

size of its signature, i.e., the number of leaf-level regions.

Figure 1 illustrates these two kinds of L-node signatures

in a 2D scenario.

• R-R edges: An R-R edge is formed between two R-nodes

at the same level of the space hierarchy. The edge weight

records the number of common streamlines shared by

these two R-nodes.

• L-L edges: An L-L edge is formed between two L-nodes

at the same level of the streamline hierarchy. The edge

weight records the number of common leaf-level regions

traversed in order by these two L-nodes.

• L-R edges: An L-R edge is formed between an L-node

and an R-node to show their interconnection. The edge

weight records the number of streamlines in the L-node

passing through the R-node.

3.1 Space Hierarchy Construction

We form the space hierarchy by partitioning the spatial domain

evenly in a top-down manner using an octree. Starting from

the entire volume as a single region, we compute the flow

entropy based on the joint distribution of vector magnitudes

and directions for all vectors within. We partition each region

further only if its entropy value per voxel is larger than a

given threshold. The smallest size of a spatial region is also

given as another termination condition. Refer to Table 1 for

the parameter values we set for each data set. This produces a

spatial partition similar to an adaptive mesh refinement (AMR)

grid [1].

3.2 Streamline Similarity

To construct the streamline hierarchy, we group spatially

neighboring and geometrically similar streamlines in a bottom-

up manner. We define the following two types of similarity

to measure the distance between streamlines and the distance

between streamline clusters, respectively:

• Streamline similarity (for leaf level L-nodes): We consider

two factors when computing the similarity between two

streamlines l1 and l2: the longest common subsequence

(LCS) of the signatures of l1 and l2 and the mean of

closest region distances (MCR) between l1 and l2. We

define the distance between two regions as the distance

of their center points. The MCR is a approximation of the

mean of the closest point distance (MCP) [18] between

two streamlines. Specifically, we treat each streamline as

a point sequence which consists of the center points of

all leaf regions in the streamline’s signature. We compute

the MCR of two streamlines as the MCP between their

center point sequences. Since the number of regions

for a streamline is much smaller than the number of

points on the streamline, our MCR incurs a much lower

computation cost than the MCP does. Furthermore, since

the MCR is always computed by using regions at the

finest level, its accuracy is also acceptable as judged

from the generated streamline clustering results. The final

similarity between two streamlines l1 and l2 is defined as

Φ(l1, l2) =
LCS(l1, l2)

max(|l1|, |l2|)
−

MCR(l1, l2)

MCRmax l

, (1)

where max(|l1|, |l2|) is the maximum signature size of l1
and l2, and MCRmax l is the maximum MCR among all

pairs of streamlines.

• Streamline cluster similarity (for non-leaf level L-nodes):

Given two streamline clusters c1 and c2, we consider

two factors for determining their similarity. The MCR

is the first factor and we apply the same method used in

calculating streamline similarity to the two representative

streamlines, one for c1 and the other for c2. To determine

the spatial overlap of c1 and c2, we define the second

factor as the shared set (SS) of the signatures of c1 and c2.

Unlike the LCS computation which considers the order

in the signature, the shared set records all common leaf-

level regions shared by the two signatures. Finally, we

define the similarity between two streamline clusters c1

and c2 as

Φ(c1,c2) =
SS(c1,c2)

max(|c1|, |c2|)
−

MCR(c1,c2)

MCRmaxc

, (2)

where max(|c1|, |c2|) is the maximum signature size of

c1 and c2, and MCRmaxc is the maximum MCR among

all pairs of streamline clusters.

As we can see, these two similarity definitions are very similar.

We replace LCS with SS in the cluster similarity computation.

This is because multiple traversal orders may exist for a cluster

containing more than one streamline. For the rest of the paper,

we do not distinguish these two similarity definitions explicitly

and simply state them as the similarity between two L-nodes.

3.3 Streamline Hierarchy Construction

With streamline similarity and streamline cluster similarity

defined, we take a bottom-up approach to group streamlines

level by level to construct the streamline hierarchy. For each

level, we pick the L-node with the longest signature size as

the first representative and put it into the representative pool.

Then, for all other L-nodes, we compute their similarity to

the representative pool. We define Φ(l, p), i.e., the similarity

of one L-node to the representative pool, as the maximum

similarity of this L-node to all representatives currently in the

pool, where l denotes the L-node and p denotes the pool. By

combining Φ(l, p) with the L-node signature size |l|, we define

the representative value of l as

υl =

(

1−
Φ(l, p)

max{Φ(l, p)}

)

+
|l|

max{|l|}
, (3)
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circle for L-node

square for R-node

(a) initial layout (b) triangle mesh of (a) (c) adjusted layout (d) triangle mesh of (c)

Fig. 2. (a) the initial layout is produced using the force-directed graph layout algorithm. The size of each node in the

graph is proportional to the number of children within. (b) the triangle mesh produced from the initial node positions.

(c) the adjusted layout after two nodes are selected and expanded for examining the details. (d) the underlying triangle

mesh is used to maintain the topology of the graph during layout adjustment.

where max{Φ(l, p)} denotes the maximum Φ(l, p), and

max{|l|} denotes the maximum L-node signature size among

all representative candidates. The next representative is the one

with the maximum υl which means this L-node is not only

dissimilar with any representatives in the pool (a low value of

Φ(l, p)) but also traverses a relatively long path (a large value

of |l|). Then we put the new representative into the pool and

repeat this process until we identify enough representatives for

this level (the number is usually 1/10 to 1/5 of the number of

L-nodes in the lower level). Now we cluster each of the rest

of L-nodes into one of the representatives which this L-node

is most similar to. Finally, we obtain a new set of L-node

clusters and make it the input set for the clustering at the next

level. We repeat the entire process until a certain number of

streamline levels is created.

In practice, for constructing FlowGraph, it is desirable for

spatial regions or streamline clusters to have three to five levels

in their respective hierarchy. This is suggested through empir-

ical observations of the resulting graph’s size and complexity.

For the streamline hierarchy, the actual number of levels could

be larger while we only use several levels at the topmost of

the hierarchy for FlowGraph drawing. This would allow us

to draw FlowGraph in an efficient way and maintain a good

balance between clarity and complexity.

4 FLOWGRAPH DRAWING FOR STEADY FLOW

FIELD

We apply the Fruchterman-Reingold algorithm, a classical

force-directed graph layout algorithm [8] to draw the com-

pound FlowGraph in 2D. To distinguish among different

kinds of nodes, we use nodes of different colors and shapes:

orange squares for R-nodes and yellow circles for L-nodes. An

example is shown in Figure 2 with the solar plume data set.

We also use edges of different colors and styles. In Figure 2,

L-R edges are drawn in gray dashed lines. For the underlying

graph representation, L-L edges and L-R edges are undirected

while R-R edges are directed. Given two regions r1 and r2,

we differentiate between streamlines going from r1 to r2 and

streamlines going from r2 to r1. For simplicity, instead of using

double directed R-R edges, we draw a single undirected R-

R edge using the summation of the numbers of streamlines

passing through these two regions. While all L-L edges and

L-R edges are used for computing the layout, for R-R edges,

we only use edges that cross neighboring spatial regions.

This prevents the force model from pulling two R-nodes

together although they are far away in the spatial domain.

The resulting FlowGraph will better reflect the underlying

structural relationships among different R-nodes.

At runtime, the user explores the streamline hierarchy or the

space hierarchy by clicking a node in FlowGraph to expand

and examine finer detail. Therefore, we need to adjust the

layout to accommodate such level-of-detail explorations. A

good layout should maintain a good balance between preserv-

ing the structural information of the graph and revealing the

dynamics while reducing overlap or occlusion. We generate the

initial layout for the coarsest level of FlowGraph. To achieve

stable update, we apply a triangulation scheme [25] to this

initial graph and use the result of the triangulation to perform

constrained layout adjustment. The four corners of the drawing

area are considered as pseudo-nodes in the triangulation. When

a node is expanded in FlowGraph, its initial size is proportional

to the number of children in its next level of detail. All nodes

expanded are assigned the same scaling factor. The user can

also shrink an expanded node back by clicking the empty

region inside of the expanded node. The surrounding nodes

which are pushed away due to the expansion will be pulled

back to their respective positions as much as possible.

Similar to the work presented in [5], we consider four kinds

of forces to reposition the nodes to reduce their overlap while

maintaining the topology of the coarsest level of FlowGraph.

These forces include: a bidirectional repulsive force which

pushes away two nodes u and v from each other and is effective

iff u and v overlap each other, a unidirectional repulsive force

which pushes away a node u without detail shown from a

node v with detail shown and is effective iff u is inside of v, a

spring force which offsets the two repulsive forces introduced

by reducing the gap between every pair of nodes in the graph,

and an attractive force which maintains the topology of the

underlying triangle mesh by flipping a triangle back if it

is flipped. Figure 2 shows an example of layout adjustment

during the level-of-detail exploration. As we can see, the

expanded nodes expel other nodes outside of their regions
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Fig. 3. An L-node is expanded in the computer room data

set and one of its child nodes is shown in purple. The

corresponding child and parent streamline clusters are

shown in gold and white, respectively.

while the global structure of FlowGraph is still preserved. We

apply this same layout adjustment strategy recursively to nodes

at different hierarchical levels.

5 FLOWGRAPH EXPLORATION AND INTERRO-
GATION FOR STEADY FLOW FIELD

FlowGraph contains a wealth of information that can be

effectively utilized for flow field exploration and interrogation.

By simply observing the graph, we can already obtain some

helpful hints. For instance, if an R-node has connections to

many other R-nodes in terms of streamlines passing through

them, it is likely that either this R-node is close to the center

of the volume or this R-node contains some critical points

such as a sink or source. If the size of an L-node is large,

we know that this L-node represents a large streamline cluster.

The distance between two nodes also indicates how close their

relationship is or how tight their connection is. To extract

further information and knowledge about the underlying flow

field, we provide the following ways of exploring the graph

view and the streamline view.

5.1 Hierarchical Exploration

With FlowGraph, the user can select a node of interest,

expand it to see its next level of detail recursively, and

make a connection to the spatial streamline view. Keyboard

shortcuts are added to support convenient traversal through

sibling nodes as well as ancestor or descendent nodes. To

provide better context when exploring streamline clusters,

we give the option to show the two consecutive levels of

streamline clusters in two different colors: the child cluster

in a bright color and the rest in a low saturated color. Figure

3 shows such an example. The constrained layout adjustment

algorithm (Section 4) guarantees smooth update of the layout

of FlowGraph when the user explores nodes at various levels

of the hierarchy. Similarly, we support the same strategy of

hierarchical exploration in the streamline view by allowing the

user to visit streamline clusters or spatial regions in various

levels of detail.

5.2 Brushing and Linking

We dynamically connect the graph view and the streamline

view together through brushing and linking: when the user

Fig. 4. Filtering L-R edges by weight in FlowGraph high-

lights eleven R-nodes (shown in blue) that have strong

connection with the L-node of interest (shown in purple) in

the hurricane data set. Velocity magnitudes are mapped

to streamline colors.

clicks an L-node (R-node) in the graph view, its corresponding

streamline cluster (spatial region) is highlighted in the stream-

line view, and vice versa. As an option, when a streamline

cluster is selected, the corresponding spatial regions which

the cluster traverses will be highlighted in the streamline

view and meanwhile, the corresponding paths passing R-nodes

will also be highlighted in the graph view. Similar hints on

the corresponding streamline clusters will be provided when

a spatial region is selected. Through brushing and linking,

especially combined with hierarchical exploration, the user can

quickly build up their mental connection between the intuitive

streamline view and the abstract graph view. This will greatly

help further exploration which we introduce in the following.

5.3 Filtering and Querying

Given a large and complex 3D flow field, the resulting Flow-

Graph will consist of a large number of nodes and edges of

different kinds. Filtering and querying the graph helps reduce

the complexity of both the graph view and the streamline view,

allowing the user to focus on the nodes and edges of interest

for detailed exploration. We provide a set of queries, including

node query (by degree or weight) and edge query (by weight),

to assist the visual exploration of FlowGraph. Figure 4 shows

such an example for filtering L-R edges. The R-nodes that have

strong connection with the L-node of interest are highlighted.

As we expect, these R-nodes are nearby the L-node in the

graph view since our force-directed layout algorithm assigns

larger attractive forces to node pairs with higher edge weights.

5.4 Path Comparison and Region Comparison

Due to the occlusion-free 2D display of FlowGraph, the user

can compare streamline clusters in terms of their paths going

through different regions or compare spatial regions in terms

of streamline clusters passing through them in a clear manner.

For path comparison, the user clicks an L-node in the graph

and its corresponding paths passing through different R-nodes

are highlighted. With hierarchical exploration, we allow com-

paring L-nodes at different levels of detail. Besides showing

the actual paths the streamline cluster passing through, we

also implement an algorithm similar to the maximum spanning

tree algorithm to capture the main structure of the streamline

cluster when the paths become cluttered. In addition, we



6

(a) (b) (c) (d)

Fig. 5. (a) and (b) show path comparison for three streamline clusters shown in red, blue and purple, respectively of

the two swirls data set. Observe that the two swirls are well separated in the graph view as indicated by the green

dashed lines. Three R-nodes shared by the blue and purple L-nodes are highlighted with double boundaries. (c) and

(d) show path comparison for two streamline clusters of the solar plume data set.

filter out R-R edges of small weights to omit paths with

very few streamlines passing through. We draw undirected

edges between R-nodes where the edge thickness indicates the

strength of the path (i.e., the number of streamlines passing

through in both directions). Multiple L-nodes can be selected

simultaneously for path comparison.

Figure 5 (a) and (b) show path comparison with the two

swirls data set. We can see that the graph view is highly

correlated with the streamline view: the two swirls are well

separated in the spatial domain and the corresponding L-

nodes and R-nodes form two distinct connected components.

Furthermore, highly related L-nodes and R-nodes are close to

one another in the graph view. For example, the red streamline

cluster is far away from the blue and purple clusters in

the streamline view while the blue and purple clusters are

neighbors. These relationships are well reflected in the graph

view as well for intuitive exploration. Another example of path

comparison with the solar plume data set is shown in Figure

5 (c) and (d). Unlike the streamline clusters in the two swirls

data set, the two streamline clusters in the solar plume data

set stretch a wide spatial range and their paths passing over

many R-nodes. Six R-nodes shared in common by the two

streamline clusters are highlighted in both views. The shared

paths are blended of red and blue colors.

For region comparison, the user clicks an R-node in the

graph and the L-nodes passing through it are highlighted.

Again, in conjunction with hierarchical exploration, we allow

comparing R-nodes at different levels of detail. By selecting

multiple R-nodes, the user can visually compare the streamline

clusters passing through them in both views.

5.5 Graph Transition and Path Illustration

We introduce two different animation schemes to facilitate

the understanding of FlowGraph. The first scheme is graph

transition where we show an animated transition from the

compound graph to a single subgraph, and vice versa. The

motivation is to allow observation of the streamline cluster or

spatial region subgraph in a less cluttered view. In addition,

compared with the compound graph, the single subgraph

layout for L-nodes (R-nodes) forms a better organization of

node positions for observing L-L edges (R-R edges).

Fig. 6. The detail path of a child L-node (shown in purple)

of the tornado data set and the corresponding streamline

cluster.

The second scheme is path illustration where we show

the detail path information for one streamline or a streamline

cluster. Figure 6 shows an example of detail path. The directed

black edges in the compound graph indicate the detail path in-

formation of the streamline cluster selected. The user can play

an animation which indicates how the flow traverses the paths.

For the single streamline path animation, we also provide

the function to traverse a streamline using animation in the

streamline view. This streamline visualization is synchronized

with the corresponding path animation shown in the graph

view. This addition is intuitive for the user to acquire a solid

understanding of the relationships between the streamline or

streamline cluster and its corresponding flow regions.

6 FLOWGRAPH EXTENSION TO UNSTEADY

FLOW FIELD

Due to the high-dimensional nature of unsteady flow fields,

providing a visual exploration tool to explicitly show the

relationships between pathline clusters and their corresponding

spatiotemporal regions becomes a major challenge. To over-

come this problem, in this section we extend our FlowGraph

to handle 3D unsteady flow fields.

6.1 FlowGraph Definition and Construction

Our FlowGraph for unsteady flow fields is also a compound

hierarchical graph that consists of two kinds of nodes (R-node
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and L-nodes) and three kinds of edges (R-R edges, L-L edges

and L-R edges). We modify the definitions for these nodes and

edges as follows. An R-node now represents a spatiotemporal

region. We use a 4D octree (i.e., 16-tree) to partition the

unsteady flow data from both spatial and temporal dimensions

simultaneously. Each leaf R-node maintains a list recording

all pathlines going through the corresponding spatial region

within a particular time interval. By treating 3D pathlines as

4D streamlines, we construct L-nodes in the same way as we

do for 3D streamlines. Specifically, a leaf L-node represents

a single pathline, and a non-leaf L-node indicates a pathline

cluster. Furthermore, each L-node records the range of time

interval for the pathline or the pathline cluster it corresponds

to. Each L-node also keeps a signature it traverses through

where the spatial regions are replaced by the spatiotemporal

regions. In terms of edges, by replacing streamlines and spatial

regions with pahtlines and spatiotemporal regions, we follow

the same definitions in Section 3 to define R-R edges, L-L

edges and L-R edges.

6.2 Space-Time Hierarchy Construction

Similar to the octree partition (Section 3.1), we obtain the

space-time hierarchy by partitioning the spatiotemporal do-

main evenly in a top-down manner using 16-tree. Specifically,

we treat the unsteady flow data as a 4D continuous space

which contains x, y, z and t (time) components. Staring

from the entire 4D data set, we evenly divide it along each

dimension at each iteration. The partition termination criteria

is still based on the entropy value of the spatiotemporal region

or the given threshold for the smallest spatiotemporal size.

Intuitively, each partitioned region is a spatiotemporal region

group which occupies a cubic volume in space and spans

across a certain time interval. In practice, over hundreds of

thousands of leaf regions could be generated. We therefore

use a 4D tree data structure to store all the leaf regions for

fast access.

6.3 Pathline Hierarchy Construction

Since we treat 3D pathlines as 4D streamlines, pathline hierar-

chy construction follows the same scheme in Sections 3.2 and

3.3. The difference is that similarity computation is now based

on both spatial and temporal information of the corresponding

pathlines or pathline clusters. We compute the LCS between

two pathline L-nodes’ signatures as usual. In terms of MCR

computation, rather than only considering spatial distance

between two regions, we compute the distance based on both

spatial and temporal information by using each region’s center

as a 4D point (x,y,z, t). We follow the same solutions to group

pathlines level by level for hierarchy construction and to select

the representative pathline from each cluster.

6.4 FlowGraph Drawing

Several new features are provided to highlight temporal in-

formation for FlowGraph drawing. Node and edge drawing

follows the same style as before. Color saturation is used to

distinguish nodes based on their time spans across the entire

time sequence of the data set. Specifically, a node with an

early (later) time span is drawn in low (high) saturation. In

(a) (b)

Fig. 7. (a) is FlowGraph for the unsteady solar plume

data set. An L-node and an R-node are expanded. Nodes

with low (high) saturated colors indicate early (later) tem-

poral regions or pathlines. (b) shows the graph with the

timeline bar where the blue line shows the current time

step. Semitransparent nodes indicate the corresponding

spatiotemporal regions or pathlines whose time spans do

not cover the current time step.

Fig. 8. The colored single path for the unsteady su-

pernova data set. The red interval in the timeline bar

indicates the time span of the selected pathline. The same

colormap is used for both the pathline and its path in the

graph view. Yellow indicates the earliest time step and

brown indicates the latest time step.

terms of layout computation, we still apply the Fruchterman-

Reingold algorithm where an R-R edge connects two neigh-

boring regions based on both spatial and temporal information.

Figure 7 (a) shows such an example. To help the user explore

the graph at a specific time step, we provide a timeline bar to

indicate the current time step and filter out graph nodes whose

time spans do not cover it by making them semitransparent.

An example is shown in Figure 7 (b) where the horizontal

direction of the timeline bar from left to right corresponds to

early and later time steps.

6.5 FlowGraph Exploration and Interrogation

Our FlowGraph for pathlines and spatiotemporal regions keeps

all the exploration and interrogation functions for streamlines

and spatial regions. Furthermore, by plugging the time infor-

mation into the graph, FlowGraph conveys more information

and provides the user with more flexibility to observe and

explore the unsteady flow field. For example, since we use the

entropy to determine the size of an R-node, two R-nodes which

occupy the same spatial region but cover different time spans

could indicate the change of entropy in the same spatial region



8

(a) (b) (c) (d)

Fig. 9. (a) shows pathlines going through the selected spatiotemporal region for the unsteady solar plume data set.

(b) to (d) show pathline segments inside of the region’s spatial boundary, temporal boundary, and spatial and temporal

boundaries, respectively.

over time. For hierarchical exploration, when the user selects a

node, we also show its time span in red in the timeline bar. We

provide a time slider to help the user select a spatiotemporal

region at any specific time step. For path comparison and

region comparison, when demonstrating the path for a single

pathline in the graph view, instead of drawing the path in black,

we colorize the path using the same color mapping for pathline

drawing to show the time correspondence. An example is

shown in Figure 8. In order to differentiate pathlines from

streamlines, we use a different colormap for pathline drawing.

Besides these existing functions for FlowGraph, we add the

following new features to handle graph exploration involving

the temporal aspect:

Pathline Spatial and Temporal Filtering. We provide

pathline filtering option to allow the user to focus on the path-

lines for a specific spatial region or time interval. Basically,

when the user selects a region in the pathline view, FlowGraph

shows all the pathlines passing through this region by default.

However, sometimes it could be difficult for the user to observe

clearly the flow patterns inside of the selected region. Possible

reasons are that there may be too many pathlines going through

the selected region and these pathlines may also pass through

some other regions and thus make the view cluttered. To

alleviate this issue, we render the portions of pathlines that are

only inside of the region by filtering out pathlines segments

that are outside of the region’s spatial or temporal boundary.

Figure 9 shows an example of this filtering.

Pathlet Rendering and Animation. Rather than only

showing the entire pathline indicating the whole trajectory of

a particle, we also draw the pathlet to show a segment of the

trajectory over a short time interval. The arrow of the pathlet

indicates the current flow direction. Figure 10 (a) shows the

pathlets for the unsteady solar plume data set. By utilizing

pathlet rendering, our FlowGraph allows the user to only focus

on the flow patterns in some specific time interval. Moreover,

using a time slider, the user can obtain pathlet animation to

indicate the evolution of flow over time. Please refer to the

accompanying video for the animation. Pathlet rendering and

animation could be combined with other functions to provide

the user with a more comprehensive understanding of the flow

fields. For example, when the user selects a region and wants to

observe the corresponding pathlines going through this region,

she can first applies pathline spatial and temporal filtering and

then uses pathlets to demonstrate how the flow patterns change

(a) (b)

Fig. 10. (a) shows all the pathlets in a specific time

interval for the unsteady solar plume data set. (b) shows

the pathlets inside of a selected spatiotemporal region.

The same colormap shown in Figure 8 is used to indicates

the time steps of the pathlets.

inside of this region over its time span. Figure 10 (b) shows

such an example.

7 RESULTS

We experimented our approach with eight steady flow data

sets and three unsteady flow data sets which are listed in

Table 1. The car flow data set is from a simulation of the

air flow around a car. The computer room data set is from

a simulation of air flows inside a computer room. The five

critical points data set, courtesy of Alex Pang at the University

of California, Santa Cruz, is a synthesized flow field consisting

of two spirals, two saddles and one source [29]. The hurricane

data set, courtesy of IEEE Visualization 2004 Contest, is from

a simulation of Hurricane Isabel, a strong hurricane in the west

Atlantic region in September 2003. The solar plume data set,

courtesy of John Clyne at the National Center for Atmospheric

Research, is from a simulation of down-flowing solar plumes

for studying the heat, momentum and magnetic field of the

sun. The supernova data set, courtesy of Anthony Mezzacappa

at Oak Ridge National Laboratory and John Blondin at North

Carolina State University, is from a simulation of the explosion

of stars. The tornado data set, courtesy of Roger Crawfis at The

Ohio State University, is procedurally generated from a piece

of code. Finally, the two swirls data set is from a simulation

of swirls resulting from wake vortices.
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TABLE 1

The eleven flow data sets experimented and their timing results for FlowGraph construction. The entropy threshold is

the entropy value of a spatial region divided by the number of voxels within that region.

init. avg. # pts. minimum entropy GPU CPU graph

data set dimension # lines per line region threshold entropy field L-nodes R-nodes all edges storage

car flow 368×234×600 600 185 11×7×18 0.2 0.109s 270.614s 0.010s 51.193s 25.5MB

computer room 417×345×60 800 173 13×10×1 0.9 0.136s 323.724s 0.035s 51.526s 36.2MB

five critical pts 51×51×51 500 112 1×1×1 1.0 0.069s 243.526s 0.020s 51.943s 37.1MB

hurricane 500×500×100 600 341 15×15×3 0.8 0.257s 230.816s 0.012s 51.435s 27.2MB

solar plume 126×126×512 600 100 3×3×16 1.1 0.130s 883.516s 0.030s 53.193s 30.1MB

supernova 100×100×100 500 184 3×3×3 0.8 0.079s 243.536s 0.020s 51.943s 23.8MB

tornado 64×64×64 500 295 2×2×2 1.0 0.070s 778.520s 0.029s 53.980s 23.8MB

two swirls 64×64×64 500 157 2×2×2 1.3 0.070s 324.975s 0.008s 50.986s 23.5MB

hurricane 500×500×100×48 800 37 15×15×3×1 0.8 14.812s 1539.850s 91.694s 280.981s 175.1MB

solar plume 126×126×512×29 600 25 7×7×32×1 0.2 3.558s 379.973s 20.035s 31.425s 122.2MB

supernova 216×216×216×105 500 58 3×3×3×3 0.8 12.532s 1359.309s 85.760s 112.387s 102.5MB

We used a hybrid CPU-GPU solution in our computation

with the following hardware configuration: Intel Core i7 quad-

core CPU running at 3.20GHz, 24GB main memory and an

nVidia GeForce GTX 580 graphics card. The parameter setting

and timing performance are reported in Table 1. For all steady

data sets, we randomly placed the seeds to trace streamlines

over the field. For unsteady data sets, seeds are randomly

placed at the first time step for pathline tracing. The entropy

calculation was performed in the GPU, while FlowGraph

construction was performed in the CPU. As we can see, the

bottleneck step of the construction is to create the streamline

or pathline hierarchy. For steady flow fields, it took up to 15

minutes to construct FlowGraph and the required storage for

graph was quite affordable (less than 40MB). For unsteady

flow fields, since the number of spatiotemporal regions after

the 16-tree partition is much larger than the number of spatial

regions in steady flow fields, the time for R-node hierarchy

computation increased dramatically and could reach around

1.5 minutes. The total graph construction time was up to

30 minutes and the storage space also increased to up to

175MB. At runtime, all tasks including graph drawing, layout

adjustment and user interaction in both views are interactive.

Selected FlowGraph results with individual exploration

tasks have been shown in Figures 2 to 10. In the following, we

present three case studies on three other steady flow data sets

to demonstrate the capability of FlowGraph in assisting flow

field exploration, path comparison and feature identification.

We also give two case studies on two unsteady flow data sets

to show the exploration of relationships between pathlines

and spatiotemporal regions. To intuitively understand how

FlowGraph works and best evaluate its effectiveness, we refer

readers to the accompanying video which shows the dual

interaction on both the graph view and the field line view.

Case Study 1 — Five Critical Points Data Set. For

the five critical points data set, we experience how we can

use FlowGraph to easily identify these critical points from

randomly traced streamlines that densely cover the field. In

the first row of Figure 11, we show our exploration results

that highlight three spatial regions that contain critical points.

These spatial regions are important R-nodes in terms of

centrality in the graph view. Normally, these R-nodes are close

to the center of the graph and have strong connections to other

nodes. As we can see in the streamline visualization, these

three regions correspond to a spiral, a saddle and a source

from left to right, respectively. In the second row of Figure

11, we select an R-node that has strong connection with its

neighbor. Its corresponding spatial region is close to the center

of the volume. The streamlines passing through this R-node

are displayed. Since the number of streamlines displayed is

fairly large, we further explore the child nodes of this R-node.

Two child R-nodes and the streamlines passing through each

of them are shown. It is clear that with the level-of-detail

exploration, it becomes convenient for the user to explore the

relationships between streamlines and spatial regions in an

adaptive manner. This capability is very necessary in order to

achieve flexible control when exploring large and complex 3D

flow fields where dense streamlines are commonly exhibited

throughout the entire volume.

Case Study 2 — Steady Supernova Data Set. For the

supernova data set, we first compare the paths of two stream-

line clusters. As shown in Figure 12 (a) and (b), these two

streamline clusters both start from the volume boundary and

get more intertwined as they get closer to the center. The

compound graph view clearly shows the two R-nodes these

two streamline clusters share in common. The highlighted

path results also match the spatial arrangement of these two

clusters. The paths start from the surrounding of the graph and

advance to the center where the two clusters meet at the two

spatial regions highlighted. In Figure 12 (c) and (d), we switch

to the spatial region subgraph and show the path information of

a single streamline. An R-node is further expanded to show the

path information in the next level of detail. The corresponding

spatial regions are highlighted in cyan. Observe how close the

path drawn in the 2D graph view “matches” the 3D streamline

view. In general, we find that drawing the subgraph which only

consists of R-nodes and R-R edges forms a better arrangement

of node positions. This helps the user build the connection

between 2D paths and 3D streamlines between the views.

Case Study 3 — Car Flow Data Set. For the car flow

data set, our goal is to identify spatial regions and streamline

clusters that capture the essential interesting flow pattern pass-

ing through the car. In Figure 13, we can see that FlowGraph

exhibits an interesting layout: many L-nodes and R-nodes are

pushed to the boundary of the drawing region. This is due to

the fact that many of the streamlines we trace over the volume

only form the straight pattern, i.e., they are simply passing
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Fig. 11. Exploring the five critical points data set. First row: three R-nodes are selected (shown in blue, red and brown)

which correspond to the spatial regions each containing one critical point. Second row: filtering R-nodes based on the

R-R edge weight identifies an important R-node. The streamlines passing through the parent R-node (shown in black)

and two child R-nodes (shown in blue and red) are displayed.

(a) (b) (c) (d)

Fig. 12. Exploration of the steady supernova data set using FlowGraph. (a) and (b) show the path comparison of two

streamline clusters (shown in black and magenta) in both views. Their shared spatial regions are also highlighted. (c)

and (d) show the snapshot of path animation of a single streamline over spatial regions with different levels of detail.

Green, red and blue squares (graph view) and spheres (streamline view) indicate the starting, ending and current

animation points, respectively.

by rather than passing through the car. These streamlines and

spatial regions surround the interesting flow regions located

around the center of the volume. These L-nodes and R-nodes

only have a few connections to their neighboring nodes. In

contrast, L-nodes and R-nodes around the center of the graph

correspond to streamline clusters and spatial regions in the

center of the volume. They have more connections to their

neighboring nodes and are important nodes for our visual

exploration. In Figure 13 (a), we select four R-nodes of

interest. Eight L-nodes that have strong connections to the

selected R-nodes are highlighted. The streamline view shown

in (b) clearly indicates the correspondence of these nodes to

interesting flow regions. In (c) and (d), we further explore

three L-nodes and filter out streamline clusters at two different

levels of detail that well capture the flow pattern passing

through the car. With the visual guidance of FlowGraph

and dual interaction with the streamline view, exploring the

underlying flow field to identify features of interest becomes

more intuitive, convenient and effective.

Case Study 4 — Unsteady Supernova Data Set. For

the unsteady supernova data set, we first utilize the relation-

ships between R-nodes and L-nodes combined with pathlet

animation to detect one sink at the core of the supernova.

In Figure 14 (a) and (c), we highlight two R-nodes which

occupy the same spatial region but cover different time spans.

The L-nodes connecting to them are also shown in the same

color. Two L-nodes are expanded to provide pathline cluster

observation at finer levels of detail. We can see that the blue

R-node from the early time span has more connections to

the L-nodes than the red R-node from the later time span.
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(a) (b) (c) (d)

Fig. 13. Exploring the interesting flow pattern in the car flow data set. (a) and (b) show four important R-nodes (shown

in red, green, blue and brown) and eight L-nodes that have strong connections to the R-nodes of interest. From these

eight L-nodes, (c) and (d) show further selection of three L-nodes (one at the next level of the hierarchy) to capture

the main flow structure passing through the car.

(a) (b) (c) (d)

Fig. 14. Exploring two spatiotemporal regions in the unsteady supernova data set. (a) and (c) highlight two R-nodes

(shown in blue and red) respectively, and the L-nodes which have strong connections with them. (b) and (d) show

the regions and pathlets corresponding to the R-nodes and L-nodes in (a) and (c), respectively. The blue lines in

the timeline bars of (a) and (c) indicate the current time steps for pathlet animation in (b) and (d), respectively. The

colormap shown in Figure 8 is used to indicates the time steps of the pathlets.

This implies that with the time passing by, some pathline

clusters which go through one region in the early time steps

may no longer be inside of that region later on. One possible

answer to this phenomenon is that there is a sink inside of

the region. With the help of our pathlet animation, we can

verify the correctness of this assumption. In Figure 14 (b), we

show all the pathlets going through the blue R-node in (a).

Some pathlets are outside of the blue region because we only

show one time step of the animation. Each of these pathlets

should go through the region at some specific time step. We

can see that most of the pathlets are moving toward the center

of the volume. In Figure 14 (d), the spatiotemporal region of

the red R-node in (c) is shown. It represents the same spatial

region in (b) but covers later time steps. The corresponding

pathlets going through this region are also shown. It is clear

that many of the pathlets disappear at this time step. Based on

this observation, we confirm that there is a sink in the center

of the supernova where most of the pathlets are trapped.

Figure 15 gives an example of path comparison for two

pathline clusters. The clusters (pathlets) and their correspond-

ing paths are shown in the same color. Figure 15 (b) to (d)

show the moving of the pathlets from two clusters as the time

evolves. The shared R-nodes are also highlighted in both views

with their correspondence labeled by number. From the figure,

we can see that the flow actually follows a circular pattern

around the center of the volume according to the order of the

labeled spatiotemporal regions (i.e., from 1 to 5).

Case Study 5 — Unsteady Hurricane Data Set. For

the unsteady hurricane data set, we increase the number of

nodes in the initial graph for detailed exploration by starting

the layout from a finer level of node hierarchy. With the

help of FlowGraph, we demonstrate how the trajectory of

the hurricane center is detected. Figure 16 (a) shows path

comparison for three L-nodes in the compound graph and the

corresponding pathlines of the selected L-nodes. The R-nodes

shared by the three paths are also highlighted in both views.

Figure 16 (b), (c) and (d) show the R-node subgraph layouts

for three selected time steps, respectively. One interesting

finding is that R-nodes in the subgraph are grouped into

four well-isolated clusters. Actually, these four clusters form

the four horizontal layers along the z dimension of the data

set. This indicates that the flows of hurricane almost only

move along the xy plane and there is little exchange of flows

vertically. In the corresponding three snapshots of pathlet

animation, the shared R-nodes are highlighted as the black

spatiotemporal regions. We can see that the pathlets follow

the hurricane center. With the evolution of time, the trajectory

of hurricane follows the order of the shared regions from the
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(a) (b) (c) (d)

Fig. 15. Path comparison for two pathline clusters in the unsteady supernova data set. (a) shows the two selected

L-nodes and their corresponding paths in blue and purple, respectively. Five R-nodes shared in common are marked

with 1 to 5. (b) to (d) show three snapshots from pathlet animation where pathlets correspond to the two L-nodes in

the same color shown in (a). The corresponding R-nodes passing through in common are marked in (b) to (d). Note

that regions 3 and 4 are the same spatial region but cover different time spans.

(a) (b) (c) (d)

Fig. 16. Path comparison for three pathline clusters in the unsteady hurricane data set. (a) shows three selected

L-nodes in green, cyan and red, respectively, and their pathlines. The corresponding paths and shared R-nodes are

also shown. These pathlines capture the center of hurricane. (b), (c) and (d) are the R-node subgraph layouts for three

different time steps and their corresponding snapshots of pathlet animation. The timeline in each graph indicates the

current time step. R-nodes whose time span do not cover the current time step are drawn semitransparently for clear

observation. The shared regions in the current time step are also highlighted in the pathline view.

lower-right corner of the volume to the upper-left corner.

8 EMPIRICAL EXPERT EVALUATION

To evaluate the effectiveness of FlowGraph from a practical

aspect, we collaborated with a domain expert in biofluids and

biomedical engineering, Dr. Jingfeng Jiang. Dr. Jiang’s re-

search interests include transforming blood flow characteristics

data from raw medical imaging data into clinically-relevant

parameters for cardiovascular diseases. The evaluation consists

of two major stages. These two stages were completed a few

days apart, each took about two hours. In the first stage, basic

training was provided to Dr. Jiang. The training aimed at

helping him get familiar with the graphic user interface of the

FlowGraph program using several steady and unsteady flow

data sets. In the second stage, we provided several other flow

data sets for the expert to freely explore by himself. For each

data set, Dr. Jiang was instructed to complete one or two pre-

determined tasks (such as finding critical points, comparing

paths or regions, or identifying flow patterns), assisted by

the FlowGraph program. The following is a summary of his

feedback.

In general, FlowGraph is a useful and novel tool to explore

flow field. It is very helpful in terms of finding the critical

patterns within the regions or volumes of interest. For rela-
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tively simple flow, the correlation between the graph view and

the field line view works well and the connectivity between

nodes can show the flow direction clearly. For complex flow

fields, adding visual aids will help users quickly understand

the graph. For instance, it is feasible to automatically highlight

critical regions by streamline density or flow features. The

option for viewing L-node or R-node subgraphs provides

users a way to explore the flow features in a multiscale

fashion. This is particularly useful when one tries to find

critical points. The node and edge filtering function allows

users to reduce the number of node connections which is

crucial for locating important nodes in a complex graph.

For unsteady flow field exploration, the spatial constraint of

pathlines enables users to visualize self-contained particles

by the spatial regions. The temporal constraint of pathlines

helps users easily separate slow particles from fast particles if

all of them are released from the same position. It could be

useful for some biomedical applications. The use of pathlets

to represent unsteady flow fields is one important advantage

of FlowGraph. First, compared to pathlines, pathlets explicitly

show the flow direction information. Second, pathlets are less

crowded than pathlines and this helps users observe flow

patterns more clearly. Besides, pathlet animation provides a

vivid demonstration on the evolution of a flow field over time.

FlowGraph may be directly applied to visualization of car-

diovascular flows. The technique will probably work well with

the heart and aneurysms. Particularly, the Reynolds number

of the physiological flow in the heart is large so that the flow

is highly disturbed. Therefore, using streamline and pathline

clustering and visualization may help users track hierarchical

structures of the flow. The other potential application is to track

diffusion flow—another important application in biomedical

engineering. Many deliveries of local agents rely on the flow

so that more detailed visualization and analysis may help users

understand the interactions between the flow (i.e., highway)

and the vehicle (i.e., chemical or biological agent). In a clinical

setting, clinicians and research engineers often have many

images or vector plots to go through. FlowGraph will be very

useful in terms of finding the critical patterns, for instance,

sources and sinks within the regions of interest. FlowGraph for

unsteady flow fields provides the time-resolved information.

This can help users identify particle trajectory and therefore

infer its residence time, which is relevant to large protein

accumulation and subsequent biological effects, e.g., clotting

and inflammatory responses. Path comparison will help users

study flow mixing. More specifically, if each cluster represents

a source of incoming flow, flow paths can visualize how the

mixing of flow takes place. Drug delivery will be a good

application for this function.

Dr. Jiang also pointed out some possible improvements for

FlowGraph. First, a brief user guide will greatly help new

users understand and use the program. Second, an “optimized”

graph which only shows the critical node connections at

the very beginning will help “lazy” users identify important

regions easily. Third, for unsteady flow fields, exclusively

showing the spatial relationship of two R-nodes which occupy

the same spatial region but different time intervals will help

users quickly identify such kind of R-nodes and related flow

time-history. Fourth, it would be a good idea to generate

graph nodes based on some fundamentals in flow physics,

such as sink, source, and vortex core. Finally, if the graph

can be arranged based on the flow direction, it will make

FlowGraph more intuitive for users to distinguish upstream

and downstream flows. We plan to further improve FlowGraph

accordingly, making it a more useful tool for domain experts.

9 CONCLUDING REMARKS

We have presented FlowGraph, a new graph-based visual

representation that explicitly encodes the field line clusters,

spatiotemporal regions and their hierarchical relationships

to assist flow field exploration and interrogation. The main

motivation to generate such a representation is to address

the intrinsic difficulty when visualizing and understanding

3D field lines. As we know, 3D field lines normally create

dense distribution over the space, which is especially true

for large and complex 3D steady and unsteady flow fields.

By transforming the field lines, spatiotemporal regions and

their interconnection to a 2D space, we allow occlusion-free

observation, navigation and interaction with the graph view

and make connection to the field line view for effective visual

exploration. Our work falls into the category of visual analytics

for scientific visualization: extracting essential information

or relationships from scientific data sets to enable analytical

reasoning facilitated by interactive visual interfaces.

Even though FlowGraph is an abstract representation of

the underlying flow field, our objective results and subjective

evaluation show strong evidence with multiple data sets that

it is easy to understand the graph and perform the tasks

accordingly through visual encoding such as node size, visual

hints such as node centrality, and interactive filtering such as

edge pruning. Our experience shows that through brushing and

linking, the user can quickly build the connections between

the views. Once such connections are built, the user shall

gain a good understanding on how to work with both views

effectively to achieve different visual exploration goals. As

the size and complexity of flow fields continue to grow, we

anticipate future visual analytics systems for flow visualization

equipped with such supports comparable to FlowGraph.
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